Acta Horticulturae Sinica ›› 2023, Vol. 50 ›› Issue (5): 1037-1047.doi: 10.16420/j.issn.0513-353x.2022-0091
• Genetic & Breeding·Germplasm Resources·Molecular Biology • Previous Articles Next Articles
CHEN Xinchen1,2, ZHAO Huimin1, WANG Sen1,2, WU Simin1,2, XIANG Lin1, CHAN Zhulong1, WANG Yanping1,*()
Received:
2022-12-29
Revised:
2023-02-03
Online:
2023-05-25
Published:
2023-05-31
Contact:
WANG Yanping
E-mail:ypwang@mail.hzau.edu.cn
CLC Number:
CHEN Xinchen, ZHAO Huimin, WANG Sen, WU Simin, XIANG Lin, CHAN Zhulong, WANG Yanping. Analysis of Floral Bud Differentiation and Related Genes Expression Under Different Temperatures in Tulipa gesneriana[J]. Acta Horticulturae Sinica, 2023, 50(5): 1037-1047.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2022-0091
引物名称 Primer | 上游引物(5′-3′) Forward primer | 下游引物(5′-3′) Reverse primer |
---|---|---|
TgSQA | GGCAGACTGAAGGCTAAGGT | GCTCGTTGAAGATCGGCAAT |
TgSQB | GGAGCAGAAGTCCAAGGCTT | GCTCCATCCTCTTCGTTGCT |
TgSEP1 | TGCCCTTCGACTATCATGGG | CAGGAGCATAGCCATCACCA |
TgFT-like | GTGGATCCTGATGCTCCGAG | AAAACAAACACGAGGCGGTG |
TgSPL2 | CCAGAAATGTCGGAGCCCAG | AGATGGAACCTGCTGCACTG |
TgGLO | GAACTGCGGGAACAAGCTCT | AATCGGGATCAGCTCCTTGG |
TgLFY | ATTACGTCCACTGCTACGCC | GGGCTGAGATTGCAACGAGA |
TgSOC1-like1 | AGAGGGTTTGGTAGAGCAAAGT | GGTCTGATGCGGGGATTCTT |
TgSOC1-like2 | TCACAGCTCAGAGGAAAGGA | GCAAGTCCGTCTCCACATCT |
TgTFL1 | GGCAGAGGAGAGGACAGGTA | AAGAGAGTGTCAGTCAGCGG |
TgFLK | TGCCTTGCAAGACGATAGGG | ATGCGGTGGATGTTGCATTG |
TgVIN3 | CGACCATCCAGTTCGACTCC | AGCAATCTTCCTCGCGTGAT |
TgUBQ10 | GTCGCACGTTGGCTGATTAC | GGGCTTAAAGACCACCACGA |
AtUBQ10 | CCAAGATCCAAGACAAAGAGGG | TGAGAACAAGATGAAGGGTGG |
Table 1 Primers for qRT-PCR analysis
引物名称 Primer | 上游引物(5′-3′) Forward primer | 下游引物(5′-3′) Reverse primer |
---|---|---|
TgSQA | GGCAGACTGAAGGCTAAGGT | GCTCGTTGAAGATCGGCAAT |
TgSQB | GGAGCAGAAGTCCAAGGCTT | GCTCCATCCTCTTCGTTGCT |
TgSEP1 | TGCCCTTCGACTATCATGGG | CAGGAGCATAGCCATCACCA |
TgFT-like | GTGGATCCTGATGCTCCGAG | AAAACAAACACGAGGCGGTG |
TgSPL2 | CCAGAAATGTCGGAGCCCAG | AGATGGAACCTGCTGCACTG |
TgGLO | GAACTGCGGGAACAAGCTCT | AATCGGGATCAGCTCCTTGG |
TgLFY | ATTACGTCCACTGCTACGCC | GGGCTGAGATTGCAACGAGA |
TgSOC1-like1 | AGAGGGTTTGGTAGAGCAAAGT | GGTCTGATGCGGGGATTCTT |
TgSOC1-like2 | TCACAGCTCAGAGGAAAGGA | GCAAGTCCGTCTCCACATCT |
TgTFL1 | GGCAGAGGAGAGGACAGGTA | AAGAGAGTGTCAGTCAGCGG |
TgFLK | TGCCTTGCAAGACGATAGGG | ATGCGGTGGATGTTGCATTG |
TgVIN3 | CGACCATCCAGTTCGACTCC | AGCAATCTTCCTCGCGTGAT |
TgUBQ10 | GTCGCACGTTGGCTGATTAC | GGGCTTAAAGACCACCACGA |
AtUBQ10 | CCAAGATCCAAGACAAAGAGGG | TGAGAACAAGATGAAGGGTGG |
温度/℃ Temperature | 花芽长度/mm Length of floral bud | 花芽宽度/mm Width of floral bud | ||||
---|---|---|---|---|---|---|
06-10(10 d) | 06-28(28 d) | 07-14(44 d) | 06-10(10 d) | 06-28(28 d) | 07-14(44 d) | |
5 | 2.00 ± 0.44 b | 3.17 ± 0.61 b | 5.33 ± 0.72 b | 1.90 ± 0.17 b | 1.97 ± 0.25 b | 2.37 ± 0.55 b |
22 | 3.68 ± 0.44 a | 6.78 ± 1.72 a | 8.83 ± 2.40 a | 2.76 ± 0.43 a | 3.00 ± 0.41 a | 3.88 ± 0.85 a |
28 | 1.74 ± 0.19 b | 2.60 ± 0.66 b | 3.23 ± 0.21 c | 1.54 ± 0.21 c | 1.95 ± 0.62 b | 2.28 ± 0.50 b |
Table 2 Comparison of length and width of flower bud under different temperature
温度/℃ Temperature | 花芽长度/mm Length of floral bud | 花芽宽度/mm Width of floral bud | ||||
---|---|---|---|---|---|---|
06-10(10 d) | 06-28(28 d) | 07-14(44 d) | 06-10(10 d) | 06-28(28 d) | 07-14(44 d) | |
5 | 2.00 ± 0.44 b | 3.17 ± 0.61 b | 5.33 ± 0.72 b | 1.90 ± 0.17 b | 1.97 ± 0.25 b | 2.37 ± 0.55 b |
22 | 3.68 ± 0.44 a | 6.78 ± 1.72 a | 8.83 ± 2.40 a | 2.76 ± 0.43 a | 3.00 ± 0.41 a | 3.88 ± 0.85 a |
28 | 1.74 ± 0.19 b | 2.60 ± 0.66 b | 3.23 ± 0.21 c | 1.54 ± 0.21 c | 1.95 ± 0.62 b | 2.28 ± 0.50 b |
Fig. 2 Paraffin section of tulip floral buds differentiated under different temperature conditions L:Leaf;T:Tepal;A:Anther;S:Stigma;FM:Floral meristem.
Fig. 4 Comparison of plant growth and flowering among tulip bulbs differentiated under different temperatures Different letters indicate significant differences at P < 0.05 level(Tukey-test). N.D. indicates not detected.
[1] | Alonso-Peral M M, Oliver S N, Casao M C, Greenup A A, Trevaskis B. 2011. The promoter of the cereal VERNALIZATION1 gene is sufficient for transcriptional induction by prolonged cold. PLoS ONE, 6 (12):1258-1268. |
[2] |
Atif M J, Amin B, Ghani M I, Hayat S, Ali M, Zhang Y, Cheng Z. 2019. Influence of different photoperiod and temperature regimes on growth and bulb quality of garlic(Allium sativum L.)cultivars. Agronomy, 9 (12):879.
doi: 10.3390/agronomy9120879 URL |
[3] |
Benlloch R, Kim M C, Sayou C, Thévenon E, Parcy F, Nilsson O. 2011. Integrating long-day flowering signals:a LEAFY binding site is essential for proper photoperiodic activation of APETALA1. Plant Journal, 67 (6):1094-1102.
doi: 10.1111/tpj.2011.67.issue-6 URL |
[4] |
Blümel M, Dally N, Jung C. 2015. Flowering time regulation in crops-what did we learn from Arabidopsis? Current Opinion in Biotechnology, 32:121-129.
doi: 10.1016/j.copbio.2014.11.023 URL |
[5] |
Chandler J W. 2012. Floral meristem initiation and emergence in plants. Cellular and Molecular Life Sciences, 69 (22):3807-3818.
doi: 10.1007/s00018-012-0999-0 pmid: 22573183 |
[6] | Freytes S N, Canelo M, Cerdán P D. 2021. Regulation of Flowering Time:When and Where? Current Opinion in Plant Biology, 63:102049. |
[7] |
Horvath D. 2009. Common mechanisms regulate flowering and dormancy. Plant Science, 177 (6):523-531.
doi: 10.1016/j.plantsci.2009.09.002 URL |
[8] |
Hu J, Chang X, Zhang Y, Yu X, Qin Y, Sun Y, Zhang L. 2021. The pineapple MADS-box gene family and the evolution of early monocot flower. Scientific Reports, 11 (1):849.
doi: 10.1038/s41598-020-79163-8 pmid: 33441609 |
[9] |
Ji Fengjiao, Ma Yan, Qi Shuai, Guo Xianfeng, Chen Junqiang. 2022. Cloning and functional analysis of peony PlSVP gene in regulating flowering. Acta Horticulturae Sinica, 49 (11):2367-2376. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2021-1253 |
籍凤娇, 马燕, 亓帅, 郭先锋, 陈俊强. 2022. 芍药PlSVP基因的克隆及其花期调控功能分析. 园艺学报, 49 (11):2367-2376.
doi: 10.16420/j.issn.0513-353x.2021-1253 |
|
[10] |
Jung J H, Ju Y, Seo P J, Lee J H, Park C M. 2012. The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis. The Plant Journal, 69 (4):577-588.
doi: 10.1111/tpj.2012.69.issue-4 URL |
[11] |
Khodorova N V, Boitel-Conti M. 2013. The role of temperature in the growth and flowering of geophytes. Plants, 2 (4):699-711.
doi: 10.3390/plants2040699 URL |
[12] |
Kim D H, Sung S. 2017. The binding specificity of the PHD-Finger domain of VIN3 moderates vernalization response. Plant Physiology, 173 (2):1258-1268.
doi: 10.1104/pp.16.01320 URL |
[13] |
Lazare S, Burgos A, Brotman Y, Zaccai M. 2018. The metabolic(under)groundwork of the lily bulb toward sprouting. Physiologia Plantarum, 163 (4):436-449.
doi: 10.1111/ppl.2018.163.issue-4 URL |
[14] | Le Nard M. 1993. The physiology of flower bulbs:a comprehensive treatise on the physiology and utilization of ornamental flowering bulbous and tuberous plants. Elsevier. |
[15] |
Leeggangers H A, Nijveen H, Bigas J N, Hilhorst H W, Immink R G. 2017. Molecular regulation of temperature-dependent floral induction in Tulipa gesneriana. Plant Physiology, 173 (3):1904-1919.
doi: 10.1104/pp.16.01758 pmid: 28104719 |
[16] |
Noy-Porat T, Flaishman M A, Eshel A, Sandler-Ziv D, Kamenetsky R. 2009. Florogenesis of the Mediterranean geophyte Narcissus tazetta and temperature requirements for flower initiation and differentiation. Scientia Horticulturae, 120 (1):138-142.
doi: 10.1016/j.scienta.2008.09.016 URL |
[17] |
Ream T S, Woods D P, Schwartz C J, Sanabria C P, Mahoy J A, Walters E M, Kaeppler H F, Amasino R M. 2014. Interaction of photoperiod and vernalization determines flowering time of Brachypodium distachyon. Plant Physiology, 164 (2):694-709.
doi: 10.1104/pp.113.232678 URL |
[18] |
Shin K S, Chakrabarty D, Paek K Y. 2002. Sprouting rate,change of carbohydrate contents and related enzymes during cold treatment of lily bulblets regenerated in vitro. Scientia Horticulturae, 96 (1-4):195-204.
doi: 10.1016/S0304-4238(02)00087-0 URL |
[19] |
Shitsukawa N, Ikari C, Mitsuya T, Sakiyama T, Murai K. 2007. Wheat SOC1 functions independently of WAP1/VRN1,an integrator of vernalization and photoperiod flowering promotion pathways. Physiologia Plantarum, 130 (4):627-636.
doi: 10.1111/ppl.2007.130.issue-4 URL |
[20] | Tang Nan, Zhang Xia, Tang Dao-cheng. 2009. Effect of different temperature treatments on water content and relative dry matter content in tulip bulbs. Journal of Qinghai University(Nature Science), 27 (6):65-68. (in Chinese) |
唐楠, 张霞, 唐道城. 2009. 不同温度处理对郁金香鳞茎中水分及干物质含量的影响. 青海大学学报(自然科学版), 27 (6):65-68. | |
[21] | Wang Xiao-qian, Zhang Yan-long, Niu Li-xin, Sun Hui-li, Si Guo-chen. 2011. Changes of carbohydrate and protein contents in bulbs of Tulipa gesneriana L. during flower bud differentiation. Plant Physiology Journal, 47 (4):379-384. (in Chinese) |
汪晓谦, 张延龙, 牛立新, 孙惠莉, 司国臣. 2011. 郁金香花芽分化过程中鳞茎碳水化合物和蛋白质含量的变化. 植物生理学报, 47 (4):379-384. | |
[22] | Wang Y, Zhao H, Wang Y, Yu S, Zheng Y, Wang W, Chan Z. 2019. Comparative physiological and metabolomic analyses reveal natural variations of tulip in response to storage temperatures. Planta, 49 (5):1379-1390. |
[23] |
Wang Yun-meng, Song He-yun, Liu Juan, Zhang Ming-hua, Yang Mei. 2022. Molecular mechanism of FT and TFL1 genes on regulation of plant flowering. Plant Physiology Journal, 58 (1):77-90. (in Chinese)
doi: 10.1104/pp.58.1.77 URL |
王云梦, 宋贺云, 刘娟, 章明华, 杨美. 2022. FT和TFL1基因调控植物开花的分子机理. 植物生理学报, 58 (1):77-90. | |
[24] | Xia Yi-ping, Yang Yu-ai, Yang Xiao-e, Gao Xiao-chen, Li Fang. 2005. Distribution of 14C-photosynthate and changes of endogenous phytohormone in the bulb development of tulip. Acta Horticulturae Sinica, 32 (2):278-283. (in Chinese) |
夏宜平, 杨玉爱, 杨肖娥, 高晓辰, 李方. 2005. 郁金香更新鳞茎发育的碳同化物积累与内源激素变化研究. 园艺学报, 32 (2):278-283. | |
[25] |
Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen J L, Echenique V, Dubcovsky J. 2004. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 303 (5664):1640-1644.
doi: 10.1126/science.1094305 URL |
[26] |
Zemah H, Bendel P, Rabinowitch H, Kamenetsky R. 1999. Visualization of morphological structure and properties of water status during storage of Allium aflatunense bulbs by NMR imaging. Plant Science, 147 (1):65-73.
doi: 10.1016/S0168-9452(99)00099-0 URL |
[27] | Zheng Bao-qiang, Deng Xi-mei, Li Kui, Miao Kun, Wang Yan. 2017. Effects of temperature treatment on flower bud differentiation and development of Dendrobium. Forest Research, 30 (3):460-464. (in Chinese) |
郑宝强, 邓茜玫, 李奎, 缪崑, 王雁. 2017. 不同温度处理对石斛兰花芽分化和发育的影响. 林业科学研究, 30 (3):460-464. | |
[28] | Zhou Guo-ning, Ying Qiu-shi, Chen Shao-yun, Fang Yuan-zhong, Wang Yue-hua. 1995. Effect of temperature on flower bud differentiation of tulip. Acta Agriculturae Zhejiangensis, 7 (2):146-148. (in Chinese) |
周国宁, 应求是, 陈绍云, 方远中, 王月华. 1995. 温度对郁金香花芽分化的影响. 浙江农业学报, 7 (2):146-148. |
[1] | LI Renjie , YUAN Lingyun , CHEN Guohu , HOU Jinfeng , HUANG Xingxue , and WANG Chenggang, . [J]. Acta Horticulturae Sinica, 2023, 50(S1): 41-42. |
[2] | ZHOU Cheng, FANG Yi, ZHOU Jinyang, HUANG Qihao, PAN Yongjian, SHI Qianqian, NI Huixian, YANG Zhenfeng, SONG Chunbo. The Relationship Between Membrane Lipid Metabolism and Chilling Injury of Postharvest Peach Fruit Induced by Low Temperature [J]. Acta Horticulturae Sinica, 2023, 50(6): 1305-1317. |
[3] | YAN Juan, ZHAO Bintao, SUN Meng, SONG Hongfeng, CAI Zhixiang, LI Jiyao, SU Ziwen, ZHANG Minghao, SHEN Zhijun, XU Jianlan, MA Ruijuan, YU Mingliang. Adaptability of Peach Under Air Temperature Change Based on Chilling Requirment [J]. Acta Horticulturae Sinica, 2023, 50(4): 724-736. |
[4] | JIANG Yuqing, HE Qi, HOU Ludan, WU Xiangli, HUANG Chenyang, and ZHAO Mengran. The Molecular Mechanism of Phenylalanine Ammonia-Lyase Gene pal2 Regulating Pleurotus ostreatus Mycelial Growth Under Stimulation of Low-temperature and Light [J]. Acta Horticulturae Sinica, 2023, 50(4): 831-841. |
[5] | MAO Kexin, AN Miao, WANG Hairong, WANG Shijin, LÜ Wei, GUO Yingtian, LI Jian, LI Guotian. Identification and Low Temperature Expression Analysis of MYB Transcription Factor Family in Kiwifruit [J]. Acta Horticulturae Sinica, 2023, 50(3): 534-548. |
[6] | XUE Yuqian, LIU Zhiyong, SUN Kairong, ZHANG Xiuxin, LÜ Yingmin, XUE Jingqi. The Mechanism of Sugar Signal Involved in Regulating Re-flowering of Tree Peony Under Forcing Culture [J]. Acta Horticulturae Sinica, 2023, 50(3): 596-606. |
[7] | REN Fei, LU Miaomiao, LIU Jixiang, CHEN Xinli, LIU Daofeng, SUI Shunzhao, MA Jing. Expression and Adversity Resistance Analysis of a Late Embryogenesis Abundant Protein Gene CpLEA from Chimonanthus praecox [J]. Acta Horticulturae Sinica, 2023, 50(2): 359-370. |
[8] | LIN Haijiao, LIANG Yuchen, LI Ling, MA Jun, ZHANG Lu, LAN Zhenying, YUAN Zening. Exploration and Regulation Network Analysis of CBF Pathway Related Cold Tolerance Genes in Lavandula angustifolia [J]. Acta Horticulturae Sinica, 2023, 50(1): 131-144. |
[9] | HUANG Shuping, TAN Jie, Chen Xia, ZHANG Hongyuan, LI Ye, WANG Benqi, CHEN Hao, WU Xuexia, and ZHANG Min, . A New Eggplant Cultivar‘Eqie 6’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 101-102. |
[10] | HUANG Ling, HU Xianmei, LIANG Zehui, WANG Yanping, CHAN Zhulong, XIANG Lin. Cloning and Function Identification of Anthocyanidin Synthase Gene TgANS in Tulipa gesneriana [J]. Acta Horticulturae Sinica, 2022, 49(9): 1935-1944. |
[11] | NIE Xinmiao, LUAN Heng, FENG Gaili, WANG Chao, LI Yan, WEI Min. Effects of Silicon Nutrition and Grafting Rootstocks on Chilling Tolerance of Cucumber Seedlings [J]. Acta Horticulturae Sinica, 2022, 49(8): 1795-1804. |
[12] | LI Qiong, LI Lili, HOU Juan, LUO Renren, WANG Ruidan, HU Jianbin, HUANG Song. Advances on Mechanism of Cucurbit Crops in Response to Low- temperature Stress [J]. Acta Horticulturae Sinica, 2022, 49(6): 1382-1394. |
[13] | LIU Shangjia, L& Yao, CAO Bili, CHEN Zijing, GAO Song, XU Kun. Effects of High Temperature and Waterlogging Stress on Photosynthesis and Nitrogen Metabolism of Ginger Leaves [J]. Acta Horticulturae Sinica, 2022, 49(5): 1073-1080. |
[14] | ZHAO Hui, GENG Xingmin, WANG Lulu, XU Shida. Research on the Effect of Ethylene in Heat Resistance Mechanism of Rhododendron [J]. Acta Horticulturae Sinica, 2022, 49(3): 561-570. |
[15] | CHENG Shiping, YAO Pengqiang, GENG Xining, LIU Chunyang, XIE Lihua. High Temperature Treatment Generates Unreduced Pollen in Paeonia suffruticosa [J]. Acta Horticulturae Sinica, 2022, 49(3): 581-589. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd