Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (12): 2597-2610.doi: 10.16420/j.issn.0513-353x.2021-0835
• Reviews • Previous Articles Next Articles
LI Junzhang1, QIN Yuan2,3,4, XIAO Qiang1, AN Chang2,4, LIAO Jingyi3, ZHENG Ping2,*()
Received:
2022-04-22
Revised:
2022-08-31
Online:
2022-12-25
Published:
2023-01-02
Contact:
ZHENG Ping
E-mail:zhengping@fafu.edu.cn
CLC Number:
LI Junzhang, QIN Yuan, XIAO Qiang, AN Chang, LIAO Jingyi, ZHENG Ping. Recent Advances in Molecular Biology of Crassulacean Acid Metabolism Plants and the Application Potential of CAM Engineering[J]. Acta Horticulturae Sinica, 2022, 49(12): 2597-2610.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-0835
植物 Plant | CAM类型 CAM type | 组装水平 Assembly level | 基因组/Mb Genome size | N50/kb | 文献 Reference |
---|---|---|---|---|---|
玉吊钟Kalanchoe fedtschenkoi | 组成型 Constitutive | 支架水平 Scaffold | 256 | 2 450(scaffold) | Yang et al., |
菠萝Ananas comosus | 组成型Constitutive | 染色体 Chromosome | 382 | 11 800(scaffold) | Ming et al., |
红菠萝Ananas comosus var. bracteatus CB5 | 组成型Constitutive | 染色体 Chromosome | 513 | 427(contig) | Chen et al., |
玉米石Sedum album | 组成型Constitutive | 重叠群 Contig | 302 | 93(contig) | Wai et al., |
麻疯树Jatropha curcas | 兼性Facultative | 支架水平 Scaffold | 339 | 15 400(scaffold) | Ha et al., |
台湾蝴蝶兰Phalaenopsis aphrodite | 组成型Constitutive | 染色体 Chromosome | 1 200 | 19 700(scaffold) | Chao et al., |
深圳拟兰Apostasia shenzhenica | 组成型Constitutive | 染色体 Chromosome | 349 | 3 029(scaffold) | Zhang et al., |
小兰屿蝴蝶兰Phalaenopsis equestris | 组成型Constitutive | 支架水平 Scaffold | ~980 | 359.1(scaffold) | Cai et al., |
黄石斛Dendrobium catenatum | 兼性Facultative | 支架水平 Scaffold | 1 010 | 391(scaffold) | Zhang et al., |
铁皮石斛Dendrobium officinale | 兼性Facultative | 染色体 Chromosome | 1 230 | 63 070(scaffold) | Niu et al., |
Table 1 The summary information of published CAM genome
植物 Plant | CAM类型 CAM type | 组装水平 Assembly level | 基因组/Mb Genome size | N50/kb | 文献 Reference |
---|---|---|---|---|---|
玉吊钟Kalanchoe fedtschenkoi | 组成型 Constitutive | 支架水平 Scaffold | 256 | 2 450(scaffold) | Yang et al., |
菠萝Ananas comosus | 组成型Constitutive | 染色体 Chromosome | 382 | 11 800(scaffold) | Ming et al., |
红菠萝Ananas comosus var. bracteatus CB5 | 组成型Constitutive | 染色体 Chromosome | 513 | 427(contig) | Chen et al., |
玉米石Sedum album | 组成型Constitutive | 重叠群 Contig | 302 | 93(contig) | Wai et al., |
麻疯树Jatropha curcas | 兼性Facultative | 支架水平 Scaffold | 339 | 15 400(scaffold) | Ha et al., |
台湾蝴蝶兰Phalaenopsis aphrodite | 组成型Constitutive | 染色体 Chromosome | 1 200 | 19 700(scaffold) | Chao et al., |
深圳拟兰Apostasia shenzhenica | 组成型Constitutive | 染色体 Chromosome | 349 | 3 029(scaffold) | Zhang et al., |
小兰屿蝴蝶兰Phalaenopsis equestris | 组成型Constitutive | 支架水平 Scaffold | ~980 | 359.1(scaffold) | Cai et al., |
黄石斛Dendrobium catenatum | 兼性Facultative | 支架水平 Scaffold | 1 010 | 391(scaffold) | Zhang et al., |
铁皮石斛Dendrobium officinale | 兼性Facultative | 染色体 Chromosome | 1 230 | 63 070(scaffold) | Niu et al., |
植物(文献) Plant(Reference) | CAM类型 CAM type | 转录因子 Transcription factor | 转录因子家族 Transcription factor family | 拟南芥同源基因 Arabidopsis homolog |
---|---|---|---|---|
冰叶日中花 Mesembryanthemum crystallinum (Amin et al., | 兼性 Facultative | McERF74 | AP2/ERF/CRF | AT1G53910 |
McNAC29 | NAC | AT1G69490 | ||
McBLH1 | HB/Homeodomain | AT2G35940 | ||
McbZIP2 | bZIP | AT2G18160 | ||
McAGL8 | MADS/AGAMOUS-LIKE8 | AT5G60910 | ||
McAP2-12 | AP2/ERF | AT1G53910 | ||
McbZIP44 | bZIP | AT1G75390 | ||
McHB7 | HB/Homeodomain | AT2G46680 | ||
玉吊钟 Kalanchoe fedtschenkoi (Yang et al., | 组成型 Constitutive | KfMYB59* | MYB | AT5G59780 |
KfLHY1 | Homeodomain | AT1G01060 | ||
KfbZIP29 | bZIP | AT4G38900 | ||
KfNF-YB3 | NF-Ys | AT4G14540 | ||
KfNAC83* | NAC | AT4G13180 | ||
KfAP2 | AP2/ERF/CRF | AT4G11140 | ||
KfCOL3 | Zinc Finger CONSTANS-like 4 | AT5G24930 | ||
KfCOL5 | Zinc Finger CONSTANS-like 5 | AT5G67660 | ||
棱轴土人参 Talinum triangulare (Maleckova et al., | 兼性 Facultative | TtOFP8 | - | AT5G19650 |
TtNF-YA9 | NF-YA | AT3G20910 | ||
TtNF-YB3 | NF-YB | AT4G14540 | ||
TtLBD21 | LBD | AT3G11090 | ||
TtHB-1 | HD-ZIP | AT3G01470 | ||
TtHSFA2 | HSF | AT2G26150 | ||
TtBBX15 | CO-like | AT1G25440 | ||
TtMP | ARF | AT1G19850 | ||
- | Trihelix | AT2G44730 | ||
- | - | AT4G00990 | ||
TtHSFC1 | HSF | AT3G24520 |
Table 2 The list of candidate transcription factors hypothesized to get involved in CAM regulation or drought-stress responses in CAM plants
植物(文献) Plant(Reference) | CAM类型 CAM type | 转录因子 Transcription factor | 转录因子家族 Transcription factor family | 拟南芥同源基因 Arabidopsis homolog |
---|---|---|---|---|
冰叶日中花 Mesembryanthemum crystallinum (Amin et al., | 兼性 Facultative | McERF74 | AP2/ERF/CRF | AT1G53910 |
McNAC29 | NAC | AT1G69490 | ||
McBLH1 | HB/Homeodomain | AT2G35940 | ||
McbZIP2 | bZIP | AT2G18160 | ||
McAGL8 | MADS/AGAMOUS-LIKE8 | AT5G60910 | ||
McAP2-12 | AP2/ERF | AT1G53910 | ||
McbZIP44 | bZIP | AT1G75390 | ||
McHB7 | HB/Homeodomain | AT2G46680 | ||
玉吊钟 Kalanchoe fedtschenkoi (Yang et al., | 组成型 Constitutive | KfMYB59* | MYB | AT5G59780 |
KfLHY1 | Homeodomain | AT1G01060 | ||
KfbZIP29 | bZIP | AT4G38900 | ||
KfNF-YB3 | NF-Ys | AT4G14540 | ||
KfNAC83* | NAC | AT4G13180 | ||
KfAP2 | AP2/ERF/CRF | AT4G11140 | ||
KfCOL3 | Zinc Finger CONSTANS-like 4 | AT5G24930 | ||
KfCOL5 | Zinc Finger CONSTANS-like 5 | AT5G67660 | ||
棱轴土人参 Talinum triangulare (Maleckova et al., | 兼性 Facultative | TtOFP8 | - | AT5G19650 |
TtNF-YA9 | NF-YA | AT3G20910 | ||
TtNF-YB3 | NF-YB | AT4G14540 | ||
TtLBD21 | LBD | AT3G11090 | ||
TtHB-1 | HD-ZIP | AT3G01470 | ||
TtHSFA2 | HSF | AT2G26150 | ||
TtBBX15 | CO-like | AT1G25440 | ||
TtMP | ARF | AT1G19850 | ||
- | Trihelix | AT2G44730 | ||
- | - | AT4G00990 | ||
TtHSFC1 | HSF | AT3G24520 |
[1] |
Abraham P E, Hurtado Castano N, Cowan-Turner D, Barnes J, Poudel S, Hettich R, Flütsch S, Santelia D, Borland A M. 2020. Peeling back the layers of crassulacean acid metabolism:functional differentiation between Kalanchoë fedtschenkoi epidermis and mesophyll proteomes. The Plant Journal, 103 (2):869-888.
doi: 10.1111/tpj.14757 pmid: 32314451 |
[2] |
Amin A B, Rathnayake K N, Yim W C, Garcia T M, Wone B, Cushman J C, Wone B W. 2019. Crassulacean acid metabolism abiotic stress-responsive transcription factors:a potential genetic engineering approach for improving crop tolerance to abiotic stress. Frontiers in Plant Science, 10:129.
doi: 10.3389/fpls.2019.00129 URL |
[3] |
Bai Y, Dai X, Li Y, Wang L, Li W, Liu Y, Cheng Y, Qin Y. 2019. Identification and characterization of pineapple leaf lncRNAs in crassulacean acid metabolism(CAM)photosynthesis pathway. Scientific Reports, 9 (1):6658.
doi: 10.1038/s41598-019-43088-8 URL |
[4] |
Bedre R, Irigoyen S, Petrillo E, Mandadi K K. 2019. New era in plant alternative splicing analysis enabled by advances in high-throughput sequencing(HTS)technologies. Frontiers in Plant Science, 10:740.
doi: 10.3389/fpls.2019.00740 URL |
[5] |
Borland A M, Griffiths H, Hartwell J, Smith J A. C. 2009. Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands. Journal of Experimental Botany, 60 (10):2879-2896.
doi: 10.1093/jxb/erp118 pmid: 19395392 |
[6] |
Borland A M, Hartwell J, Weston D J, Schlauch K A, Tschaplinski T J, Tuskan G A, Yang X, Cushman J C. 2014. Engineering crassulacean acid metabolism to improve water-use efficiency. Trends in Plant Science, 19 (5):327-338.
doi: 10.1016/j.tplants.2014.01.006 pmid: 24559590 |
[7] |
Boxall S F, Dever L V, Kneřová J, Gould P D, Hartwell J. 2017. Phosphorylation of phosphoenolpyruvate carboxylase is essential for maximal and sustained dark CO2 fixation and core circadian clock operation in the obligate crassulacean acid metabolism species Kalanchoë fedtschenko. The Plant Cell, 29 (10):2519-2536.
doi: 10.1105/tpc.17.00301 URL |
[8] |
Boxall S F, Kadu N, Dever L V, Kneřová J, Waller J L, Gould P J D, Hartwell J. 2020. Kalanchoë PPC 1 is essential for crassulacean acid metabolism and the regulation of core circadian clock and guard cell signaling genes. The Plant Cell, 32 (4):1136-1160.
doi: 10.1105/tpc.19.00481 URL |
[9] |
Brilhaus D, Bräutigam A, Mettler-Altmann T, Winter K, Weber A P M. 2016. Reversible burst of transcriptional changes during induction of crassulacean acid metabolism in Talinum triangulare. Plant Physiology, 170 (1):102-122.
doi: 10.1104/pp.15.01076 pmid: 26530316 |
[10] |
Bronson D R, English N B, Dettman D L, Williams D G. 2011. Seasonal photosynthetic gas exchange and water-use efficiency in a constitutive CAM plant,the giant saguaro cactus(Carnegiea gigantea). Oecologia, 167:861.
doi: 10.1007/s00442-011-2021-1 pmid: 21822726 |
[11] |
Brulfert J, Kluge M, Güçlü S, Queiroz O. 1988. Interaction of photoperiod and drought as CAM inducing factors in Kalanchoë blossfeldiana Poelln,cv. Tom Thumb. Journal of Plant Physiology, 133 (2):222-227.
doi: 10.1016/S0176-1617(88)80141-X URL |
[12] |
Cai J, Liu X, Vanneste K, Proost S, Tsai W C, Liu K W, Chen L J, He Y, Xu Q, Bian C, Zheng Z, Sun F, Liu W, Hsiao Y Y, Pan Z J, Hsu C C, Yang Y P, Hsu Y C, Chuang Y C, Dievart A, Dufayard J F, Xu X, Wang J Y, Wang J, Xiao X J, Zhao X M, Du R, Zhang G Q, Wang M, Su Y Y, Xie G C, Liu G H, Li L Q, Huang L Q, Luo Y B, Chen H H, van de Peer Y, Liu Z J. 2015. The genome sequence of the orchid Phalaenopsis equestris. Nature Genetics, 47 (1):65-72.
doi: 10.1038/ng.3149 URL |
[13] |
Ceusters J, Borland A M, Taybi T, Frans M, Godts C, de Proft M. P. 2014. Light quality modulates metabolic synchronization over the diel phases of crassulacean acid metabolism. Journal of Experimental Botany, 65 (13):3705-3714.
doi: 10.1093/jxb/eru185 pmid: 24803500 |
[14] |
Ceusters N, Borland A M, Ceusters J. 2021. How to resolve the enigma of diurnal malate XXX emobilization from the vacuole in plants with crassulacean acid metabolism? New Phytologist, 229 (6):3116-3124.
doi: 10.1111/nph.17070 URL |
[15] |
Ceusters N, Frans M, van den Ende W, Ceusters J. 2019a. Maltose Processing and Not β-amylase activity curtails hydrolytic starch degradation in the CAM orchid Phalaenopsis. Frontiers in Plant Science, 10:1386.
doi: 10.3389/fpls.2019.01386 URL |
[16] |
Ceusters N, Luca S, Feil R, Claes J E, Lunn J E, van den Ende W, Ceusters J. 2019b. Hierarchical clustering reveals unique features in the diel dynamics of metabolites in the CAM orchid Phalaenopsis. Journal of Experimental Botany, 70 (12):3269-3281.
doi: 10.1093/jxb/erz170 URL |
[17] |
Chao Y T, Chen W C, Chen C Y, Ho H Y, Yeh C H, Kuo Y T, Su C L, Yen S H, Hsueh H Y, Yeh J H, Hsu H L, Tsai Y H, Kuo T Y, Chang S B, Chen K Y, Shih M C. 2018. Chromosome-level assembly,genetic and physical mapping of Phalaenopsis aphrodite genome provides new insights into species adaptation and resources for orchid breeding. Plant Biotechnology Journal, 16 (12):2027-2041.
doi: 10.1111/pbi.12936 URL |
[18] |
Chen L Y, VanBuren R, Paris M, Zhou H, Zhang X, Wai C M, Yan H, Chen S, Alonge M, Ramakrishnan S, Liao Z, Liu J, Lin J, Yue J., Fatima M, Lin Z, Zhang J, Huang L, Wang H, Hwa T Y, Kao S M, Choi J Y, Sharma A, Song J, Wang L, Yim W C, Cushman J C, Paull R E, Matsumoto T, Qin Y, Wu Q, Wang J, Yu Q, Wu J, Zhang S, Boches P, Tung C W, Wang M L, Coppens d’Eeckenbrugge G, Sanewski G M, Purugganan M D, Schatz M C, Bennetzen J L, Lexer C, Ming R. 2019. The bracteatus pineapple genome and domestication of clonally propagated crops. Nature Genetics, 51 (10):1549-1558.
doi: 10.1038/s41588-019-0506-8 pmid: 31570895 |
[19] |
Chen L Y, Xin Y, Wai C M, Liu J, Ming R. 2020. The role of cis-elements in the evolution of crassulacean acid metabolism photosynthesis. Horticulture Research, 7 (1):5.
doi: 10.1038/s41438-019-0229-0 URL |
[20] |
Chomthong M, Griffiths H. 2020. Model approaches to advance crassulacean acid metabolism system integration. The Plant Journal, 101 (4):951-963.
doi: 10.1111/tpj.14691 pmid: 31943394 |
[21] |
Cushman J C. 2001. Crassulacean acid metabolism. A plastic photosynthetic adaptation to arid environments. Plant physiology, 127 (4):1439-1448.
pmid: 11743087 |
[22] |
Dever L V, Boxall S F, Kneřová J, Hartwell J. 2015. Transgenic perturbation of the decarboxylation phase of crassulacean acid metabolism alters physiology and metabolism but has only a small effect on growth. Plant Physiology, 167 (1):44-59.
doi: 10.1104/pp.114.251827 pmid: 25378692 |
[23] |
Edwards E J. 2019. Evolutionary trajectories,accessibility and other metaphors:the case of C(4)and CAM photosynthesis. New Phytologist, 223 (4):1742-1755.
doi: 10.1111/nph.15851 pmid: 30993711 |
[24] |
Ermakova M, Danila F R, Furbank R T, von Caemmerer S. 2020. On the road to C 4 rice:advances and perspectives. The Plant Journal, 101 (4):940-950.
doi: 10.1111/tpj.14562 pmid: 31596523 |
[25] |
Ferrari R C, Bittencourt P P, Rodrigues M A, Moreno-Villena J J, Alves F R, Gastaldi V D, Boxall S F, Dever L V, Demarco D, Andrade S C. 2020. C4 and crassulacean acid metabolism within a single leaf:deciphering key components behind a rare photosynthetic adaptation. New Phytologist, 225 (4):1699-1714.
doi: 10.1111/nph.16265 pmid: 31610019 |
[26] | Grams T E E, Thiel S. 2002. High light‐induced switch from C3‐photosynthesis to Crassulacean acid metabolism is mediated by UV‐A/blue light. Journal of Experimental Botany, 53 (373):1475-1483. |
[27] |
Guan Q, Kong W, Zhu D, Zhu W, Dufresne C, Tian J, Chen S. 2021. Comparative proteomics of Mesembryanthemum crystallinum guard cells and mesophyll cells in transition from C3 to CAM. Journal of Proteomics, 231:104019.
doi: 10.1016/j.jprot.2020.104019 URL |
[28] |
Ha J, Shim S, Lee T, Kang Y J, Hwang W J, Jeong H, Laosatit K, Lee J, Kim S K, Satyawan D, Lestari P, Yoon M Y, Kim M Y, Chitikineni A, Tanya P, Somta P, Srinives P, Varshney R K, Lee S H. 2019. Genome sequence of Jatropha curcas L.,a non-edible biodiesel plant,provides a resource to improve seed-related traits. Plant Biotechnology Journal, 17 (2):517-530.
doi: 10.1111/pbi.12995 URL |
[29] |
Hashiguchi A, Yamaguchi H, Hitachi K, Watanabe K. 2021. An optimized protein extraction method for gel-free proteomic analysis of opuntia ficus-Indica. Plants, 10 (1):115.
doi: 10.3390/plants10010115 URL |
[30] |
Heyduk K, Hwang M, Albert V, Silvera K, Lan T, Farr K, Chang T H, Chan M T, Winter K, Leebens-Mack J. 2019a. Altered gene regulatory networks are associated with the transition from C 3 to crassulacean acid metabolism in Erycina(Oncidiinae:Orchidaceae). Frontiers in Plant Science, 9:2000.
doi: 10.3389/fpls.2018.02000 URL |
[31] |
Heyduk K, Moreno-Villena J J, Gilman I S, Christin P A, Edwards E J. 2019b. The genetics of convergent evolution: insights from plant photosynthesis. Nature Reviews Genetics, 20 (8):485-493.
doi: 10.1038/s41576-019-0107-5 URL |
[32] |
Heyduk K, Ray J N, Ayyampalayam S, Leebens-Mack J. 2018. Shifts in gene expression profiles are associated with weak and strong crassulacean acid metabolism. American Journal of Botany, 105:587-601.
doi: 10.1002/ajb2.1017 pmid: 29746718 |
[33] |
Heyduk K, Ray J N, Leebens-Mack J. 2021. Leaf anatomy is not correlated to CAM function in a C3 + CAM hybrid species,Yucca gloriosa. Annals of Botany, 127 (4):437-449.
doi: 10.1093/aob/mcaa036 URL |
[34] |
Kong W, Yoo M J, Zhu D, Noble J D, Kelley T M, Li J, Kirst M, Assmann S M, Chen S. 2020. Molecular changes in Mesembryanthemum crystallinum guard cells underlying the C3 to CAM transition. Plant Molecular Biology, 103:653-667.
doi: 10.1007/s11103-020-01016-9 URL |
[35] |
Lim S D, Mayer J A, Yim W C, Cushman J C. 2020. Plant tissue succulence engineering improves water-use efficiency,water-deficit stress attenuation and salinity tolerance in Arabidopsis. The Plant Journal, 103:1049-1072.
doi: 10.1111/tpj.14783 URL |
[36] |
Lin H, Arrivault S, Coe R A, Karki S, Covshoff S, Bagunu E, Lunn J E, Stitt M, Furbank R T, Hibberd J M, Quick W P. 2020. A partial C 4 photosynthetic biochemical pathway in rice. Frontiers in Plant Science, 11:564463.
doi: 10.3389/fpls.2020.564463 URL |
[37] |
Liu D, Chen M, Mendoza B, Cheng H, Hu R, Li L, Trinh C T, Tuskan G A, Yang X. 2019. CRISPR/Cas9-mediated targeted mutagenesis for functional genomics research of crassulacean acid metabolism plants. Journal of Experimental Botany, 70 (22):6621-6629.
doi: 10.1093/jxb/erz415 pmid: 31562521 |
[38] |
Liu D, Palla K J, Hu R, Moseley R C, Mendoza C, Chen M, Abraham P E, Labbé J L, Kalluri U C, Tschaplinski T J, Cushman J C, Borland A M, Tuskan G A, Yang X. 2018. Perspectives on the basic and applied aspects of crassulacean acid metabolism(CAM)research. Plant Science, 274:394-401.
doi: 10.1016/j.plantsci.2018.06.012 URL |
[39] |
Lüttge U. 2010. Ability of crassulacean acid metabolism plants to overcome interacting stresses in tropical environments. AoB PLANTS,doi:10.1093/aobpla/plq005.
doi: 10.1093/aobpla/plq005 URL |
[40] |
Maleckova E, Brilhaus D, Wrobel T J, Weber A P M. 2019. Transcript and metabolite changes during the early phase of abscisic acid-mediated induction of crassulacean acid metabolism in Talinum triangulare. Journal of Experimental Botany, 70 (22):6581-6596.
doi: 10.1093/jxb/erz189 pmid: 31111894 |
[41] |
Ming R, van Buren R, Wai C M, Tang H, Schatz M C, Bowers J E, Lyons E, Wang M L, Chen J, Biggers E, Zhang J, Huang L, Zhang L, Miao W, Zhang J, Ye Z, Miao C, Lin Z, Wang H, Zhou H, Yim W C, Priest H D, Zheng C, Woodhouse M, Edger P P, Guyot R, Guo H-B, Guo H, Zheng G, Singh R, Sharma A, Min X, Zheng Y, Lee H, Gurtowski J, Sedlazeck F J, Harkess A, McKain M R, Liao Z, Fang J, Liu J, Zhang X, Zhang Q, Hu W, Qin Y, Wang K, Chen L Y, Shirley N, Lin Y-R, Liu L-Y, Hernandez A G, Wright C L, Bulone V, Tuskan G A, Heath K, Zee F, Moore P H, Sunkar R, Leebens-Mack J H, Mockler T, Bennetzen J L, Freeling M, Sankoff D, Paterson A H, Zhu X, Yang X, Smith J A C, Cushman J C, Paull R E, Yu Q. 2015. The pineapple genome and the evolution of CAM photosynthesis. Nature Genetics, 47 (12):1435-1442.
doi: 10.1038/ng.3435 pmid: 26523774 |
[42] |
Niu Z, Zhu F, Fan Y, Li C, Zhang B, Zhu S, Hou Z, Wang M, Yang J, Xue Q, Liu W, Ding X. 2021. The chromosome-level reference genome assembly for Dendrobium officinale and its utility of functional genomics research and molecular breeding study. Acta Pharmaceutica Sinica B, 11 (7):2080-2092.
doi: 10.1016/j.apsb.2021.01.019 URL |
[43] |
Ping C Y, Chen F C, Cheng T C, Lin H L, Lin T S, Yang W J, Lee Y I. 2018. Expression profiles of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxylase kinase genes in Phalaenopsis,implications for regulating the performance of crassulacean acid metabolism. Frontiers in plant science, 9:1587.
doi: 10.3389/fpls.2018.01587 URL |
[44] |
Sapeta H, Costa J M, Lourenço T, Maroco J, van der Linde P, Oliveira M M. 2013. Drought stress response in Jatropha curcas:growth and physiology. Environmental and Experimental Botany, 85:76-84.
doi: 10.1016/j.envexpbot.2012.08.012 URL |
[45] |
Shameer S, Baghalian K, Cheung C Y M, Ratcliffe R G, Sweetlove L J. 2018. Computational analysis of the productivity potential of CAM. Nature Plants, 4:165-171.
doi: 10.1038/s41477-018-0112-2 pmid: 29483685 |
[46] |
Shi Y, Zhang X, Chang X, Yan M, Zhao H, Qin Y, Wang H. 2021. Integrated analysis of DNA methylome and transcriptome reveals epigenetic regulation of CAM photosynthesis in pineapple. BMC Plant Biology, 21 (1):1-14.
doi: 10.1186/s12870-020-02777-7 URL |
[47] |
Silvera K, Neubig K M, Whitten W M, Williams N H, Winter K, Cushman J C. 2010. Evolution along the crassulacean acid metabolism continuum. Functional Plant Biology, 37 (11):995-1010.
doi: 10.1071/FP10084 URL |
[48] |
Stewart J R. 2015. Agave as a model CAM crop system for a warming and drying world. Frontiers in Plant Science, 6:684.
doi: 10.3389/fpls.2015.00684 pmid: 26442005 |
[49] |
Sussmilch F C, Brodribb T J, McAdam S A M. 2017. What are the evolutionary origins of stomatal responses to abscisic acid in land plants? Journal of Integrative Plant Biology, 59 (4):240-260.
doi: 10.1111/jipb.12523 |
[50] | Wai C M, van Buren R. 2018. Circadian regulation of pineapple CAM photosynthesis.//Genetics and genomics of pineapple. Cham,Springer International Publishing:247-258. |
[51] |
Wai C M, van Buren R, Zhang J, Huang L, Miao W, Edger P P, Yim W C, Priest H D, Meyers B C, MocklerT, Smith J A C, Cushman J C, Ming R. 2017. Temporal and spatial transcriptomic and microRNA dynamics of CAM photosynthesis in pineapple. The Plant Journal, 92 (1):19-30.
doi: 10.1111/tpj.13630 pmid: 28670834 |
[52] |
Wai C M, Weise S E, Ozersky P, Mockler T C, Michael T P, van Buren R. 2019. Time of day and network reprogramming during drought induced CAM photosynthesis in Sedum album. PLOS Genetics, 15 (6):e1008209.
doi: 10.1371/journal.pgen.1008209 URL |
[53] |
West-Eberhard M J, Smith J A C, Winter K. 2011. Photosynthesis,Reorganized. Science, 332 (6027):311.
doi: 10.1126/science.1205336 pmid: 21493847 |
[54] |
Winter K. 2019. Ecophysiology of constitutive and facultative CAM photosynthesis. Journal of Experimental Botany, 70 (22):6495-6508.
doi: 10.1093/jxb/erz002 pmid: 30810162 |
[55] |
Winter K, Garcia M, Holtum J A. 2009. Canopy CO2 exchange of two neotropical tree species exhibiting constitutive and facultative CAM photosynthesis,Clusia rosea and Clusia cylindrica. Journal of Experimental Botany, 60 (11):3167-3177.
doi: 10.1093/jxb/erp149 pmid: 19487388 |
[56] |
Winter K, Holtum J A, Smith J A. 2015. Crassulacean acid metabolism:a continuous or discrete trait? New Phytol, 208 (1):73-78.
doi: 10.1111/nph.13446 pmid: 25975197 |
[57] |
Winter K, Sage R F, Edwards E J, Virgo A, Holtum J A. 2019. Facultative crassulacean acid metabolism in a C3-C4 intermediate. Journal of Experimental Botany, 70 (22):6571-6579.
doi: 10.1093/jxb/erz085 pmid: 30820551 |
[58] | Winter K, Smith J A C. 2012. Crassulacean acid metabolism:biochemistry,ecophysiology and evolution. Springer Science & Business Media. |
[59] |
Xu S, Wang J, Guo Z, He Z, Shi S. 2020. Genomic convergence in the adaptation to extreme environments. Plant Communications, 1 (6):100117.
doi: 10.1016/j.xplc.2020.100117 URL |
[60] |
Yang X, Cushman J C, Borland A M, Edwards E J, Wullschleger S D, Tuskan G A, Owen N A, Griffiths H, Smith J A C, de Paoli H C. 2015. A roadmap for research on crassulacean acid metabolism(CAM)to enhance sustainable food and bioenergy production in a hotter,drier world. New Phytologist, 207:491-504.
doi: 10.1111/nph.13393 URL |
[61] |
Yang X, Hu R, Yin H, Jenkins J, Shu S, Tang H, Liu D, Weighill D A, Cheol Yim W, Ha J, HeydukK, Goodstein D M, Guo H B, Moseley R C, Fitzek E, Jawdy S, Zhang Z, Xie M, Hartwell J, Grimwood J, Abraham P E, Mewalal R, Beltrán J D, Boxall S F, Dever L V, Palla K J, Albion R, Garcia T, Mayer J A, Don Lim S, Man Wai C, Peluso P, Van Buren R, De Paoli H C, Borland A M, Guo H, Chen J G, Muchero W, Yin Y, Jacobson D A, Tschaplinski T J, Hettich R L, Ming R, Winter K, Leebens-Mack J H, Smith J A C, Cushman J C, Schmutz J, Tuskan G A. 2017. The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism. Nature Communications, 8 (1):1-15.
doi: 10.1038/s41467-016-0009-6 URL |
[62] |
Yang X, Liu D, Tschaplinski T J, Tuskan G A. 2019. Comparative genomics can provide new insights into the evolutionary mechanisms and gene function in CAM plants. Journal of Experimental Botany, 70 (22):6539-6547.
doi: 10.1093/jxb/erz408 pmid: 31616946 |
[63] |
Yin H, Guo H-B, Weston D J, Borland A M, Ranjan P, Abraham P E, Jawdy S S, Wachira J, Tuskan G A, Tschaplinski T J, Wullschleger S D, Guo H, Hettich R L, Gross S M, Wang Z, Visel A, Yang X. 2018. Diel rewiring and positive selection of ancient plant proteins enabled evolution of CAM photosynthesis in Agave. BMC genomics, 19 (1):588.
doi: 10.1186/s12864-018-4964-7 URL |
[64] | Yuan G, Hassan M M, Liu D, Lim S D, Yim W C, Cushman J C, Markel K, Shih P M, Lu H, Weston D J. 2020. Biosystems design to accelerate C3-to-CAM progression. BioDesign Research, 2020. |
[65] |
Zhang G Q, Liu K W, Li Z, Lohaus R, Hsiao Y Y, Niu S C, Wang J Y, Lin Y C, Xu Q, Chen L J, Yoshida K, Fujiwara S, Wang Z W, Zhang Y Q, Mitsuda N, Wang M, Liu G H, Pecoraro L, Huang H X, Xiao X J, Lin M, Wu X Y, Wu W L, Chen Y Y, Chang S B, Sakamoto S, Ohme-Takagi M, Yagi M, Zeng S J, Shen C Y, Yeh C M, Luo Y B, Tsai W C, van de Peer Y, Liu Z J. 2017. The Apostasia genome and the evolution of orchids. Nature, 549 (7672):379-383.
doi: 10.1038/nature23897 URL |
[66] |
Zhang G Q, Xu Q, Bian C, Tsai W C, Yeh C M, Liu K W, Yoshida K, Zhang L S, Chang S B, Chen F, Shi Y, Su Y Y, Zhang Y Q, Chen L J, Yin Y, Lin M, Huang H, Deng H, Wang Z W, Zhu S L, Zhao X, Deng C, Niu S C, Huang J, Wang M, Liu G H, Yang H J, Xiao X J, Hsiao Y Y, Wu W L, Chen Y Y, Mitsuda N, Ohme-Takagi M, Luo Y B, van de Peer Y, Liu Z J. 2016. The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase,floral development and adaptive evolution. Scientific Reports, 6:19029.
doi: 10.1038/srep19029 URL |
[67] |
Zhang Y, Dong W, Zhao X, Song A, Guo K, Liu Z, Zhang L. 2019. Transcriptomic analysis of differentially expressed genes and alternative splicing events associated with crassulacean acid metabolism in orchids. Horticultural Plant Journal, 5 (6):268-280.
doi: 10.1016/j.hpj.2019.12.001 |
[68] |
Zheng L, Ceusters J, van Labeke M C. 2019. Light quality affects light harvesting and carbon sequestration during the diel cycle of crassulacean acid metabolism in Phalaenopsis. Photosynthesis Research, 141 (2):195-207.
doi: 10.1007/s11120-019-00620-1 URL |
[1] | WANG Yan, SUN Zheng, FENG Shan, YUAN Xinyi, ZHONG Linlin, ZENG Yunliu, FU Xiaopeng, CHENG Yunjiang, Bao Manzhu, ZHANG Fan. The Negative Regulation of DcERF-1 on Senescence of Cut Carnation [J]. Acta Horticulturae Sinica, 2022, 49(6): 1313-1326. |
[2] | LI Qiong, LI Lili, HOU Juan, LUO Renren, WANG Ruidan, HU Jianbin, HUANG Song. Advances on Mechanism of Cucurbit Crops in Response to Low- temperature Stress [J]. Acta Horticulturae Sinica, 2022, 49(6): 1382-1394. |
[3] | LIU Shangjia, L& Yao, CAO Bili, CHEN Zijing, GAO Song, XU Kun. Effects of High Temperature and Waterlogging Stress on Photosynthesis and Nitrogen Metabolism of Ginger Leaves [J]. Acta Horticulturae Sinica, 2022, 49(5): 1073-1080. |
[4] | XIANG Miaolian, WU Fan, LI Shucheng, MA Qiaoli, WANG Yinbao, XIAO Liuhua, CHEN Jinyin, CHEN Ming. Exogenous Melatonin Regulates Reactive Oxygen Metabolism to Induce Resistance of Postharvest Pear Fruit to Black Spot [J]. Acta Horticulturae Sinica, 2022, 49(5): 1102-1110. |
[5] | HE Jingjuan, FAN Yanping. Progress in Composition and Metabolic Regulation of Carotenoids Related to Floral Color [J]. Acta Horticulturae Sinica, 2022, 49(5): 1162-1172. |
[6] | WU Kongjie, HU Chengxiao, TAN Qiling, SUN Xuecheng, ZHAO Xiaohu, WU Songwei. Research Advanced on Character of Sugar Accumulation and Mechanism of Sucrose Transport in Citrus Fruit [J]. Acta Horticulturae Sinica, 2022, 49(12): 2543-2558. |
[7] | LU Chenfei, GAO Yuexia, HUANG He, DAI Silan. Carotenoid Metabolism and Regulation in Plants [J]. Acta Horticulturae Sinica, 2022, 49(12): 2559-2578. |
[8] | ZHAO Yong, ZHU Hongju, YANG Dongdong, GONG Chengsheng, LIU Wenge. Research Progress of Citric Acid Metabolism in the Fruit [J]. Acta Horticulturae Sinica, 2022, 49(12): 2579-2596. |
[9] | YANG Sichao, ZHANG Meng, ZHANG Qinglin, LUO Zhengrong. Advances on Natural Deastringency Characteristics and Molecular Mechanism of Chinese PCNA Persimmon [J]. Acta Horticulturae Sinica, 2022, 49(12): 2659-2668. |
[10] | ZENG Yike, SHI Ying, CHEN Siyi, LI Guojing, HUANG Xianbiao, XIE Zongzhou, LI Chunlong, GUO Dayong, LIU Jihong. Effects of Film Mulching on Improving Fruit Quality of Ponkan and Possible Mechanisms [J]. Acta Horticulturae Sinica, 2022, 49(11): 2419-2430. |
[11] | SU Jiangshuo, JIA Diwen, WANG Siyue, ZHANG Fei, JIANG Jiafu, CHEN Sumei, FANG Weimin, and CHEN Fadi. Retrospection and Prospect of Chrysanthemum Genetic Breeding for Last Six Decades in China [J]. Acta Horticulturae Sinica, 2022, 49(10): 2143-2162. |
[12] | ZHANG Tingting, XUE Wanyu, LIU Na, CHEN Shuxia. Genetic and Regulation Mechanisms Advancements of Fruit Shape in Main Fruit Vegetables [J]. Acta Horticulturae Sinica, 2022, 49(10): 2189-2204. |
[13] | WANG Yun, ZHANG Zhenwu, SUN Xun, ZHANG Shaoling. A State-of-the-art Review on the Interaction Between Plant Autophagy and Pathogens [J]. Acta Horticulturae Sinica, 2022, 49(10): 2205-2222. |
[14] | YANG Bo, WEI Jia, LI Kunfeng, WANG Chengliang, NI Junbei, TENG Yuanwen, and BAI Songling. PpyERF060-PpyABF3-PpyMADS71 Regulates Ethylene Signaling Pathway- Mediated Pear Bud Dormancy Process [J]. Acta Horticulturae Sinica, 2022, 49(10): 2249-2262. |
[15] | HE Yan, SUN Yanli, ZHAO Fangfang, DAI Hongjun. Effect of Exogenous Brassinolides Treatment on Sugar Metabolism of Merlot Grape Berries [J]. Acta Horticulturae Sinica, 2022, 49(1): 117-128. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd