https://www.ahs.ac.cn/images/0513-353X/images/top-banner1.jpg|#|苹果
https://www.ahs.ac.cn/images/0513-353X/images/top-banner2.jpg|#|甘蓝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner3.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner4.jpg|#|灵芝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner5.jpg|#|桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner6.jpg|#|黄瓜
https://www.ahs.ac.cn/images/0513-353X/images/top-banner7.jpg|#|蝴蝶兰
https://www.ahs.ac.cn/images/0513-353X/images/top-banner8.jpg|#|樱桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner9.jpg|#|观赏荷花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner10.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner11.jpg|#|月季
https://www.ahs.ac.cn/images/0513-353X/images/top-banner12.jpg|#|菊花

Acta Horticulturae Sinica ›› 2023, Vol. 50 ›› Issue (2): 359-370.doi: 10.16420/j.issn.0513-353x.2021-0987

• Research Papers • Previous Articles     Next Articles

Expression and Adversity Resistance Analysis of a Late Embryogenesis Abundant Protein Gene CpLEA from Chimonanthus praecox

REN Fei, LU Miaomiao, LIU Jixiang, CHEN Xinli, LIU Daofeng, SUI Shunzhao, MA Jing*()   

  1. Chongqing Engineering Research Center for Floriculture,Key Laboratory of Horticulture Science for Southern Mountainous Regions,Ministry of Education,College of Horticulture and Landscape,Southwest University,Chongqing 400715,China
  • Received:2022-09-03 Revised:2022-10-27 Online:2023-02-25 Published:2023-03-06
  • Contact: *(E-mail:majing427@swu.edu.cn)

Abstract:

To characterize the function of CpLEA,a group three LEA protein gene of Chimonanthus praecox(wintersweet),CpLEA is transformed into Escherichia coli and Arabidopsis thaliana. Compared with the control strain,transgenic E. coli showed higher tolerance to low-temperature. In vitro,purified CpLEA protein could protect lactate dehydrogenase(LDH)from inactivation. Overexpression of the CpLEA gene in Arabidopsis also improved the resistance of transgenic Arabidopsis to cold and drought stresses and the degree of improved resistance was positively correlated with the accumulation of gene overexpression. The expression characteristics of CpLEA gene were further analyzed by qRT-PCR in wintersweet cutflower branch during flower-bud and display-petal stage respectively under 4 ℃ low-temperature treatment. CpLEA gene expression was found to gradually increase after low-temperature treatment in cutflower branch at flower-bud stage,reaching a peak at 48 h of treatment,which was about 28 times higher than expression of the untreated group,and then the expression decreased,but was still higher than the untreated group. The expression of CpLEA gradually increased with the extension of low-temperature treatment time in cutflower branch at display-petal stage,then reached the highest level at 72 h,which was nine times as much as the untreated group. The expression of CpLEA in cutflowers remained basically constant at room temperature,while the low-temperature treatment induced a different degree of expression increase of CpLEA in the early stage of flower development. These results indicated that the CpLEA would play a protective role in plant cells under low-temperature stress,especially in early stage of flower development.

Key words: Chimonanthus praecox, LEA, prokaryotic expression, transgenic, low-temperature stress

CLC Number: