Acta Horticulturae Sinica ›› 2025, Vol. 52 ›› Issue (3): 761-772.doi: 10.16420/j.issn.0513-353x.2024-0329
• Plant Protection • Previous Articles Next Articles
WANG Chunwei, WANG Yan, DUAN Tiankun, SU Yaxin, YUAN Shengnan, REN Lu, ZHAO Xiaojun, WANG Meiqin*()
Received:
2024-11-06
Revised:
2024-12-09
Online:
2025-03-25
Published:
2025-03-25
Contact:
WANG Meiqin
WANG Chunwei, WANG Yan, DUAN Tiankun, SU Yaxin, YUAN Shengnan, REN Lu, ZHAO Xiaojun, WANG Meiqin. Antifungal Mechanism of Isooctyl Alcohol on Botrytis cinerea Causing Tomato Gray Mold[J]. Acta Horticulturae Sinica, 2025, 52(3): 761-772.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2024-0329
Fig. 1 Effects of isooctyl alcohol different concentrations(20,50,100,200 and 500 μL · L-1)on mycelial growth of Botrytis cinerea of tomato *** represented significant differences between treatment and control at 0.001 levels as calculated by Student’s t-test
Fig. 3 Effect of isooctyl alcohol(20 μL · L-1)on sclerotium weight and sclerotium number of Botrytis cinerea of tomato Values are mean ± standard error(n = 3). Statistical analysis was conducted by Student’s t-test method. *** P < 0.001
Fig. 5 Effect of isooctyl alcohol(20 μL · L-1)on enzyme activities of Botrytis cinerea * and *** represented significant differences at 0.05 and 0.001 levels as calculated by Student’s t-test
Fig. 6 Effect of isooctyl alcohol(20 μL · L-1)on oxalic acid content of Botrytis cinerea Values are mean ± standard error(n = 3). Statistical analysis was conducted by Student’s t-test method. ** P < 0.01,***P < 0.001
Fig. 7 Effects of isooctyl alcohol(20 μL · L-1)on incidence and lesion diameter of tomato Values are mean ± standard error(n = 3). Statistical analysis was conducted by Student’s t-test method. ***P < 0.001
Fig. 8 Effects of isooctyl alcohol on the activities of tomato defense enzyme *,** and *** represented significant differences at 0.05,0.01 and 0.001 levels as calculated by Student’s t-test
[1] |
|
[2] |
|
[3] |
|
包华, 李康, 钟睦琪, 郝智慧. 2022. 胡椒碱对番茄灰霉病菌抑制作用及其机理研究. 中国农业大学学报, 27 (9):117-124.
|
|
[4] |
|
[5] |
|
[6] |
doi: 10.3389/fpls.2015.00060 pmid: 25750643 |
[7] |
|
董晓南, 吕红梅, 赵立群, 何秉青, 张姣姣, 赵冰, 郭仰东, 张娜. 2024. SlMAPKKK43调控番茄对灰霉病的抗性. 园艺学报, 51 (2):309-320.
|
|
[8] |
|
窦勇. 2023. Ε-聚赖氨酸对苹果采后青霉病的控制及其机制研究[博士论文]. 镇江: 江苏大学.
|
|
[9] |
|
段立珍, 汪建飞, 赵建荣. 2007. 比色法测定菠菜中草酸含量的条件研究. 安徽农业科学, 35 (3):632-633,643.
|
|
[10] |
doi: 10.16409/j.cnki.2095-039x.2023.02.068 |
段天坤, 王燕, 袁佳琪, 苏雅馨, 史璐欣, 王琳, 苏健, 王美琴, 王春伟. 2023. 异辛醇对灰葡萄孢的抑菌作用及转录组分析. 中国生物防治学报, 39 (6):1434-1445.
doi: 10.16409/j.cnki.2095-039x.2023.02.068 |
|
[11] |
|
[12] |
|
付麟雲, 李晶, 李娜, 刘锦霞, 丁品, 聂垚琰, 武建荣, 杨成. 2024. 链霉菌SS9-1 发酵条件优化及其对番茄灰霉病的防治效果研究. 中国生物防治学报, 40 (1):126-136.
|
|
[13] |
|
顾桂飞. 2022. 蛇床子素对Monilinia fructicola的生物活性及抑菌机制初探[硕士论文]. 贵阳: 贵州大学.
|
|
[14] |
|
[15] |
|
[16] |
|
黄蓉, 胡建坤, 黄瑞荣. 2017. 酵母挥发性物质环辛四烯抑制灰霉菌的研究. 中国生物防治学报, 33 (2):266-272.
|
|
[17] |
|
贾淑鑫, 李金, 闫思远, 郭苗苗, 王若彤, 顾沛雯. 2024. 嗜线虫镰刀菌NQ8GⅡ4对枸杞根腐病的防效及其机制研究. 园艺学报, 51 (3):631-642.
|
|
[18] |
doi: 10.16409/j.cnki.2095-039x.2023.02.028 |
李博雅, 鲁姸璇, 谢家贝, 施李鸣, 张克诚, 葛蓓孛, 冉隆贤. 2023. 武夷菌素防治葡萄灰霉病的作用及机理. 中国生物防治学报, 39 (3):676-683.
doi: 10.16409/j.cnki.2095-039x.2023.02.028 |
|
[19] |
|
[20] |
|
[21] |
|
刘婧, 马汇泉, 刘东武, 董瑾, 杨晓. 2008. Bacillus cereus B-02对Botrytis cinerea拮抗机理的研究. 菌物学报, 27 (6):930-939.
|
|
[22] |
|
[23] |
|
刘信强. 2020. 灰葡萄孢菌核形成相关基因的挖掘和功能研究[博士论文]. 武汉: 华中农业大学.
|
|
[24] |
|
[25] |
|
[26] |
|
邵文勇. 2018. 灰葡萄孢(Botrytis cinerea)对氟啶胺抗药性风险及敏感性相关基因功能的研究[博士论文]. 南京: 南京农业大学.
|
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
燕霞飞, 郑长英, 李凯月, 万方浩, 王俊平. 2017. 球孢白僵菌在重金属Cd(Ⅱ)作用下抗氧化酶系变化. 环境昆虫学报, 39 (5):992-999.
|
|
[31] |
|
[32] |
|
[33] |
|
余红凤, 张琳, 毕钰, 王志刚, 徐伟慧, 黄欣冉, 郭嘉仪. 2024. 一株西瓜枯萎病生防菌Bacillus methylotrophicus的筛选、鉴定及抑菌物质分析. 微生物学通报, 51 (2):534-553.
|
|
[34] |
|
余璐, 魏琛, 张凯歌, 林亲录, 王青云. 2023. 枯草芽孢杆菌PW2产挥发性物质对赭曲霉的抑制作用. 食品科学, 44 (14):125-133.
|
|
[35] |
doi: 10.16409/j.cnki.2095-039x.2023.02.057 |
张金奎, 徐生军, 李继平, 马娅楠, 荆卓琼, 郭致杰, 郑果. 2023. 生防细菌HMQ20YJ04发酵条件优化及其对番茄灰霉病的效果评价. 中国生物防治学报, 39 (6):1418-1433.
doi: 10.16409/j.cnki.2095-039x.2023.02.057 |
|
[36] |
|
张文静, 徐大勇, 吴倩琳, 杨佛, 信丙越, 曾昕, 李峰. 2024. 拮抗番茄灰霉病的贝莱斯芽孢杆菌XDY66基因组分析. 园艺学报, 51 (6):1413-1425.
|
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
钟涛, 王智荣, 杜木英. 2021. 微生物源挥发性物质防治采后果蔬病害的研究进展. 微生物学报, 61 (7):1771-1785.
|
|
[42] |
doi: 10.16420/j.issn.0513-353x.2022-0418 URL |
周洁, 李甜竹, 刘汝懿, 李陈浩, 袁泽南, 李建明. 2023. 空气湿度与土壤含水量耦合对番茄灰霉病的影响. 园艺学报, 50 (8):1779-1792.
|
[1] | LU Xiuping, TANG Zhichao, TANG Wenkun, Mao Feifeng, ZHANG Wanping, LI Jingwei. Identification of Infectivity of 13 Viroid RNA and DNA Genomes of Tomato [J]. Acta Horticulturae Sinica, 2025, 52(3): 749-760. |
[2] | ZHAO Yulei, LI Shan, LI Chengnan, MA Jinlong, MA Hongyi, YIN Xiao. Proteomics Studies on the Early Stages of Botrytis cinerea Infection in Grapevine Leaves [J]. Acta Horticulturae Sinica, 2025, 52(2): 279-291. |
[3] | LI Xiaoqing, YAN Siyuan, GU Peiwen. Diversity and Pathogenicity Differentiation of Botrytis cinerea in Ningxia [J]. Acta Horticulturae Sinica, 2025, 52(2): 481-490. |
[4] | LI Rui, WANG Wen, DU Minghui, LIU Genzhong, MA Fangfang, BAO Zhilong. Mechanistic Studies on SlBON1-Regulated Plant Vegetative Growth in Tomato [J]. Acta Horticulturae Sinica, 2025, 52(1): 73-87. |
[5] | HAN Ying, DUAN Ying, NIU Yijie, LI Yansu, HE Chaoxing, SUN Mintao, WANG Jun, LI Qiang, CHEN Shuangchen, YAN Yan. Transcription Metabolic Mechanism of Humic Acid Biodegradable Plastic Film to Improving the Fruit Quality of Tomato in the Greenhouse [J]. Acta Horticulturae Sinica, 2024, 51(8): 1758-1772. |
[6] | GONG Xiaoya, LI Xian, ZHOU Xingang, WU Fengzhi. Effect of Rhizosphere Microorganisms Induced by Potato-Onion on Tomato Root-Knot Nematode Disease [J]. Acta Horticulturae Sinica, 2024, 51(8): 1913-1926. |
[7] | MENG Sida, HAN Leilei, XIANG Hengzuo, ZHU Meiyu, FENG Zhen, YE Yunzhu, SUN Meihua, LI Yanbing, ZHAO Liping, TAN Changhua, QI Mingfang, LI Tianlai. Research Progress on the Mechanism of Regulating the Number of Tomato Locules [J]. Acta Horticulturae Sinica, 2024, 51(7): 1649-1664. |
[8] | MA Xingyun, FAN Bingli, TANG Guangcai, JIA Zhiqi, LI Ying, XUE Dongqi, ZHANG Shiwen. Preliminary Study on the Mechanism of DXR Regulating Chloroplast Development Flower Color and Fruit Coloring in Tomato [J]. Acta Horticulturae Sinica, 2024, 51(6): 1241-1255. |
[9] | ZHANG Wenjing, XU Dayong, WU Qianlin, YANG Fo, XIN Bingyue, ZENG Xin, LI Feng. Genome Analysis of Bacillus velezensis XDY66,an Antagonist of Tomato Botrytis cinerea [J]. Acta Horticulturae Sinica, 2024, 51(6): 1413-1425. |
[10] | WANG Yongzhen, ZHANG Jianguo, LIU Caihong, LI Sibei, LÜ Tiantian. A New Tomato Hybrid Cultivar‘Yuanhong 212’ [J]. Acta Horticulturae Sinica, 2024, 51(6): 1435-1436. |
[11] | LIU Zeying, SUN Shuai, LIU Zhiqiang, CUI Xia, LI Ren. Mapping of the Sharp Blossom-end Gene and Screening of Candidate Gene in Tomato [J]. Acta Horticulturae Sinica, 2024, 51(5): 982-992. |
[12] | LI Pin, GAN Ning, CHEN Jiawei, XIANG Sixiang, SHEN Jingyi, OUYANG Bo, LU Yong’en. Analysis of Phosphorus Utilization Efficiency in Natural Population of Tomato and Screening of Low Phosphorus Tolerant Germplasm [J]. Acta Horticulturae Sinica, 2024, 51(5): 993-1004. |
[13] | YANG Ting, XI Dehui, XIA Ming, LI Jianan. Studies on the Mechanism of α-Momordicin Gene Enhancing Tomato Resistance to Tobacco Mosaic Virus [J]. Acta Horticulturae Sinica, 2024, 51(5): 1126-1136. |
[14] | HU Zhifeng, SHAO Jingcheng, ZHANG Li. A New Tomato Cultivar‘Longfan 15’ [J]. Acta Horticulturae Sinica, 2024, 51(4): 917-918. |
[15] | LIU Genzhong, LI Fangman, GE Pingfei, TAO Jinbao, ZHANG Xingyu, YE Zhibiao, ZHANG Yuyang. QTL Mapping and Candidate Gene Identification Related to Ascorbic Acid Content in Tomato [J]. Acta Horticulturae Sinica, 2024, 51(2): 219-228. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd