Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (10): 2189-2204.doi: 10.16420/j.issn.0513-353x.2021-0334
• Reviews • Previous Articles Next Articles
ZHANG Tingting, XUE Wanyu, LIU Na, CHEN Shuxia()
Received:
2021-11-26
Revised:
2022-02-11
Online:
2022-10-25
Published:
2022-10-31
Contact:
CHEN Shuxia
E-mail:shuxiachen@nwafu.edu.cn
CLC Number:
ZHANG Tingting, XUE Wanyu, LIU Na, CHEN Shuxia. Genetic and Regulation Mechanisms Advancements of Fruit Shape in Main Fruit Vegetables[J]. Acta Horticulturae Sinica, 2022, 49(10): 2189-2204.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-0334
Fig. 1 Distribution of fruit shape consensus genetic locus on tomato chromosomes The red markers are the InDel markers associated with the fruit shape index.
Fig. 2 Distribution of fruit shape consensus genetic locus on pepper chromosomes The red markers are the molecular markers associated with the fruit shape traits.
[1] | Adhikari P, McNellie J, Panthee D R. 2020. Detection of quantitative trait loci(QTL) associated with the fruit morphology of tomato. Genes(Basel), 11 (10):1117. |
[2] |
Amanullah S, Liu S, Gao P, Zhu Z, Zhu Q, Fan C. 2018. QTL mapping for melon(Cucumis melo L.)fruit traits by assembling and utilization of novel SNPs based CAPS markers. Scientia Horticulturae, 236:18-29.
doi: 10.1016/j.scienta.2018.02.041 URL |
[3] |
Arjun K, Dhaliwal M S, Jindal S K, Fakrudin B. 2018. Mapping of fruit length related QTLs in interspecific cross(Capsicum annuum L. × Capsicum galapagoense Hunz.)of chilli. Breeding Science, 68 (2):219-226.
doi: 10.1270/jsbbs.17073 URL |
[4] |
Barchi L, Lefebvre V, Sage-Palloix A M, Lanteri S, Palloix A. 2009. QTL analysis of plant development and fruit traits in pepper and performance of selective phenotyping. Theoretical and Applied Genetics, 118:1157-1171.
doi: 10.1007/s00122-009-0970-0 pmid: 19219599 |
[5] |
Barrero L S, Tanksley S D. 2004. Evaluating the genetic basis of multiple-locule fruit in a broad cross section of tomato cultivars. Theoretical and Applied Genetics, 109 (3):669-679.
pmid: 15292992 |
[6] |
Borovsky Y, Paran I. 2011. Characterization of fs10.1,a major QTL controlling fruit elongation in Capsicum. Theoretical and Applied Genetics, 123 (4):657-665.
doi: 10.1007/s00122-011-1615-7 pmid: 21603875 |
[7] |
Bürstenbinder K, Möller B, Plötner R, Stamm G, Hause G, Mitra D, Abel S. 2017. The IQD family of calmodulin-binding proteins links calcium signaling to microtubules,membrane subdomains,and the nucleus. Plant Physiology, 173 (3):1692-1708.
doi: 10.1104/pp.16.01743 pmid: 28115582 |
[8] |
Bürstenbinder K, Savchenko T, Müller J, Adamson A W, Stamm G, Kwong R, Zipp B J, Dinesh D C, Abel S. 2013. Arabidopsis calmodulin-binding protein IQ67-domain 1 localizes to microtubules and interacts with kinesin light chain-related protein-1. The Journal of Biological Chemistry, 288 (3):1871-1882.
doi: 10.1074/jbc.M112.396200 URL |
[9] |
Brewer M T, Moyseenko J B, Monforte A J, van der Knaap E. 2007. Morphological variation in tomato:a comprehensive study of quantitative trait loci controlling fruit shape and development. Journal of Experimental Botany, 58 (6):1339-1349.
doi: 10.1093/jxb/erl301 URL |
[10] |
Cabodevila V G, Cambiaso V, Rodríguez G R, Picardi L A, Capel J. 2021. A segregating population from a tomato second cycle hybrid allows the identification of novel QTL for fruit quality traits. Euphytica, 217 (6):1-14.
doi: 10.1007/s10681-020-02732-5 URL |
[11] |
Cao D, Wang J, Ju Z, Liu Q, Li S, Tian H, Fu D, Zhu H, Luo Y, Zhu B. 2016. Regulations on growth and development in tomato cotyledon,flower and fruit via destruction of miR396 with short tandem target mimic. Plant Science, 247:1-12.
doi: 10.1016/j.plantsci.2016.02.012 URL |
[12] |
Chaim A B, Borovsky Y, Rao G U, Tanyolac B, Paran I. 2003. fs3.1:a major fruit shape QTL conserved in Capsicum. Genome, 46 (1):1-9.
doi: 10.1139/g02-096 URL |
[13] | Chaim A B, Paran I, Grube R C, Jahn M, Peleman R W. 2001. QTL mapping of fruit-related traits in pepper(Capsicum annuum). Theor Appl Genet, 102 (6/7):1016-1028. |
[14] | Che G, Gu R, Zhao J, Liu X, Song X, Zi H, Cheng Z, Shen J, Wang Z, Liu R, Yan L, Weng Y, Zhang X. 2020. Gene regulatory network controlling carpel number variation in cucumber. Development, 147 (7):dev184788. |
[15] |
Cheng Y, Luan F, Wang X, Gao P, Zhu Z, Liu S, Baloch A M, Zhang Y. 2016. Construction of a genetic linkage map of watermelon(Citrullus lanatus)using CAPS and SSR markers and QTL analysis for fruit quality traits. Scientia Horticulturae, 202:25-31.
doi: 10.1016/j.scienta.2016.01.004 URL |
[16] | Chickarmane V S, Gordon S P, Tarr P T, Heisler M G, Meyerowitz E M. 2012. Cytokinin signaling as a positional cue for patterning the apical-basal axis of the growing Arabidopsis shoot meristem. Proceedings of the National Academy of Sciences, 109 (10):4002-4007. |
[17] |
Chunthawodtiporn J, Hill T, Stoffel K, Van Deynze A. 2018. Quantitative trait loci controlling fruit size and other horticultural traits in bell pepper(Capsicum annuum). Plant Genome, 11 (1):160125.
doi: 10.3835/plantgenome2016.12.0125 URL |
[18] | Dai M, Hu Y, Zhao Y, Liu H, Zhou D X. 2007. A WUSCHEL-LIKE HOMEOBOX gene represses a YABBY gene expression required for rice leaf development. Plant Physiology, 44 (1):380-390. |
[19] |
Diaz A, Fergany M, Formisano G, Ziarsolo P, Blanca J, Fei Z, Staub J E, Zalapa J E, Cuevas H E, Dace G, Oliver M, Boissot N, Dogimont C, Pitrat M, Hofstede R, van Koert P, Harel-Beja R, Tzuri G, Portnoy V, Cohen S, Schaffer A, Katzir N, Xu Y, Zhang H, Fukino N, Matsumoto S, Garcia-Mas J, Monforte A J. 2011. A consensus linkage map for molecular markers and quantitative trait loci associated with economically important traits in melon(Cucumis melo L.). BMC Plant Biology, 11 (1):111.
doi: 10.1186/1471-2229-11-111 URL |
[20] |
Díaz A, Zarouri B, Fergany M, Eduardo I, Alvarez J M, Picó B, Monforte A J. 2014. Mapping and introgression of QTL involved in fruit shape transgressive segregation into'Piel de Sapo'Melon(Cucucumis melo L.). PLoS ONE, 9 (8):e104188.
doi: 10.1371/journal.pone.0104188 URL |
[21] | Dong Shao-yun, Miao Han, Zhang Sheng-ping, Liu Miao-miao, Wang Ye, Gu Xing-fang. 2012. Genetic analysis and gene mapping of white fruit skin in cucumber(Cucumis sativus L.). Acta Botanica Boreali-Occidentalia Sinica, 32 (11):2177-2181. (in Chinese) |
董邵云, 苗晗, 张圣平, 刘苗苗, 王烨, 顾兴芳. 2012. 黄瓜白色果皮基因遗传规律及定位研究. 西北植物学报, 32 (11):2177-2181. | |
[22] |
Dou J, Zhao S, Lu X, He N, Zhang L, Ali A, Kuang H, Liu W. 2018. Genetic mapping reveals a candidate gene(ClFS1) for fruit shape in watermelon(Citrullus lanatus L.). Theoretical and Applied Genetics, 131:947-958.
doi: 10.1007/s00122-018-3050-5 URL |
[23] |
Du H, Yang J, Chen B, Zhang X, Zhang J, Yang K, Geng S, Wen C. 2019. Target sequencing reveals genetic diversity,population structure,core-SNP markers,and fruit shape-associated loci in pepper varieties. BMC Plant Biology, 19 (1):578.
doi: 10.1186/s12870-019-2122-2 URL |
[24] | Gao Mei-ling, Liang Xiao-xue, Liu Xiu-jie, Liu Ji-xiu, Gao Yue, Xu Hong-guo, Guo Yu, Zhang Yan-ling. 2020. Mapping gene for fruit shape in watermelon based on extreme individuals genotyping-by-sequencing(GBS). Molecular Plant Breeding, 18 (10):3164-3171. (in Chinese) |
高美玲, 梁晓雪, 刘秀杰, 刘继秀, 高越, 徐洪国, 郭宇, 张艳玲. 2020. 基于极端个体GBS测序初步定位西瓜果形基因. 分子植物育种, 18 (10):3164-3171. | |
[25] |
Gao Z H, Zhang H Y, Cao C X, Han J, Li H, Ren Z H. 2020. QTL mapping for cucumber fruit size and shape with populations from long and round fruited inbred lines. Horticultural Plant Journal, 6 (3):132-144.
doi: 10.1016/j.hpj.2020.04.004 URL |
[26] | Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, González V M, Hénaff E, Câmara F, Cozzuto L, Lowy E, Alioto T, Capella-Gutiérrez S, Blanca J, Cañizares J, Ziarsolo P, Gonzalez-Ibeas D, Rodríguez-Moreno L, Droege M, Du L, Alvarez-Tejado M, Lorente-Galdos B, Melé M, Yang L, Weng Y, Navarro A, Marques-Bonet T, Aranda M A, Nuez F, Picó B, Gabaldón T, Roma G, Guigó R, Casacuberta J M, Arús P, Puigdomènech P. 2012. The genome of melon(Cucumis melo L.). Proceedings of the National Academy of Sciences, 109:11872-11877. |
[27] | Ge Hai-yan, Liu Yang, Chen Huo-ying. 2015. QTL analysis of fruit-associated traits in eggplant. Acta Horticulturae Sinica, 42 (11):2197-2205. (in Chinese) |
葛海燕, 刘扬, 陈火英. 2015. 茄子果实性状相关基因的QTL定位. 园艺学报, 42 (11):2197-2205. | |
[28] |
Grandillo S, Ku H M, Tanksley S D. 1996. Characterization of fs8.1 a major QTL influencing fruit shape in tomato. Molecular Breeding, 2 (3):251-260.
doi: 10.1007/BF00564202 URL |
[29] | Guo S, Xu Y, Zhang H, Gong G, Fei Z. 2010. Latest advances in watermelon genomics. Acta Horticulturae, 871 (871):599-606. |
[30] |
Guo X, Zhang Y, Tu Y, Wang Y, Cheng W, Yang Y. 2018. Overexpression of an EIN3-binding F-box protein2-like gene caused elongated fruit shape and delayed fruit development and ripening in tomato. Plant Science, 272:131-141.
doi: S0168-9452(18)30046-3 pmid: 29807583 |
[31] | Han Hong-qiang. 2014. The cloning and function analysis of fruit shape controlling key genes in eggplant[Ph. D. Dissertation]. Shanghai: Shanghai Jiao Tong University. (in Chinese) |
韩洪强. 2014. 控制茄子果型相关性状关键基因的克隆及功能研究[博士论文]. 上海: 上海交通大学. | |
[32] |
Han K, Jeong H J, Yang H B, Kang S M, Kwon J K, Kim S, Choi D, Kang B C. 2016. An ultra-high-density bin map facilitates high-throughput QTL mapping of horticultural traits in pepper(Capsicum annuum). DNA Research, 23 (2):81-91.
doi: 10.1093/dnares/dsv038 URL |
[33] | Huang Rui-ming, Chen Guo-liang, Xie Xiao-kai, Lu Hai-qiang. 2006. Preliminary study on the genetic effect of the fruit width in eggplant. Journal of Changjiang Vegetables,(9):45-46. (in Chinese) |
黄锐明, 陈国良, 谢晓凯, 卢海强. 2006. 茄子果径遗传效应初探. 长江蔬菜,(9):45-46. | |
[34] |
Ku H M, Grandillo S, Tanksley S D. 2000. fs8.1 a major QTL,sets the pattern of tomato carpel shape well before anthesis. Theoretical and Applied Genetics, 101 (5-6):873-878.
doi: 10.1007/s001220051555 URL |
[35] | Le Su-ju, Wang Wen-yi, Shao Guang-jin, Wang Guo-ping. 2011. Analysis on mixed major gene and polygene inheritance of fruit morphological traits in eggplant. Journal of South China Agricultural University, 32 (3):27-31. (in Chinese) |
乐素菊, 汪文毅, 邵光金, 汪国平. 2011. 茄子果形性状的主基因 + 多基因混合模型遗传分析. 华南农业大学学报, 32 (3):27-31. | |
[36] |
Lee H Y, Ro N Y, Patil A, Lee J H, Kwon J K, Kang B C. 2020. Uncovering candidate genes controlling major fruit-related traits in pepper via genotype-by-sequencing based QTL mapping and genome-wide sssociation study. Frontiers in Plant Science, 11:1100.
doi: 10.3389/fpls.2020.01100 URL |
[37] | Legendre R, Kuzy J, McGregor C. 2020. Markers for selection of three alleles of ClSUN25-26-27a (Cla011257)associated with fruit shape in watermelon. Molecular Breeding,40:19. |
[38] |
Leibfried A, To J P, Busch W, Stehling S, Kehle A, Demar M, Kieber J J, Lohmann J U. 2005. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature, 438 (7071):1172-1175.
doi: 10.1038/nature04270 URL |
[39] |
Levy M, Wang Q, Kaspi R, Parrella M P, Abel S. 2005. Arabidopsis IQD1,a novel calmodulin-binding nuclear protein,stimulates glucosinolate accumulation and plant defense. Plant Journal, 43 (1):79-96.
doi: 10.1111/j.1365-313X.2005.02435.x URL |
[40] | Li H, Qi M, Sun M, Liu Y, Liu Y, Xu T, Li Y, Li T. 2017. Tomato transcription factor SlWUS plays an important role in tomato flower and locule development. Frontiers in Plant Science, 8:457. |
[41] |
Li J, Wang X, Qin T, Zhang Y, Liu X, Sun J, Zhou Y, Zhu L, Zhang Z, Yuan M, Mao T. 2011. MDP25,a novel calcium regulatory protein,mediates hypocotyl cell elongation by destabilizing cortical microtubules in Arabidopsis. Plant Cell, 23 (12):4411-4427.
doi: 10.1105/tpc.111.092684 URL |
[42] | Li Na, Shang Jianli, Li Nannan, Zhou Dan, Kong Shengnan, Wang Jiming, Ma Shuangwu. 2021. Accurate molecular identification for fruit shape in watermelon(Citrullus lanatus). Acta Horticulturae Sinica, 48 (7):1386-1396. (in Chinese) |
李娜, 尚建立, 李楠楠, 周丹, 孔胜楠, 王吉明, 马双武. 2021. 西瓜果实形状的分子精准鉴定. 园艺学报, 48 (7):1386-1396. | |
[43] |
Li S, Pan Y, Wen C, Li Y, Liu X, Zhang X, Behera TK, Xing G, Weng Y. 2016. Integrated analysis in bi-parental and natural populations reveals CsCLAVATA3(CsCLV3)underlying carpel number variations in cucumber. Theoretical and Applied Genetics, 129 (5):1007-1022.
doi: 10.1007/s00122-016-2679-1 URL |
[44] |
Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z, Zhang Z, Lun Y, Li S, Wang X, Huang Z, Li J, Zhang C, Wang T, Zhang Y, Wang A, Zhang Y, Lin K, Li C, Xiong G, Xue Y, Mazzucato A, Causse M, Fei Z, Giovannoni J J, Chetelat R T, Zamir D, Städler T, Li J, Ye Z, Du Y, Huang S. 2014. Genomic analyses provide insights into the history of tomato breeding. Nature Genetics, 46 (11):1220-1226.
doi: 10.1038/ng.3117 pmid: 25305757 |
[45] | Liu J, Van Eck J, Cong B, Tanksley S D. 2002. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proceedings of the National Academy of Sciences, 99 (20):13302-13306. |
[46] |
Liu S, Gao P, Zhu Q, Zhu Z, Liu H, Wang X, Weng Y, Gao M, Luan F. 2020. Resequencing of 297 melon accessions reveals the genomic history of improvement and loci related to fruit traits in melon. Plant Biotechnology Journal, 18 (12):2545-2558.
doi: 10.1111/pbi.13434 URL |
[47] |
Lippman Z, Tanksley S D. 2001. Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics, 158 (1):413-422.
doi: 10.1093/genetics/158.1.413 pmid: 11333249 |
[48] | Liu Xiao-qian. 2017. Association mapping of loci for four fruit traits and analysis of interaction among three QTLs for fruit weight in tomato[Ph. D. Dissertation]. Beijing: China Agricultural University. (in Chinese) |
刘小茜. 2017. 控制番茄4个果实性状位点的关联作图及3个果重位点的互作分析[博士论文]. 北京: 中国农业大学. | |
[49] |
Liu Y, Douglas C J. 2015. A role for OVATE FAMILY PROTEIN1(OFP1)and OFP4 in a BLH6-KNAT 7 multi-protein complex regulating secondary cell wall formation in Arabidopsis thaliana. Plant Signaling and Behavior, 10 (7):e1033126.
doi: 10.1080/15592324.2015.1033126 URL |
[50] | Luan Fei-shi, Jiao Shi-qi, Sheng Yun-yan, Zhu Zi-cheng. 2017. Mapping of QTL for fruit traits in melon. Journal of Northeast Agricultural University, 48 (3):1-9. (in Chinese) |
栾非时, 矫士琦, 盛云燕, 朱子成. 2017. 甜瓜果实相关性状QTL分析. 东北农业大学学报, 48 (3):1-9. | |
[51] |
Marcelis L F M. 1994. Fruit shape in cucumber as influenced by position within the plant,fruit load and temperature. Scientia Horticulturae, 56 (4):299-308.
doi: 10.1016/0304-4238(94)90048-5 URL |
[52] |
Monforte A J, Diaz A, Caño-Delgado A, van der Knaap E. 2014. The genetic basis of fruit morphology in horticultural crops:lessons from tomato and melon. Journal of Experimental Botany, 65 (16):4625-4637.
doi: 10.1093/jxb/eru017 pmid: 24520021 |
[53] |
Montero-Pau J, Blanca J, Esteras C, Martínez-Pérez E M, Gómez P, Monforte A J, Cañizares J, Picó B. 2017. An SNP-based saturated genetic map and QTL analysis of fruit-related traits in zucchini using Genotyping-by-sequencing. BMC Genomics, 18 (1):94.
doi: 10.1186/s12864-016-3439-y pmid: 28100189 |
[54] |
Moriguchi R, Ohata K, Kanahama K, Takahashi H, Nishiyama M, Kanayama Y. 2011. Suppression of telomere-binding protein gene expression represses seed and fruit development in tomato. Journal of Plant Physiology, 168 (6):1927-1933.
doi: 10.1016/j.jplph.2011.05.009 URL |
[55] |
Muños S, Ranc N, Botton E, Bérard A, Rolland S, Duffé P, Carretero Y, Le Paslier MC, Delalande C, Bouzayen M, Brunel D, Causse M. 2011. Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near WUSCHEL. Plant Physiology, 156 (4):2244-2254.
doi: 10.1104/pp.111.173997 URL |
[56] |
Nikolaev S V, Penenko A V, Lavrekha V V, Melsness E D, Kolchanov N A. 2007. A model study of the role of proteins CLV1,CLV2,CLV3,and WUS in regulation of the structure of the shoot apical meristem. Ontogenez, 38 (6):457-462.
pmid: 18179025 |
[57] | Niu H, Liu X, Tong C, Wang H, Li S, Lu L, Pan Y, Zhang X, Weng Y, Li Z. 2018. The WUSCHEL-related homeobox 1 gene of cucumber regulates reproductive organ development. Journal Experimental Botany, 69 (22):5373-5387. |
[58] |
Oren E, Tzuri G, Dafna A, Meir A, Kumar R, Katzir N, Elkind Y, Freilich S, Schaffer A A, Tadmor Y, Burger J, Gur A. 2020. High-density NGS-based map construction and genetic dissection of fruit shape and rind netting in Cucumis melo. Theoretical and Applied Genetics, 133 (6):1927-1945.
doi: 10.1007/s00122-020-03567-3 URL |
[59] |
Pan Y, Liang X, Gao M, Liu H, Meng H, Weng Y, Cheng Z. 2016. Round fruit shape in WI 7239 cucumber is controlled by two interacting quantitative trait loci with one putatively encoding a tomato SUN homolog. Theoretical and Applied Genetics, 130 (3):1-14.
doi: 10.1007/s00122-016-2784-1 URL |
[60] |
Pan Y, Qu S, Bo K, Gao M, Haider K R, Weng Y. 2017. QTL mapping of domestication and diversifying selection related traits in round-fruited semi-wild Xishuangbanna cucumber(Cucumis sativus L. var. xishuangbannanesis). Theoretical and Applied Genetics, 130 (7):1531-1548.
doi: 10.1007/s00122-017-2908-2 URL |
[61] |
Pan Y, Wang Y, McGregor C, Liu S, Luan F, Gao M, Weng Y. 2020a. Genetic architecture of fruit size and shape variation in cucurbits:a comparative perspective. Theoretical and Applied Genetics, 133 (1):1-21.
doi: 10.1007/s00122-019-03481-3 URL |
[62] |
Pan Y, Wen C, Han Y, Wang Y, Li Y, Li S, Cheng X, Weng Y. 2020b. QTL for horticulturally important traits associated with pleiotropic andromonoecy and carpel number loci,and a paracentric inversion in cucumber. Theoretical and Applied Genetics, 133 (7):2271-2290.
doi: 10.1007/s00122-020-03596-y URL |
[63] |
Portis E, Barchi L, Toppino L, Lanteri S, Acciarri N, Felicioni N, Fusari F, Barbierato V, Cericola F, Valè G, Rotino G L. 2014. QTL mapping in eggplant reveals clusters of yield-related loci and orthology with the tomato genome. PLoS ONE, 9 (2):e89499.
doi: 10.1371/journal.pone.0089499 URL |
[64] | Qiao Jun, Chen Yu-hui, Wang Li-ying, Zhang Ying, Lian Yong. 2012. QTL Analysis for fruit shape in eggplant based on genetic linkage map. Acta Horticulturae Sinica, 39 (6):1115-1122. (in Chinese) |
乔军, 陈钰辉, 王利英, 刘富中, 张映, 连勇. 2012. 茄子果形的QTL定位. 园艺学报, 39 (6):1115-1122. | |
[65] | Qiao Jun, Liu Fu-zhong, Lu Yu-hui, Liang Yong. 2011. Study on inheritance of eggplant fruit shape. Acta Horticulturae Sinica, 38 (11):2121-2130. (in Chinese) |
乔军, 刘富中, 陈钰辉, 连勇. 2011. 茄子果形遗传研究. 园艺学报, 38 (11):2121-2130. | |
[66] |
Qin T, Li J, Yuan M, Mao T. 2014. Characterization of the role of calcium in regulating the microtubule-destabilizing activity of MDP25. Plant Signaling and Behavior, 7 (7):708-710.
doi: 10.4161/psb.20336 URL |
[67] |
Rao P G, Behera T K, Gaikwad A B, Munshi A D, Srivastava A, Boopalakrishnan G, Vinod. 2021. Genetic analysis and QTL mapping of yield and fruit traits in bitter gourd(Momordica charantia L.). Scientific Reports, 11 (1):4109.
doi: 10.1038/s41598-021-83548-8 URL |
[68] |
Rodriguez G R, Munos S, Anderson C, Sim S C, Michel A, Causse M, Gardener B B, Francis D, van der Knaap E. 2011. Distribution of SUN, OVATE,LC,and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiology, 156 (1):275-285.
doi: 10.1104/pp.110.167577 URL |
[69] | Rodríguez G R, Kim H J, van der Knaap E. 2013. Mapping of two suppressors of OVATE(sov)loci in tomato. Heredity(Edinb), 111 (3):256-264. |
[70] |
Shinohara H, Matsubayashi Y. 2015. Reevaluation of the CLV3-receptor interaction in the shoot apical meristem:dissection of the CLV3 signaling pathway from a direct ligand-binding point of view. Plant Journal, 82 (2):328-336.
doi: 10.1111/tpj.12817 URL |
[71] |
Sugiyama Y, Wakazaki M, Toyooka K, Fukuda H, Oda Y. 2017. A novel plasma membrane-anchored protein regulates xylem cell-wall deposition through microtubule-dependent lateral inhibition of Rho GTPase domains. Current Biology, 27 (16):2522-2528.
doi: S0960-9822(17)30796-0 pmid: 28803875 |
[72] | Sun Mei-hua. 2020. Gene analysis of fasciated locus regulating the locule number of tomato[Ph. D. Dissertation]. Shenyang: Shenyang Agricultural University. (in Chinese) |
孙美华. 2020. 调控番茄心室数量的fasciated位点基因解析[博士论文]. 沈阳: 沈阳农业大学. | |
[73] |
Sun L, Rodriguez G R, Clevenger J P, Illa-Berenguer E, Lin J, Blakeslee J J, Liu W, Fei Z, Wijeratne A, Meulia T, van der Knaap E. 2015. Candidate gene selection and detailed morphological evaluations of fs8.1,a quantitative trait locus controlling tomato fruit shape. Journal of Experimental Botany, 66 (20):6471-6482.
doi: 10.1093/jxb/erv361 URL |
[74] |
Sun L, Chen J, Xiao K, Yang W C. 2017. Origin of the domesticated horticultural species and molecular bases of fruit shape and size changes during the domestication,taking tomato as an example. Horticultural Plant Journal, 3 (3):125-132.
doi: 10.1016/j.hpj.2017.07.007 URL |
[75] |
Tsaballa A, Pasentsis K, Darzentas N, Tsaftaris A S. 2011. Multiple evidence for the role of an Ovate-like gene in determining fruit shape in pepper. BMC Plant Biology, 11 (1):46.
doi: 10.1186/1471-2229-11-46 URL |
[76] | Wang Chenhui, Luan Feishi, Gao Peng, Liu Shi, Xie Zhiqiang. 2019. Construction of melon genetic linkage map and QTL analysis of fruit related traits in snake melon × wild type melon genetic background. Acta Horticulturae Sinica, 46 (12):2347-2358. (in Chinese) |
王晨晖, 栾非时, 高鹏, 刘识, 解志强. 2019. 菜瓜 × 马泡瓜遗传连锁图谱构建及果实相关性状QTL分析. 园艺学报, 46 (12):2347-2358. | |
[77] |
Wang H, Niu H, Li C, Shen G, Liu X, Weng Y, Wu T, Li Z. 2020. WUSCHEL-related homeobox1(WOX1)regulates vein patterning and leaf size in Cucumis sativus. Horticulture Research, 7 (1):182.
doi: 10.1038/s41438-020-00404-y pmid: 33328463 |
[78] |
Wang L, Li QT, Lei Q, Feng C, Zheng X, Zhou F, Li L, Liu X, Wang Z, Kong J. 2017. Ectopically expressing MdPIP1;3,an aquaporin gene,increased fruit size and enhanced drought tolerance of transgenic tomatoes. BMC Plant Biology, 17 (1):246.
doi: 10.1186/s12870-017-1212-2 pmid: 29258418 |
[79] |
Wang S, Chang Y, Guo J, Chen J G. 2010. Arabidopsis Ovate Family Protein 1 is a transcriptional repressor that suppresses cell elongation. Plant Journal, 50 (5):858-872.
doi: 10.1111/j.1365-313X.2007.03096.x URL |
[80] | Wang Su-su. 2014. The cloning,expression analysis and function study of YABBY gene family transcription factors in tomato[M. D. Dissertation]. Chongqing: Chongqing University. (in Chinese) |
王苏苏. 2014. 番茄YABBY家族转录因子的克隆、表达模式分析及其功能研究[硕士论文]. 重庆: 重庆大学. | |
[81] |
Wang X, Li H, Gao Z, Wang L, Ren Z. 2020. Localization of quantitative trait loci for cucumber fruit shape by a population of chromosome segment substitution lines. Scientific Reports, 10 (1):11030.
doi: 10.1038/s41598-020-68312-8 pmid: 32620915 |
[82] | Wang Zhao-ji, Gao Peng, Luan Fei-shi, Liu Shi. 2013. Construction of watermelon genetic map and fruit shape index QTL analysis. China Vegetables,(14):25-30. (in Chinese) |
王兆吉, 高鹏, 栾非时, 刘识. 2013. 西瓜遗传图谱的构建及果形指数QTL分析. 中国蔬菜,(14):25-30. | |
[83] | Wei Q, Wang J, Wang W, Hu T, Hu H, Bao C. 2020. A high-quality chromosome-level genome assembly reveals genetics for important traits in eggplant. Horticulture Research, 21 (7):153. |
[84] |
Wei Q, Wang Y, Qin X, Zhang Y, Zhang Z, Wang J, Li J, Lou Q, Chen J. 2014. An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragment(SLAF)sequencing. BMC Genomics, 15:1158.
doi: 10.1186/1471-2164-15-1158 URL |
[85] |
Wei Q Z, Fu W Y, Wang Y Z, Qin X D, Wang J, Li J, Lou Q F, Chen J F. 2016. Rapid identification of fruit length loci in cucumber(Cucumis sativus L.)using next-generation sequencing(NGS)-based QTL analysis. Scientific Reports, 6:27496.
doi: 10.1038/srep27496 URL |
[86] | Wendrich J, Yang B J, Mijnhout P, Xue H W, Weijers D. 2018. IQD proteins integrate auxin and calcium signaling to regulate microtubule dynamics during Arabidopsis development. BioRxiv, 2018:275560. |
[87] |
Weng Y, Colle M, Wang Y, Yang L, Rubinstein M, Sherman A, Ophir R, Grumet R. 2015. QTL mapping in multiple populations and development stages reveals dynamic quantitative trait loci for fruit size in cucumbers of different market classes. Theoretical and Applied Genetics, 128 (9):1747-1763.
doi: 10.1007/s00122-015-2544-7 pmid: 26048092 |
[88] |
Wenzel G, Kennard W C, Havey M J. 1995. Quantitative trait analysis of fruit quality in cucumber:QTL detection,confirmation,and comparison with mating-design variation. Theoretical and Applied Genetics, 91 (1):53-61.
doi: 10.1007/BF00220858 pmid: 24169667 |
[89] |
Wu S, Clevenger J P, Sun L, Visa S, Kamiya Y, Jikumaru Y, Blakeslee J, van der Knaap E. 2015. The control of tomato fruit elongation orchestrated by sun,ovate and fs8.1 in a wild relative of tomato. Plant Science, 238:95-104.
doi: 10.1016/j.plantsci.2015.05.019 URL |
[90] |
Wu S, Xiao H, Cabrera A, Meulia T, van der Knaap E. 2011. SUN regulates vegetative and reproductive organ shape by changing cell division patterns. Plant Physiology, 157 (3):1175-1186.
doi: 10.1104/pp.111.181065 URL |
[91] |
Wu S, Zhang B, Keyhaninejad N, Rodríguez G R, Kim H J, Chakrabarti M, Illa-Berenguer E, Taitano N K, Gonzalo M J, Díaz A, Pan Y, Leisner C P, Halterman D, Buell C R, Weng Y, Jansky S H, van Eck H, Willemsen J, Monforte A J, Meulia T, van der Knaap E. 2018. A common genetic mechanism underlies morphological diversity in fruits and other plant organs. Nature Communications, 9 (1):4734.
doi: 10.1038/s41467-018-07216-8 pmid: 30413711 |
[92] |
Xiao H, Jiang N, Schaffner E, Stockinger E J, van der Knaap E. 2008. A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science, 319 (5869):1527-1530.
doi: 10.1126/science.1153040 pmid: 18339939 |
[93] | Xie Li-feng, Li Ye, Li Jing-fu, Li Ning. 2016. Construction of a genetic map and QTL mapping of fruit-related traits in eggplant(Solanum melongena). Chinese Bulletin of Botany, 51 (5):601-608. (in Chinese) |
谢立峰, 李烨, 李景富, 李宁. 2016. 茄子分子遗传图谱的构建及果实性状的QTL定位. 植物学报, 51 (5):601-608.
doi: 10.11983/CBB16003 |
|
[94] |
Xin T, Zhang Z, Li S, Zhang S, Li Q, Zhang Z H, Huang S, Yang X. 2019. Genetic regulation of ethylene dosage for cucumber fruit elongation. Plant Cell, 31 (5):1063-1076.
doi: 10.1105/tpc.18.00957 |
[95] |
Xu C, Liberatore K L, MacAlister C A, Huang Z, Chu Y H, Jiang K, Brooks C, Ogawa-Ohnishi M, Xiong G, Pauly M, Van Eck J, Matsubayashi Y, van der Knaap E, Lippman Z B. 2015. A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nature Genetics, 47 (7):784-792.
doi: 10.1038/ng.3309 pmid: 26005869 |
[96] |
Yadav R K, Perales M, Gruel J, Girke T, Jönsson H, Reddy G V. 2011. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes Development, 25 (19):2025-2030.
doi: 10.1101/gad.17258511 URL |
[97] |
Yalovsky S. 2015. Protein lipid modifications and the regulation of ROP GTPase function. Journal of Experimental Botany, 66 (6):1617-1624.
doi: 10.1093/jxb/erv057 pmid: 25711710 |
[98] |
Yang B, Wendrich J R, De Rybel B, Weijers D, Xue H W. 2020. Rice microtubule-associated protein IQ67-DOMAIN14 regulates grain shape by modulating microtubule cytoskeleton dynamics. Plant Biotechnol Journal, 18 (5):1141-1152.
doi: 10.1111/pbi.13279 URL |
[99] |
Yang L, Liu H, Zhao J, Pan Y, Cheng S, Lietzow C D, Wen C, Zhang X, Weng Y. 2018. LITTLELEAF(LL)encodes a WD40 repeat domain-containing protein associated with organ size variation in cucumber. Plant Journal, 95:834-847.
doi: 10.1111/tpj.13991 URL |
[100] |
Yuan X J, Pan J S, Cai R, Guan Y, Liu L Z, Zhang W W, Li Z, He H L, Zhang C, Si L T. 2008. Genetic mapping and QTL analysis of fruit and flower related traits in cucumber(Cucumis sativus L.)using recombinant inbred lines. Euphytica, 164 (2):473-491.
doi: 10.1007/s10681-008-9722-5 URL |
[101] |
Zhao J, Jiang L, Che G, Pan Y, Li Y, Hou Y, Zhao W, Zhong Y, Ding L, Yan S, Sun C, Liu R, Yan L, Wu T, Li X, Weng Y, Zhang X. 2019. A functional allele of CsFUL1regulates fruit length through repressing CsSUP and inhibiting auxin transport in cucumber. Plant Cell, 31 (6):1289-1307.
doi: 10.1105/tpc.18.00905 URL |
[102] | Zhang Min-hui. 2016. QTL mapping of fruit size in tomato[M. D. Dissertation]. Wuhan: Huazhong Agricultural University. (in Chinese) |
张敏慧. 2016. 番茄果实大小的QTL定位[硕士论文]. 武汉: 华中农业大学. | |
[103] | Zhang T, Ding Z, Liu J, Qiu B, Gao P. 2020. QTL mapping of pericarp and fruit-related traits in melon(Cucumis melo L.)using SNP-derived CAPS markers. Scientia Horticulturae, 265:109243. |
[104] |
Zhang T, Li X, Yang Y, Guo X, Feng Q, Dong X, Chen S. 2019. Genetic analysis and QTL mapping of fruit length and diameter in a cucumber(Cucumber sativus L.)recombinant inbred line(RIL)population. Scientia Horticulturae, 250 (10):214-222.
doi: 10.1016/j.scienta.2019.01.062 URL |
[105] | Zhang Wei-wei, He Huan-le, Yuan Xiao-jun, Yu Ping-gao, Pan Jun-song, Cai Run. 2016. Construction of encryption map and mapping QTLs for fruit-associated traits in cucumber(Cucumis sativus L.). Molecular Plant Breeding, 14 (6):1538-1547. (in Chinese) |
张微微, 何欢乐, 袁晓君, 俞平高, 潘俊松, 蔡润. 2016. 黄瓜加密图谱构建及果实性状QTLs定位. 分子植物育种, 14 (6):1538-1547. | |
[106] |
Zhou S, Hu Z, Li F, Tian S, Zhu Z, Li A, Chen G. 2019. Overexpression of SlOFP20affects floral organ and pollen development. Horticulture Research, 6:125.
doi: 10.1038/s41438-019-0207-6 URL |
[107] |
Zygier S, Chaim A B, Efrati A, Kaluzky G, Borovsky Y, Paran I. 2005. QTLs mapping for fruit size and shape in chromosomes 2 and 4 in pepper and a comparison of the pepper QTL map with that of tomato. Theoretical and Applied Genetics, 111 (3):437-445.
pmid: 15983758 |
[1] | LI Qiong, LI Lili, HOU Juan, LUO Renren, WANG Ruidan, HU Jianbin, HUANG Song. Advances on Mechanism of Cucurbit Crops in Response to Low- temperature Stress [J]. Acta Horticulturae Sinica, 2022, 49(6): 1382-1394. |
[2] | LI Junzhang, QIN Yuan, XIAO Qiang, AN Chang, LIAO Jingyi, ZHENG Ping. Recent Advances in Molecular Biology of Crassulacean Acid Metabolism Plants and the Application Potential of CAM Engineering [J]. Acta Horticulturae Sinica, 2022, 49(12): 2597-2610. |
[3] | YANG Sichao, ZHANG Meng, ZHANG Qinglin, LUO Zhengrong. Advances on Natural Deastringency Characteristics and Molecular Mechanism of Chinese PCNA Persimmon [J]. Acta Horticulturae Sinica, 2022, 49(12): 2659-2668. |
[4] | SU Jiangshuo, JIA Diwen, WANG Siyue, ZHANG Fei, JIANG Jiafu, CHEN Sumei, FANG Weimin, and CHEN Fadi. Retrospection and Prospect of Chrysanthemum Genetic Breeding for Last Six Decades in China [J]. Acta Horticulturae Sinica, 2022, 49(10): 2143-2162. |
[5] | WANG Yun, ZHANG Zhenwu, SUN Xun, ZHANG Shaoling. A State-of-the-art Review on the Interaction Between Plant Autophagy and Pathogens [J]. Acta Horticulturae Sinica, 2022, 49(10): 2205-2222. |
[6] | LI Na, SHANG Jianli, LI Nannan, ZHOU Dan, KONG Shengnan, WANG Jiming, MA Shuangwu. Accurate Molecular Identification for Fruit Shape in Watermelon (Citrullus lanatus) [J]. Acta Horticulturae Sinica, 2021, 48(7): 1386-1396. |
[7] | MAO Pengpeng, ZHENG Yinjian, YANG Qichang, XU Yaliang, WANG Fang, LIAO Qiuhong, and LIU Xiaoying. Molecular Mechanisms of Light Quality on the Regulation of Glucosinolates in Cruciferae Vegetables [J]. Acta Horticulturae Sinica, 2020, 47(9): 1633-1647. |
[8] | LIU Xingwang, ZHAI Xuling, ZHANG Yaqi, YIN Shuai, FENG Zhongxuan, and REN Huazhong, . A Review on Genetic and Molecular Biology of Fruit Morphogenesis in Cucumber [J]. Acta Horticulturae Sinica, 2020, 47(9): 1793-1809. |
[9] | CHEN Zeyu1,WANG Yujing1,XU Qiyue1,HAN Xiaoxia2,HU Qiumei3,YANG Li1,CHEN Wenrong1,LIAO Fanglei1,*,and GUO Weidong1,*. CmsCRC is Involved in Regulated Fingers Stretch in Fingered Citron and Activated Under Lower Temperature [J]. ACTA HORTICULTURAE SINICA, 2019, 46(11): 2143-2154. |
[10] | LEI Jianjun*,ZHU Zhangsheng,SUN Bingmei,CHEN Guoju,CHEN Changming,and CAO Bihao. Progress in Biosynthesis of Capsaicinoids and Its Molecular Mechanism [J]. ACTA HORTICULTURAE SINICA, 2018, 45(9): 1739-1749. |
[11] | CAO Yunlin,XING Mengyun,XU Changjie,and LI Xian*. Biosynthesis of Flavonol and Its Regulation in Plants [J]. ACTA HORTICULTURAE SINICA, 2018, 45(1): 177-192. |
[12] | LI Qing1,2,QIN Yuzhi2,HU Xinxi2,WANG Wanxing1,*,and XIONG Xingyao1,2,*. Advances in the Research on Salt Tolerance of Potato [J]. ACTA HORTICULTURAE SINICA, 2017, 44(12): 2408-2424. |
[13] | WANG Shao-Hui, WANG Xiao-Xuan, HUANG Ze-Jun, GAO Jian-Chang, GUO Yan-Mei, DU Yong-Chen. QTLs Mapping for Tomato Fruit Weight and Fruit Shape in Solanum lycopersicon × S. galapagense Recombinant Inbred Line [J]. ACTA HORTICULTURAE SINICA, 2015, 42(5): 863-871. |
[14] | JIA Xiao-hui1,WANG Wen-hui1,*,LI Shi-qiang2,DU Yan-min1,ZHANG Feng2,TONG Wei1,and WANG Zhi-hua1. The Comparison of the Mineral Elements,Endogenous Hormones in Different Shapes and Positions of‘Korla Xiangli’Pears [J]. ACTA HORTICULTURAE SINICA, 2015, 42(4): 751-758. |
[15] | SHU Jin-Shuai, LIU Yu-Mei, LI Zhan-Sheng, ZHANG Li-Li, FANG Zhi-Yuan, YANG Li-Mei, ZHUANG Mu, ZHANG Yang-Yong, SUN Pei-Tian. Advances and Perspectives in Plant Nectaries Studies [J]. ACTA HORTICULTURAE SINICA, 2014, 41(9): 1846-1860. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd