Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (9): 1841-1852.doi: 10.16420/j.issn.0513-353x.2021-0566
• Research Papers • Next Articles
JIANG Yajun1,2, CHEN Jiajia1, TAN Bin1,3, ZHENG Xianbo1,3, WANG Wei1,3, ZHANG Langlang1,3, CHENG Jun1,3,*(), FENG Jiancan1,3,*(
)
Received:
2022-03-03
Revised:
2022-05-13
Online:
2022-09-25
Published:
2022-10-08
Contact:
CHENG Jun,FENG Jiancan
E-mail:jcheng2007@163.com;jcfeng@henau.edu.cn
CLC Number:
JIANG Yajun, CHEN Jiajia, TAN Bin, ZHENG Xianbo, WANG Wei, ZHANG Langlang, CHENG Jun, FENG Jiancan. Function Exploration of PpIDD11 in Regulating Peach Flower Development[J]. Acta Horticulturae Sinica, 2022, 49(9): 1841-1852.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-0566
用途 Use | 引物名称 Primer name | 序列(5′-3′) Sequence |
---|---|---|
克隆 Clone | PpIDD11-F | TGGGGAAAGAAAACAAAGGAGA |
PpIDD11-R | TCAATTAAACCTTTGCATTCTTAGG | |
亚细胞定位 Subcellular localization | PpIDD11-GFP-EcoRⅠ-F | GTGGATCCAAAGAATTCTCCTTTTTATCTGTATCTTCCTCCA |
PpIDD11-GFP-EcoRⅠ-R | CTCCTTTACCCATGAATTCATTAAACCTTTGCATTCTTAGG | |
自激活鉴定 Self-activation | PpIDD11-BD-EcoRⅠ-F | CCGGAATTCTTTCCTTTTTATCTGTATCTTCCTCCA |
PpIDD11-BD-PstⅠ-R | GCACTGCAGTCAATTAAACCTTTGCATTCTTAGG | |
过表达 Primers for overexpression sites | PpIDD11-SAK-EcoRⅠ-F | CCGGAATTCTGGGGAAAGAAAACAAAGGAGA |
PpIDD11-SAK-XhoⅠ-R | CCGCTCGAGTCAATTAAACCTTTGCATTCTTAGG | |
定量 qRT-PCR | PpIDD11-qPCR-F | ATGTATGGCGGGCTTTTATTC |
PpIDD11-qPCR-R | TGCTGATGCTGGTCATGTTG | |
定量桃内参 Primers for peach internal control | PpTEF2-qPCR-F | GGTGTGACGATGAAGAGTGATG |
PpTEF2-qPCR-R | TGAAGGAGAGGGAAGGTGAAAG | |
定量拟南芥内参 Primers for Arabidopsis internal control | AtUBC-qPCR-F | CTGCGACTCAGGGAATCTTCTAA |
AtUBC-qPCR-R | TTGTGCCATTGAATTGAACCC |
Table 1 Primer sequences used in this study
用途 Use | 引物名称 Primer name | 序列(5′-3′) Sequence |
---|---|---|
克隆 Clone | PpIDD11-F | TGGGGAAAGAAAACAAAGGAGA |
PpIDD11-R | TCAATTAAACCTTTGCATTCTTAGG | |
亚细胞定位 Subcellular localization | PpIDD11-GFP-EcoRⅠ-F | GTGGATCCAAAGAATTCTCCTTTTTATCTGTATCTTCCTCCA |
PpIDD11-GFP-EcoRⅠ-R | CTCCTTTACCCATGAATTCATTAAACCTTTGCATTCTTAGG | |
自激活鉴定 Self-activation | PpIDD11-BD-EcoRⅠ-F | CCGGAATTCTTTCCTTTTTATCTGTATCTTCCTCCA |
PpIDD11-BD-PstⅠ-R | GCACTGCAGTCAATTAAACCTTTGCATTCTTAGG | |
过表达 Primers for overexpression sites | PpIDD11-SAK-EcoRⅠ-F | CCGGAATTCTGGGGAAAGAAAACAAAGGAGA |
PpIDD11-SAK-XhoⅠ-R | CCGCTCGAGTCAATTAAACCTTTGCATTCTTAGG | |
定量 qRT-PCR | PpIDD11-qPCR-F | ATGTATGGCGGGCTTTTATTC |
PpIDD11-qPCR-R | TGCTGATGCTGGTCATGTTG | |
定量桃内参 Primers for peach internal control | PpTEF2-qPCR-F | GGTGTGACGATGAAGAGTGATG |
PpTEF2-qPCR-R | TGAAGGAGAGGGAAGGTGAAAG | |
定量拟南芥内参 Primers for Arabidopsis internal control | AtUBC-qPCR-F | CTGCGACTCAGGGAATCTTCTAA |
AtUBC-qPCR-R | TTGTGCCATTGAATTGAACCC |
Fig. 5 The relative expression of PpIDD11 in various tissues(A)and different stages of flower development(B)of‘Qiumihong’peach 1:Undifferentiated flower bud period;2:Calyx differentiation period;3:Petal differentiation period;4:Stamen differentiation period;5:Pistil differentiation period;6:Buds period;7:Budding flower period;8:Full bloom period.
基因ID Gene ID | 表达差异 log2(IDD11/WT) | 名称 Name | 功能 Function | 参考文献 Reference |
---|---|---|---|---|
AT1G21910 | 2.77242 | DREB26 | 植物生长发育 Plant growth and development | Krishnaswamy et al., |
AT3G18010 | 2.40747 | WOX1 | 分生组织发育 Meristematic tissue development | Zhang et al., |
AT1G65450 | -3.77981 | GLC | 参与植物受精过程 Involved in the process of plant fertilisation | Leshem et al., |
AT3G12500 | -3.07184 | ATHCHIB | 叶片形态发育Leaf blade morphology development | Robles et al., |
AT2G33850 | -2.78991 | E6L1 | 参与植物早期授粉过程 Involved in the early pollination process of plants | Doucet et al., |
AT1G72520 | -2.61478 | LOX4 | 花器官发育 Floral organ development | Caldelari et al., |
AT1G17420 | -2.54068 | LOX3 | 花器官发育 Floral organ development | Caldelari et al., |
Table 2 Differential genes related to transgenic phenotypes and their functions
基因ID Gene ID | 表达差异 log2(IDD11/WT) | 名称 Name | 功能 Function | 参考文献 Reference |
---|---|---|---|---|
AT1G21910 | 2.77242 | DREB26 | 植物生长发育 Plant growth and development | Krishnaswamy et al., |
AT3G18010 | 2.40747 | WOX1 | 分生组织发育 Meristematic tissue development | Zhang et al., |
AT1G65450 | -3.77981 | GLC | 参与植物受精过程 Involved in the process of plant fertilisation | Leshem et al., |
AT3G12500 | -3.07184 | ATHCHIB | 叶片形态发育Leaf blade morphology development | Robles et al., |
AT2G33850 | -2.78991 | E6L1 | 参与植物早期授粉过程 Involved in the early pollination process of plants | Doucet et al., |
AT1G72520 | -2.61478 | LOX4 | 花器官发育 Floral organ development | Caldelari et al., |
AT1G17420 | -2.54068 | LOX3 | 花器官发育 Floral organ development | Caldelari et al., |
[1] |
Abdallah D, Baraket G, Perez V, Salhi Hannachi A, Hormaza J I. 2020. Self-compatibility in peach[Prunus persica(L.)Batsch]:patterns of diversity surrounding the S-locus and analysis of SFB alleles. Horticulture Research, 7:170.
doi: 10.1038/s41438-020-00392-z pmid: 34593785 |
[2] |
Caldelari D, Wang G, Farmer E E, Dong X. 2011. Arabidopsis lox3 lox4 double mutants are male sterile and defective in global proliferative arrest. Plant Molecular Biology, 75:25-33.
doi: 10.1007/s11103-010-9701-9 pmid: 21052784 |
[3] |
Clough S J, Bent A F. 1998. Floral dip:a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal, 16 (6):735-743.
pmid: 10069079 |
[4] |
Coelho C P, Huang P, Lee D Y, Brutnell T P. 2018. Making roots,shoots,and seeds:IDD gene family diversification in plants. Trends in Plant Science, 23 (1):66-78.
doi: S1360-1385(17)30204-2 pmid: 29056440 |
[5] |
Colasanti J, Tremblay R, Wong A Y M, Coneva V, Kozaki A, Mable B K. 2006. The maize INDETERMINATE 1 flowering time regulator defines a highly conserved zinc finger protein family in higher plants. Bmc Genomics, 7 (1):1-17.
doi: 10.1186/1471-2164-7-1 URL |
[6] |
Colasanti J, Yuan Z, Sundaresan V. 1998. The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell, 93:593-603.
pmid: 9604934 |
[7] | Cong Qian-qian. 2010. Genetic transformation of Brachypodium distachyon L. and isolation of INDETERMINATE1gene[M. D. Dissertation]. Tai’an: Shandong Agricultural University. (in Chinese) |
丛倩倩. 2010. 二穗短柄草的遗传转化及INDETERMINATE1基因的克隆[硕士论文]. 泰安: 山东农业大学. | |
[8] | Cui D, Zhao J, Jing Y, Fan M, Liu J, Wang Z, Xin W, Hu Y. 2013. The Arabidopsis IDD14,IDD15,and IDD 16 cooperatively regulate lateral organ morphogenesis and gravitropism by promoting auxin biosynthesis and transport. PLoS Genetics, 9 (9):e1003759. |
[9] | Deng L, Li L, Zhang S, Shen J, Li S, Hu S, Peng Q, Xiao J, Wu C. 2017. Suppressor of rid1(SID1)shares common targets with RID1 on florigen genes to initiate floral transition in rice. PLoS Genetics, 13 (2):e1006642. |
[10] | Dong Yi, Feng Yufei, Xu Zhongmin, Wang Shimin, Tang Honglü, Huang Wei. 2021. Analysis of the relationship between genetic distance and heterosis by ssr markers in cabbage(Brassica oleracea var. capitata). Acta Horticulturae Sinica, 48 (5):934-946. (in Chinese) |
董艺, 冯羽飞, 许忠民, 王世民, 唐鸿吕, 黄炜. 2021. SSR标记遗传距离与结球甘蓝杂种优势的关系分析. 园艺学报, 48 (5):934-946. | |
[11] |
Doucet J, Truong C, Frank-Webb E, Lee H K, Daneva A, Gao Z, Nowack M K, Goring D R. 2019. Identification of a role for an E6-like 1 gene in early pollen-stigma interactions in Arabidopsis thaliana. Plant Reproduction, 32 (3):307-322.
doi: 10.1007/s00497-019-00372-x URL |
[12] |
Fukazawa J, Ohashi Y, Takahashi R, Nakai K, Takahashi Y. 2021. DELLA degradation by gibberellin promotes flowering via GAF1-TPR-dependent repression of floral repressors in Arabidopsis. Plant Cell, 33 (7):2258-2272.
doi: 10.1093/plcell/koab102 URL |
[13] |
Fukazawa J, Teramura H, Murakoshi S, Nasuno K, Nishida N, Ito T, Yoshida M, Kamiya Y, Yamaguchi S, Takahashi Y. 2014. DELLAs function as coactivators of GAI-ASSOCIATED FACTOR1 in regulation of gibberellin homeostasis and signaling in Arabidopsis. Plant Cell, 26 (7):2920-2938.
doi: 10.1105/tpc.114.125690 URL |
[14] |
Galinat W C, Naylor A W. 1951. Relation of photoperiod to inflorescence proliferation in Zea mays L. American Journal of Botany, 38:38-47.
doi: 10.1002/j.1537-2197.1951.tb14245.x URL |
[15] |
Horiguchi G, Ferjani A, Fujikura U, Tsukaya H. 2006. Coordination of cell proliferation and cell expansion in the control of leaf size in Arabidopsis thaliana. Journal of Plant Research, 119 (1):37-42.
pmid: 16284709 |
[16] |
Jeong E Y, Seo P J, Woo J C, Park C M. 2015. AKIN10 delays flowering by inactivating IDD 8 transcription factor through protein phosphorylation in Arabidopsis. Bmc Plant Biology, 15:110.
doi: 10.1186/s12870-015-0503-8 URL |
[17] |
Koornneef M, Hanhart C J, van der Veen J H. 1991. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Molecular and General Genetics, 229 (1):57-66.
pmid: 1896021 |
[18] |
Krishnaswamy S, Verma S, Rahman M H, Kav N N. 2011. Functional characterization of four APETALA2-family genes(RAP2.6,RAP2.6L,DREB19and DREB26)in Arabidopsis. Plant Molecular Biology, 75:107-127.
doi: 10.1007/s11103-010-9711-7 pmid: 21069430 |
[19] |
Kumar M, Le D T, Hwang S, Seo P J, Kim H U. 2019. Role of the INDETERMINATE DOMAIN genes in plants. International Journal of Molecular Sciences, 20 (9):2286.
doi: 10.3390/ijms20092286 URL |
[20] |
Leshem Y, Johnson C, Wuest S E, Song X, Ngo Q A, Grossniklaus U, Sundaresan V. 2012. Molecular characterization of the glauce mutant:a central cell-specific function is required for double fertilization in Arabidopsis. Plant Cell, 24 (8):3264-3277.
doi: 10.1105/tpc.112.096420 URL |
[21] | Li Shengjuan, Xu Zhongmin, Guo Jia, Zhang Enhui, Jiang Jiao, Shi Wenwen. 2019. Comparative heterosis analysis of cabbage based on transcriptome data of cabbage heads leaves. Acta Horticulturae Sinica, 46 (6):1079-1092. (in Chinese) |
李升娟, 许忠民, 郭佳, 张恩慧, 姜娇, 石汶汶. 2019. 基于叶球转录组数据比较的甘蓝杂种优势分析. 46 (6):1079-1092. | |
[22] | Lin Jian-li, Zhu Zheng-ge, Gao Jian-wei. 2009. Heterosis in plant research. Acta Agriculture Boreali Sinica, 24 (S2):46-56. (in Chinese) |
林建丽, 朱正歌, 高建伟. 2009. 植物杂种优势研究进展. 华北农学报, 24 (S2):46-56.
doi: 10.7668/hbnxb.2009.S2.011 |
|
[23] |
Love M I, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 15 (12):550.
doi: 10.1186/s13059-014-0550-8 URL |
[24] |
Matsubara K, Yamanouchi U, Wang Z X, Minobe Y, Izawa T, Yano M. 2008. Ehd2,a rice ortholog of the maize INDETERMINATE1gene,promotes flowering by up-regulating Ehd1. Plant Physiology, 148 (3):1425-1435.
doi: 10.1104/pp.108.125542 pmid: 18790997 |
[25] |
Mutasa-Göttgens E, Hedden P. 2009. Gibberellin as a factor in floral regulatory networks. Journal of Experimental Botany, 60:1979-1989.
doi: 10.1093/jxb/erp040 pmid: 19264752 |
[26] | Qi Si-yan, Xing Li-bo, Zhang Dong, Du Li-sha, Li You-mei, Fan Sheng, Ma Juan-juan, Zhao Cai-ping, Han Ming-yu. 2017. Molecular cloning and expression analysis of the flowering regulation transcription factor gene MdIDD7 in Malus × domestica. Acta Horticulturae Sinica, 44 (5):828-838. (in Chinese) |
齐思言, 邢利博, 张东, 杜利莎, 李有梅, 樊胜, 马娟娟, 赵彩平, 韩明玉. 2017. 苹果‘长富2号’开花调控转录因子基因MdIDD7的克隆及表达分析. 园艺学报, 44 (5):828-838. | |
[27] |
Robles P, Micol J L. 2001. Genome-wide linkage analysis of Arabidopsis genes required for leaf development. Molecular Genetics And Genomics, 266 (1):12-19.
pmid: 11589569 |
[28] |
Seo P J, Ryu J, Kang S K, Park C M. 2011. Modulation of sugar metabolism by an INDETERMINATE DOMAIN transcription factor contributes to photoperiodic flowering in Arabidopsis. The Plant Journal, 65:418-429.
doi: 10.1111/j.1365-313X.2010.04432.x URL |
[29] | Simpson G G, Dean C. 2002. Arabidopsis,the rosetta stone of flowering time? Science, 296 (5566):285-289. |
[30] |
Singleton W R. 1946. Inheritance of indeterminate growth in maize. Journal of Heredity, 37 (2):61-64.
doi: 10.1093/oxfordjournals.jhered.a105582 URL |
[31] | Wu C Y, You C J, Li C H, Long T, Chen G X, Byrne M E, Zhang Q F. 2008. RID1,encoding a Cys2/His2-type zinc finger transcription factor,acts as a master switch from vegetative to floral development in rice. Proceedings of the National Academy of Sciences, 105 (35):12915-12920. |
[32] |
Wu X, Tang D, Li M, Wang K, Cheng Z. 2013. Loose plant architecture1,an INDETERMINATE DOMAIN protein involved in shoot gravitropism,regulates plant architecture in rice. Plant Physiology, 161 (1):317-329.
doi: 10.1104/pp.112.208496 URL |
[33] | Xiang Yuan-ping, Wang Yi-dan, He Hong-jun, Xu Qi-jiang. 2020. Plant transposable elements and the effects of insertion mutations on flower development in horticultural plants. Acta Horticulturae Sinica, 47 (11):180-199. (in Chinese) |
相元萍, 王一丹, 贺洪军, 徐启江. 2020. 植物转座子类型及其插入突变对园艺植物花发育影响的研究进展. 园艺学报, 47 (11):180-199. | |
[34] | Xu Yong. 2007. Study on MADS genes related to floral organ development in peach[Ph. D. Dissertation]. Beijing:Capital Normal University. (in Chinese) |
徐勇. 2007. 桃花发育相关MADS基因研究[博士论文]. 北京: 首都师范大学. | |
[35] | Zhang Xi-xian. 2014. The role of Arabidopsis zinc finger protein AtIDD4 in the process of filament elongation[M. D. Dissertation]. Kunming: Yunnan University. (in Chinese) |
张喜贤. 2014. 拟南芥锌指蛋白AtIDD4在花丝伸长过程中的作用[硕士论文]. 昆明: 云南大学. | |
[36] | Zhang Xu-jia, Hu Ling-zhi, Chen Zhe-hao, Li Ying, Wang Li-lin. 2014. Research progress in regulation mechanism of floral organ size. Plant Physiology Journal, 50 (6):691-697. (in Chinese) |
张栩佳, 胡灵芝, 陈哲皓, 李颖, 王利琳. 2014. 花器官大小调控机制的研究进展. 植物生理学报, 50 (6):691-697. | |
[37] |
Zhang Y, Wu R, Qin G, Chen Z, Gu H, Qu L J. 2011. Over-expression of WOX1 leads to defects in meristem development and polyamine homeostasis in Arabidopsis. Journal of Integrative Plant Biology, 53 (6):493-506.
doi: 10.1111/j.1744-7909.2011.01054.x URL |
[38] | Zhang Yu-xing. 2003. Monographs of fruit cultivation.. Version 3). Beijing: China Agriculture Press. (in Chinese) |
张玉星. 2003. 果树栽培学各论. 3版). 北京: 中国农业出版社. | |
[39] | Zhang Yun, Liu Qing-lin. 2003. Proceedings on molecular mechanism of plant flower development. Chinese Bulletin of Botany, 20 (5):589-601. (in Chinese) |
张云, 刘青林. 2003. 植物花发育的分子机理研究进展. 植物学通报, 20 (5):589-601. | |
[40] | Zhao Yujie, Liu Cuiyu, Zhao Xueqing, Wang Yuying, Yan Ming, Yuan Zhaohe. 2021. Cloning and spatiotemporal expression analysis of PgWUS and PgBEL1 in Punica granatum. Acta Horticulturae Sinica, 48 (2):355-366. |
赵玉洁, 刘翠玉, 招雪晴, 汪钰莹, 闫明, 苑兆和. 2021. 石榴花器官发育相关基因PgWUS和PgBEL1克隆及其时空表达分析. 园艺学报, 48 (2):355-366. |
[1] | ZHAI Hanhan, ZHAI Yujie, TIAN Yi, ZHANG Ye, YANG Li, WEN Zhiliang, CHEN Haijiang. Genome-wide Identification of Peach SAUR Gene Family and Characterization of PpSAUR5 Gene [J]. Acta Horticulturae Sinica, 2023, 50(1): 1-14. |
[2] | XING Zhudong, LÜ Futang, GUO Shangjing, ZHANG Yanyi. A New Peach Cultivar‘Liaoda Hongjin’ [J]. Acta Horticulturae Sinica, 2023, 50(1): 225-226. |
[3] | YANG Xingwang, WANG Haibo, WANG Yingying, WANG Xiaolong, WANG Zhiqiang, LIU Peipei, LIU Wanchun, and WANG Xiaodi. A New Mid-ripening and Cold Resistant Peach Cultivar‘Zhongnong Ganshuang’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 15-16. |
[4] | YANG Xingwang, WANG Haibo, WANG Yingying, ZHANG Yican, WANG Baoliang, Liu Peipei, SHI Xiangbin, LIU Wanchun, and WANG Xiaodi. A New Mid-ripening Cold Resistant Peach Cultivar‘Zhongnong Baigan’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 17-18. |
[5] | YANG Xingwang, LIU Fengzhi, WANG Haibo, WANG Yingying, WANG Zhiqiang, SHI Xiangbin, JI Xiaohao, LIU Wanchun, and WANG Xiaodi. A New Mid-ripening Cold Resistant Peach Cultivar‘Zhongnong Hanshuimi’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 19-20. |
[6] | YANG Xingwang, LIU Fengzhi, WANG Haibo, WANG Yingying, ZHANG Yican, LI Peng, WANG Xiaolong, LIU Wanchun, and WANG Xiaodi. A New Late-ripening Cold Resistant Peach Cultivar‘Zhongnong Qiuxiang’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 21-22. |
[7] | WANG Yingying, LIU Lichang, LIU Zhiwu, YANG Xingwang, LIU Wanchun, and WANG Xiaodi, . A New Extremely Late-ripening Peach Cultivar‘Zhongnong Dongmi’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 23-24. |
[8] | WANG Yingying, ZHENG Xiaocui, WANG Haibo, SHI Xiangbin, JI Xiaohao, LIU Peipei, LIU Wanchun, and WANG Xiaodi. A New Cold Resistent Peach Cultivar‘Zhongtao Fenyu’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 13-14. |
[9] | WANG Yingying, WANG Haibo, LIU Peipei, WANG Baoliang, ZHANG Yican, LI Peng, LIU Wanchun, and WANG Xiaodi. A New Cold Resistant Peach Cultivar‘Zhongnong Xiutian’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 15-16. |
[10] | WANG Yingying, WANG Haibo, LI Peng, WANG Baoliang, SHI Xiangbin, LIU Wanchun, and WANG Xiaodi. A New Cold Resistant Peach Cultivar‘Zhongnong Zhihou’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 17-18. |
[11] | WANG Yingying, WANG Haibo, SHI Xiangbin, and WANG Xiaodi. A New Early-ripening Peach Cultivar‘Zhongnong Hanmi’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 19-20. |
[12] | WANG Yuehui, BAI Ruixia, JIA Yunyun, MA Zhisheng, and LI Jianming. A New Mid-ripening Peach Cultivar‘Meilin’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 21-22. |
[13] | SHU Nan, FAN Shutian, WANG Yue, XU Peilei, LI Jiaqi, LIU Tao, WANG Xinhua, JIN Yuning, and LU Wenpeng. A New Cold Resistant Peach Cultivar‘Jimei’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 23-24. |
[14] | QIU Keli, WANG Yumin, HE Jinling, YU Hong, PAN Haifa, SHENG Yu, XIE Qingmei, CHEN Hongli, ZHOU Hui, ZHANG Jinyun. Identification of Peach Laccase Family Genes and Function Analysis of PpLAC21 [J]. Acta Horticulturae Sinica, 2022, 49(6): 1351-1362. |
[15] | CAI Zhixiang, YAN Juan, SU Ziwen, XU Ziyuan, ZHANG Minghao, SHEN Zhijun, YANG Jun, MA Ruijuan, YU Mingliang. Evaluation of Main Phenolic Compounds in Different Types of Peach Germplasm Resources [J]. Acta Horticulturae Sinica, 2022, 49(5): 1008-1022. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd