Acta Horticulturae Sinica ›› 2025, Vol. 52 ›› Issue (6): 1412-1426.doi: 10.16420/j.issn.0513-353x.2024-0603
• Genetic & Breeding?Germplasm Resources?Molecular Biology • Previous Articles Next Articles
YANG Chunmei1, YU Yang1, DING Yuge1, XIA Jing1, ZHOU Ling2,*(), and PENG Lei1,*(
)
Received:
2024-11-11
Revised:
2025-02-24
Online:
2025-06-20
Published:
2025-06-20
Contact:
ZHOU Ling, and PENG Lei
YANG Chunmei, YU Yang, DING Yuge, XIA Jing, ZHOU Ling, and PENG Lei. Joint Transcription-Metabolism Analysis of Starch and Sucrose Metabolic Pathways in the Transformation of Axillary Buds into Flower Buds of ‘Guifei’Mango[J]. Acta Horticulturae Sinica, 2025, 52(6): 1412-1426.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2024-0603
基因ID Gene ID | 基因名称 Gene name | 引物序列(5′-3′)Primer sequence | |
---|---|---|---|
F | R | ||
LOC123200616 | SUS | CACACTGCTTTCACGCTTCC | CGGCGTGGAAAGATTTGAGC |
LOC123221640 | FRK | TGGTGAGCGTGAGTTCATGT | TCTGCCATGTCCCAAATGCT |
LOC123202828 | TPP | CACCCCGTCCAACTCTTCTC | GCATTGGCTTTGGTTCCTCC |
LOC123229947 | AMY | AAAGGCTATGCCCCAAGTGT | ATCTCCACAACTCCCCTTGC |
内参 Reference | Actin | ATCGCTGAGCACCTTCCAACA | CCAATCCTGACCTCTGACACTTCT |
Table 1 Primers for qRT- PCR analysis of the expression of genes related to starch and sucrose metabolism
基因ID Gene ID | 基因名称 Gene name | 引物序列(5′-3′)Primer sequence | |
---|---|---|---|
F | R | ||
LOC123200616 | SUS | CACACTGCTTTCACGCTTCC | CGGCGTGGAAAGATTTGAGC |
LOC123221640 | FRK | TGGTGAGCGTGAGTTCATGT | TCTGCCATGTCCCAAATGCT |
LOC123202828 | TPP | CACCCCGTCCAACTCTTCTC | GCATTGGCTTTGGTTCCTCC |
LOC123229947 | AMY | AAAGGCTATGCCCCAAGTGT | ATCTCCACAACTCCCCTTGC |
内参 Reference | Actin | ATCGCTGAGCACCTTCCAACA | CCAATCCTGACCTCTGACACTTCT |
样本 Sample | 有效读数 Clean reads | 总匹配数(匹配率) Total mapped | 多匹配数(匹配率) Multiple mapped | 单一匹配数(匹配率) Uniquely mapped | 碱基质量值/% Q30 |
---|---|---|---|---|---|
CKE_1 | 40 132 108 | 35 567 452(88.63%) | 1 747 958(4.91%) | 33 819 494(95.09%) | 94.40 |
CKE_2 | 39 276 406 | 35 205 966(89.64%) | 1 716 699(4.88%) | 33 489 267(95.12%) | 94.93 |
CKE_3 | 40 485 362 | 35 292 583(87.17%) | 1 699 743(4.82%) | 33 592 840(95.18%) | 93.70 |
CKM_1 | 41 383 850 | 37 761 770(91.25%) | 1 925 421(5.10%) | 35 836 349(94.90%) | 94.40 |
CKM_2 | 40 886 828 | 36 798 478(90.00%) | 1 883 395(5.12%) | 34 915 083(94.88%) | 93.91 |
CKM_3 | 42 596 182 | 38 891 243(91.30%) | 1 974 166(5.08%) | 36 917 077(94.92%) | 93.94 |
CKL_1 | 40 993 586 | 37 515 798(91.52%) | 1 894 802(5.05%) | 35 620 996(94.95%) | 94.88 |
CKL_2 | 39 666 702 | 35 645 715(89.86%) | 1 786 823(5.01%) | 33 858 892(94.99%) | 94.53 |
CKL_3 | 39 900 316 | 36 084 139(90.44%) | 1 815 659(5.03%) | 34 268 480(94.97%) | 94.38 |
TE_1 | 36 933 854 | 33 811 385(91.55%) | 1 655 842(4.90%) | 32 155 543(95.10%) | 94.57 |
TE_2 | 45 905 974 | 42 436 755(92.44%) | 2 037 917(4.80%) | 40 398 838(95.20%) | 94.55 |
TE_3 | 38 386 464 | 34 936 793(91.01%) | 1 746 121(5.00%) | 33 190 672(95.00%) | 94.84 |
TM_1 | 41 574 728 | 38 301 057(92.13%) | 1 898 306(4.96%) | 36 402 751(95.04%) | 94.04 |
TM_2 | 38 726 364 | 36 138 605(93.32%) | 1 768 620(4.89%) | 34 369 985(95.11%) | 94.88 |
TM_3 | 42 622 328 | 39 917 068(93.65%) | 1 941 548(4.86%) | 37 975 520(95.14%) | 93.63 |
TL_1 | 41 846 734 | 38 980 907(93.15%) | 1 921 047(4.93%) | 37 059 860(95.07%) | 94.43 |
TL_2 | 42 676 458 | 39 983 610(93.69%) | 1 881 440(4.71%) | 38 102 170(95.29%) | 93.98 |
TL_3 | 45 793 468 | 42 863 554(93.60%) | 2 052 569(4.79%) | 40 810 985(95.21%) | 93.84 |
Table 2 Statistical results of transcriptome sequencing data evaluation at different periods of axillary bud conversion to flower bud in mango
样本 Sample | 有效读数 Clean reads | 总匹配数(匹配率) Total mapped | 多匹配数(匹配率) Multiple mapped | 单一匹配数(匹配率) Uniquely mapped | 碱基质量值/% Q30 |
---|---|---|---|---|---|
CKE_1 | 40 132 108 | 35 567 452(88.63%) | 1 747 958(4.91%) | 33 819 494(95.09%) | 94.40 |
CKE_2 | 39 276 406 | 35 205 966(89.64%) | 1 716 699(4.88%) | 33 489 267(95.12%) | 94.93 |
CKE_3 | 40 485 362 | 35 292 583(87.17%) | 1 699 743(4.82%) | 33 592 840(95.18%) | 93.70 |
CKM_1 | 41 383 850 | 37 761 770(91.25%) | 1 925 421(5.10%) | 35 836 349(94.90%) | 94.40 |
CKM_2 | 40 886 828 | 36 798 478(90.00%) | 1 883 395(5.12%) | 34 915 083(94.88%) | 93.91 |
CKM_3 | 42 596 182 | 38 891 243(91.30%) | 1 974 166(5.08%) | 36 917 077(94.92%) | 93.94 |
CKL_1 | 40 993 586 | 37 515 798(91.52%) | 1 894 802(5.05%) | 35 620 996(94.95%) | 94.88 |
CKL_2 | 39 666 702 | 35 645 715(89.86%) | 1 786 823(5.01%) | 33 858 892(94.99%) | 94.53 |
CKL_3 | 39 900 316 | 36 084 139(90.44%) | 1 815 659(5.03%) | 34 268 480(94.97%) | 94.38 |
TE_1 | 36 933 854 | 33 811 385(91.55%) | 1 655 842(4.90%) | 32 155 543(95.10%) | 94.57 |
TE_2 | 45 905 974 | 42 436 755(92.44%) | 2 037 917(4.80%) | 40 398 838(95.20%) | 94.55 |
TE_3 | 38 386 464 | 34 936 793(91.01%) | 1 746 121(5.00%) | 33 190 672(95.00%) | 94.84 |
TM_1 | 41 574 728 | 38 301 057(92.13%) | 1 898 306(4.96%) | 36 402 751(95.04%) | 94.04 |
TM_2 | 38 726 364 | 36 138 605(93.32%) | 1 768 620(4.89%) | 34 369 985(95.11%) | 94.88 |
TM_3 | 42 622 328 | 39 917 068(93.65%) | 1 941 548(4.86%) | 37 975 520(95.14%) | 93.63 |
TL_1 | 41 846 734 | 38 980 907(93.15%) | 1 921 047(4.93%) | 37 059 860(95.07%) | 94.43 |
TL_2 | 42 676 458 | 39 983 610(93.69%) | 1 881 440(4.71%) | 38 102 170(95.29%) | 93.98 |
TL_3 | 45 793 468 | 42 863 554(93.60%) | 2 052 569(4.79%) | 40 810 985(95.21%) | 93.84 |
Fig.2 Statistics of differentially expressed genes at three stages of axillary bud conversion to flower bud in mango CK:Control;T:Treatment with removal of apical flower buds. E,M,L:Corresponding to the early,middle and late stages of axillary bud transformation into flower buds. The same below
Fig. 3 Enrichment analysis of KEGG pathway for differentially expressed genes in axillary bud transformed flower buds after apical bud removal in mango
Fig. 5 Joint analysis of starch and sucrose metabolism in transcriptome and metabolome CK1,CK2,and CK3 correspond to CKE,CKM,and CKL;T1,T2,and T3 correspond to TE,TM,and TL.Sucrose synthase(SUS);β-fructofuranosidase(INV);Endo-1,3-β-glucanase(β-1,3-GLU);Endo-1,4-β-D-glucanohydrolase(EG);Glucose-1-phosphate adenylyltransferase(AGPS1);Trehalose-6-phosphate synthase(TPS);Trehalose 6-phosphate phosphatase(TPP);Granule-bound starch synthase Ⅰ(CBSSⅠ);Granule-bound starch synthase Ⅱ(CBSSⅡ);Fructokinase(KHK);Isoamylase Ⅲ,chloroplastic(ISA3);α-amylase(AMY);β-amylase(BMY);α-glucosidase(α-GLU);β-glucosidase(β-GLU);Phosphoglucomutase(PGM);Glycogen phosphorylase(GP)
代谢物 Metabolite | ID | 组别 Group | 相对含量 Relative content | 表达 Expressions | VIP | P值P value | ||
---|---|---|---|---|---|---|---|---|
CK | T | |||||||
D-葡萄糖-6-磷酸 D-glucose-6P | M259T80 | CKE vs. TE | 1.13E + 07 | 2.23E + 07 | 上调Up | 1.480151 | 0.025974026 | |
CKM vs. TM | 1.33E + 07 | 2.72E + 07 | 1.824720 | 0.004329004 | ||||
CKL vs. TL | 2.06E + 07 | 3.47E + 07 | 1.588965 | 0.004329004 | ||||
α,α-海藻糖 α,α-trehalose | M323T94 | CKE vs. TE | 4.33E + 06 | 8.08E + 06 | 上调Up | 1.825478 | 0.015151515 | |
CKL vs. TL | 6.14E + 06 | 9.95E + 06 | 1.318241 | 0.025974026 | ||||
D-果糖 D-fructose | M179T164 | CKM vs. TM | 6.09E + 07 | 1.26E + 08 | 上调Up | 1.441231 | 0.002164502 | |
蔗糖 Sucrose | M341T272 | CKE vs. TE | 1.98E + 07 | 1.13E + 07 | 下调Down | 1.651202 | 0.015151515 | |
CKM vs. TM | 2.24E + 07 | 7.81E + 06 | 1.694633 | 0.002164502 | ||||
CKL vs. TL | 2.07E + 07 | 8.99E + 06 | 1.683897 | 0.002164502 | ||||
蔗糖6’-磷酸Sucrose-6P | M423T97 | CKE vs. TE | 1.76E + 07 | 1.21E + 07 | 下调Down | 1.915860 | 0.008658009 |
Table 3 Differential metabolite expression in starch and sucrose metabolism during different periods of axillary bud conversion to flower bud in mango
代谢物 Metabolite | ID | 组别 Group | 相对含量 Relative content | 表达 Expressions | VIP | P值P value | ||
---|---|---|---|---|---|---|---|---|
CK | T | |||||||
D-葡萄糖-6-磷酸 D-glucose-6P | M259T80 | CKE vs. TE | 1.13E + 07 | 2.23E + 07 | 上调Up | 1.480151 | 0.025974026 | |
CKM vs. TM | 1.33E + 07 | 2.72E + 07 | 1.824720 | 0.004329004 | ||||
CKL vs. TL | 2.06E + 07 | 3.47E + 07 | 1.588965 | 0.004329004 | ||||
α,α-海藻糖 α,α-trehalose | M323T94 | CKE vs. TE | 4.33E + 06 | 8.08E + 06 | 上调Up | 1.825478 | 0.015151515 | |
CKL vs. TL | 6.14E + 06 | 9.95E + 06 | 1.318241 | 0.025974026 | ||||
D-果糖 D-fructose | M179T164 | CKM vs. TM | 6.09E + 07 | 1.26E + 08 | 上调Up | 1.441231 | 0.002164502 | |
蔗糖 Sucrose | M341T272 | CKE vs. TE | 1.98E + 07 | 1.13E + 07 | 下调Down | 1.651202 | 0.015151515 | |
CKM vs. TM | 2.24E + 07 | 7.81E + 06 | 1.694633 | 0.002164502 | ||||
CKL vs. TL | 2.07E + 07 | 8.99E + 06 | 1.683897 | 0.002164502 | ||||
蔗糖6’-磷酸Sucrose-6P | M423T97 | CKE vs. TE | 1.76E + 07 | 1.21E + 07 | 下调Down | 1.915860 | 0.008658009 |
Fig. 6 qPT-PCR to verify the expression of four differentially expressed genes in different periods of control and treatment Significant difference analysis was conducted using LSD multiple comparisons,with different lowercase letters indicate significant differences(P < 0.05)
[1] |
doi: 10.1104/pp.72.1.33 pmid: 16662977 |
[2] |
|
丁雨格, 侯琪, 周玲, 计珠琳, 吕鹏悦, 彭磊. 2024. 叶面喷水影响芒果叶片“午休”的转录组分析. 西北植物学报, 44 (7):1094-1104.
|
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
黄方, 罗聪, 余海霞, 范志毅, 谢小杰, 刘源, 莫啸, 何新华. 2021. 芒果MiFRI1和MiFRI2基因的克隆与表达分析. 热带作物学报, 42 (1):17-24.
doi: 10.3969/j.issn.1000-2561.2021.01.003 |
|
[7] |
|
贾小霞, 李建武, 齐恩芳, 文国宏, 李高峰, 吕和平, 马胜, 刘石, 黄伟, 张荣. 2023. ‘陇薯8号’马铃薯块茎淀粉积累特性及淀粉-蔗糖代谢途径转录组分析. 中国农业大学学报, 28 (2):23-34.
|
|
[8] |
|
[9] |
|
李桂芬. 2005. 芒果花期调控及花芽分化的研究[硕士论文]. 南宁: 广西大学.
|
|
[10] |
|
李伟才, 张红娜, 石胜友, 刘丽琴, 舒波, 梁清志, 谢江辉, 魏永赞. 2014. 成花诱导期喷施烯效唑和赤霉素对荔枝叶片叶绿素荧光特征的影响. 热带作物学报, 35 (12):2414-2419.
|
|
[11] |
|
[12] |
|
梁朗玛. 2007. 澳洲坚果花芽分化期碳水化合物及内源多胺代谢研究[硕士论文]. 儋州: 华南热带农业大学.
|
|
[13] |
|
罗充, 彭抒昂, 马湘涛. 2000. 草莓成花过程中Ca2+、CaM及成花物质含量变化. 山地农业生物学报,(4):266-271.
|
|
[14] |
|
吕柳新, 林顺权. 1995. 果树生殖学导论. 北京: 中国农业出版社.
|
|
[15] |
|
马文春. 2021. 外源葡萄糖对苹果花芽分化的影响及候选基因MdSC352功能分析[硕士论文]. 杨凌: 西北农林科技大学.
|
|
[16] |
|
[17] |
|
欧晋稳, 张古文, 冯志娟, 王斌, 卜远鹏, 徐钰, 茹磊, 刘娜, 龚亚明. 2024. 大豆海藻糖-6-磷酸磷酸酶基因Gm TPP的鉴定及其在生长发育和非生物胁迫响应中的表达分析. 浙江农业学报, 36 (9):1-13.
|
|
[18] |
|
潘德灼. 糖对黄瓜子叶节培养物成花的影响及其差异蛋白质组的研究[硕士论文]. 福州: 福建师范大学.
|
|
[19] |
|
彭磊, 高小俊, 龙雯虹, 吴兴恩, 周玲, 董广平, 王莹. 2011. 短截后芒果花芽分化期间ABA含量的变化. 云南农业大学学报, 26 (3):434-436.
|
|
[20] |
|
彭锦钰. 2023. 芒果二次花芽形成进程中植物激素相关基因的表达分析[硕士论文]. 昆明: 云南农业大学.
|
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
汪炳良, 邓俭英, 曾广文. 2004. 萝卜花芽分化过程中茎尖和叶片碳水化合物含量的变化. 园艺学报, 31 (3):375-377.
|
|
[29] |
|
王小平. 2020. 脱叶和激素处理通过糖代谢调控牡丹秋季二次成花机理研究[硕士论文]. 北京: 中国农业科学院.
|
|
[30] |
|
邢利博. 2013. PBO促进富士苹果花芽分化的生理机制[硕士论文]. 杨凌: 西北农林科技大学.
|
|
[31] |
|
邢利博. 2016. ‘长富2号’苹果花芽孕育基因表达模式分析与拉枝调控成花的分子机制[博士论文] 杨凌: 西北农林科技大学.
|
|
[32] |
|
许洁. 2023. 芒果二次花芽形成进程中不同时期的代谢组学分析[硕士论文]. 昆明: 云南农业大学.
|
|
[33] |
|
许伟东. 2008. 杨梅花芽生理分化与体内部分物质代谢关系研究[硕士论文]. 福州: 福建农林大学.
|
|
[34] |
doi: 10.16420/j.issn.0513-353x.2021-1250 |
薛玉前, 柳志勇, 孙凯荣, 张秀新, 吕英民, 薛璟祺. 2023. 牡丹促成栽培中糖信号调控成花的机理研究. 园艺学报, 50 (3):596-606.
doi: 10.16420/j.issn.0513-353x.2021-1250 |
|
[35] |
|
杨盛, 白牡丹, 高鹏, 郭黄萍. 2017. 果树花芽分化机理研究进展. 落叶果树, 49 (6):22-25.
|
|
[36] |
|
杨天一. 2022. 外源2,4-表油菜素内酯对苹果树体生长及花芽分化的影响[硕士论文]. 杨凌: 西北农林科技大学.
|
|
[37] |
|
殷德松, 宋静武, 齐贝贝, 陈莹莹, 彭磊. 2016. 杧果花期延迟技术研究进展. 亚热带植物科学, 45 (4):391-394.
|
|
[38] |
|
[39] |
|
张昕. 2018. 葡萄糖促进富士苹果花芽孕育的基因调控网络研究[硕士论文]. 杨凌: 西北农林科技大学.
|
|
[40] |
|
朱建华, 麦福珍, 彭宏祥, 徐宁, 何全光. 2008. 台农1号芒花穗处理试验. 广西农业科学,(2):219-220.
|
[1] | GUO Xinmiao, TIAN Luyao, CAO Jiaqi, XIE Yan, GAO Yanxia, and SUN Zhichao. Preliminary Research on the Molecular Mechanism of Color Loss in White Mulberry Fruit [J]. Acta Horticulturae Sinica, 2025, 52(6): 1451-1462. |
[2] | LI Ziyan, CHEN Weixi, LI Zihan, LI Yin, LIANG Fengming, ZENG Xiangli, JIAN Hongju, and LÜ Dianqiu. Screening Candidate Genes Controlling Potato Maturation Time Based on RNA-Seq [J]. Acta Horticulturae Sinica, 2025, 52(6): 1505-1518. |
[3] | ZHANG Yue, FENG Yiliao, WANG Bei, REN Wenjing, JIANG Chunyu, ZHAO Xinyu, WANG Caihong, YANG Limei, ZHUANG Mu, LÜ Honghao, WANG Yong, ZHANG Yangyong, JI Jialei. Preliminary Transcriptome Analysis of Folate Synthesis and Metabolism in Cabbage [J]. Acta Horticulturae Sinica, 2025, 52(5): 1301-1316. |
[4] | YUAN Juanwei, JIA Li, WANG Han, YAN Congsheng, ZHANG Qi’an, YU Feifei, GAN Defang, JIANG Haikun. Screening of Resistant Germplasm and Identifying Candidate Gene for Phytophthora capsici Resistance in Pepper Germplasm Resources [J]. Acta Horticulturae Sinica, 2025, 52(4): 857-871. |
[5] | TANG Lingli, HE Yuhua, WANG Qingtao, AN Lulu, XU Yongyang, ZHANG Jian, KONG Weihu, HU Keyun, ZHAO Guangwei. Hormonal and Transcriptome Analysis of Ripe Fruits of Non-Climacteric and Climacteric Melon [J]. Acta Horticulturae Sinica, 2025, 52(4): 883-896. |
[6] | SHAO Yifan, ZHU Baoqing, WANG Tongxin, LIAO Jianhe, WU Fanhua, YANG Siyi, FENG Jianhang, YU Xudong. Research of Genetic Regulation of Bombax ceiba Prickle Based on Hormone,Transcriptome and Metabolome [J]. Acta Horticulturae Sinica, 2025, 52(4): 933-946. |
[7] | LIN Ruxue, WANG Fei, ZHANG Yanjie, MA Li, LIU Xiaofeng, LI Shuran, LIU Yalong, WANG Chen, JIANG Shuling, OU Chunqing. Transcriptome Screening and Functional Analysis of Dwarf Related Genes in Pear [J]. Acta Horticulturae Sinica, 2025, 52(3): 545-560. |
[8] | KUANG Meimei, LI Li, MA Jianwei, LIU Yuan, JIANG Hongfei, LEI Rui, MAN Yuping, WANG Yifan, HUANG Bo, WANG Yanchang, LIU Shibiao. Screening of Kiwifruit Canker Resistance-Related Genes Based on the Transcriptome Sequencing Analysis of Hybrids from Actinidia chinensis [J]. Acta Horticulturae Sinica, 2024, 51(8): 1743-1757. |
[9] | YAO Fengping, WANG Yanbin, QIN Yuchuan, WANG Liling. Analysis of the Difference of Flavonoids in Dendropanax dentiger Leaves with Different Drying Processes Based on Untargeted Metabolomics [J]. Acta Horticulturae Sinica, 2024, 51(5): 1069-1082. |
[10] | DU Yijing, LIU Wenlin, QIAO Yuelian, WANG Li, AN Dezhi, DU Guoqiang, SHI Xiaoxin. Virus Elimination from‘Shine Muscat’Grape Plantlets in vitro via Heat Treatment Combined with Shoot Tip and Axillary Bud Culture [J]. Acta Horticulturae Sinica, 2024, 51(4): 893-902. |
[11] | ZHANG Wenhao, ZHANG Hui, LIU Yuting, WANG Yan, ZHANG Yingying, WANG Xinman, WANG Quanhua, ZHU Weimin, YANG Xuedong. Preliminary Transcriptome Analysis in Two Tomato Fruits Materials with Different Sugar Content [J]. Acta Horticulturae Sinica, 2024, 51(2): 281-294. |
[12] | WANG Hong, MIAO Chen, DING Xiaotao, SHEN Haibin, ZHU Weimin. Growth,Development and Transcriptome Analysis of Tomato Cultivars with Different Low Light Tolerances Under Low Light Condition [J]. Acta Horticulturae Sinica, 2024, 51(2): 335-345. |
[13] | BU Wenxuan, YAO Yiping, HUANG Yu, YANG Xingyu, LUO Xiaoning, ZHANG Minhuan, LEI Weiqun, WANG Zheng, TIAN Jianing, CHEN Lujie, QIN Liping. Transcriptome Analysis of the Response of Tree Peony‘Hu Hong’Under High Temperature Stress [J]. Acta Horticulturae Sinica, 2024, 51(12): 2800-2816. |
[14] | LU Yanqing, LIN Yanjin, LU Xinkun. Cell Wall Material Metabolism and the Response to High Temperature and Water Deficiency Stresses in Pericarp are Associated with Fruit Cracking of‘Duwei’Pummelo [J]. Acta Horticulturae Sinica, 2023, 50(8): 1747-1768. |
[15] | RUAN Ruoxin, LUO Huifeng, ZHANG Chen, HUANG Kangkang, XI Dujun, PEI Jiabo, XING Mengyun, LIU Hui. Transcriptome Analysis of Flower Buds of Sweet Cherry Cultivars with Different Chilling Requirements During Dormancy Stages in Hangzhou [J]. Acta Horticulturae Sinica, 2023, 50(6): 1187-1202. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd