Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (5): 1162-1172.doi: 10.16420/j.issn.0513-353x.2021-0623
• Reviews • Previous Articles Next Articles
Received:
2021-08-06
Revised:
2021-10-13
Online:
2022-05-25
Published:
2022-05-25
Contact:
FAN Yanping
E-mail:fanyanping@scau.edu.cn
CLC Number:
HE Jingjuan, FAN Yanping. Progress in Composition and Metabolic Regulation of Carotenoids Related to Floral Color[J]. Acta Horticulturae Sinica, 2022, 49(5): 1162-1172.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-0623
Fig. 1 Structure of major carotenoids in ornamental plants A:Lycopene;B:Phytoene;C:α-Carotene;D:β-Carotene;E:Lutein;F:Violaxanthin;G:Zeaxanthin;H:Neoxanthin;I:Astaxanthin;J:Capsanthin.
Fig. 2 Biosynthesis Route and Metabolic Regulation of the carotenoids IPP:Isopenteny diphosphate;DMAPP:Dimethylallyl diphosphate;GGPPS:Geranylgeranyl diphosphate synthase;PSY:Phytoene synthase;PDS:Phytoene desaturase;Z-ISO:15-cis-ζ-carotene isomerase;ZDS:ζ-Carotene desaturase;CRTISO:Carotenoid isomerase;LCYE:Lycopene ε-cyclase;LCYB:Lycopene β-cyclase;BCH:β-hydroxylase;ECH:ɛ-hydroxylase;VDE:violaxanthin de-epoxidase;ZEP:Zeaxanthin epoxidase;NXS:Neoxanthin synthase;CCS:Capsanthin/Capsorubin synthase.
[1] |
Al-Babili S, Lintig J V, Haubruck H, Beyer P. 1996. A novel,soluble form of phytoene desaturase from Narcissus pseudonarcissus chromoplasts is Hsp70-complexed and competent for flavinylation,membrane association and enzymatic activation. The Plant Journal, 9 (5):601-612.
doi: 10.1046/j.1365-313X.1996.9050601.x URL |
[2] |
Andrew P J, Xue G, Jonathan P R. 2019. A common phytoene synthase mutation underlies white petal varieties of the California poppy. Scientific Reports, 9 (1):11615.
doi: 10.1038/s41598-019-48122-3 URL |
[3] |
Auldridge M E, McCarty D R, Klee H J. 2006. Plant carotenoid cleavage oxygenases and their apocarotenoid products. Current Opinion in Plant Biology, 9 (3):315-321.
pmid: 16616608 |
[4] |
Berman J, Sheng Y, Gómez Gómez L, Veiga T, Ni X, Farré G, Capell T, Guitián J, Guitián P, Sandmann G, Christou P, Zhu C. 2016. Red anthocyanins and yellow carotenoids form the color of orange-flower gentian(Gentiana lutea L. var. aurantiaca). PLoS ONE, 11 (9):e0162410.
doi: 10.1371/journal.pone.0162410 URL |
[5] |
Bréhélin C, Kessler F, van Wijk K J. 2007. Plastoglobules:versatile lipoprotein particles in plastids. Trends Plant Science, 12 (6):260-266.
doi: 10.1016/j.tplants.2007.04.003 URL |
[6] |
Campisi L, Fambrini M, Michelotti V, Salvini M, Giuntini D, Pugliesi C. 2006. Phytoene accumulation in sunflower decreases the transcript levels of the phytoene synthase gene. Plant Growth Regulation, 48 (1):79-87.
doi: 10.1007/s10725-005-4831-9 URL |
[7] | Cao J J, Liang Z S. 2008. Preliminary analysis on flower color inheritance and relations between flower color and pigments in Primula vulgaris. Plant Research, 28 (4):426-432. |
[8] |
Cazzonelli C I, Pogson B J. 2010. Source to sink:regulation of carotenoid biosynthesis in plants. Trends in Plant Science, 15 (5):266-274.
doi: 10.1016/j.tplants.2010.02.003 URL |
[9] | Chen Dao-zong, Liu Yi, Fu Wen-qin, Ge Xian-hong, Li Zzai-yun. 2019. Progress on genetics and breeding of rapeseed(Brassica napus L.)with colored flowers. Chinese Journal of Oil Crop Sciences, 41 (3):309-316. |
陈道宗, 刘镒, 付文芹, 葛贤宏, 李再云. 2019. 彩花油菜的创建及遗传育种进展. 中国油料作物学报, 41(3):309-316. | |
[10] |
Chiou C Y, Pan H A, Chuang Y N, Yeh K W. 2010. Differential expression of carotenoid-related genes determines diversified carotenoid coloration in floral tissues of Oncidium cultivars. Planta, 232 (4):937-948.
doi: 10.1007/s00425-010-1222-x URL |
[11] |
Cunningham F X J, Gantt E. 2005. A study in scarlet:enzymes of ketocarotenoid biosynthesis in the flowers of Adonis aestivalis. The Plant Journal, 41:478-492.
doi: 10.1111/j.1365-313X.2004.02309.x URL |
[12] |
Cunningham F X J, Gantt E. 2011. Elucidation of the pathway to astaxanthin in the flowers of Adonis aestivalis. Plant Cell, 23:3055-3069.
doi: 10.1105/tpc.111.086827 URL |
[13] | Cunningham F X J, Gantt E. 1998. Genes and enzymes of carotenoid biosynthesis in plants. Annual Review of Plant Biology, 49 (1):557-583. |
[14] |
Deli L, Molnár P, Matus Z, Tóth G, Steck A, Pfander H. 1998. Isolation and characterization of 3,5,6-trihydroxy-carotenoids from petals of Lilium tigrinum. Chromatographia, 48:27-31.
doi: 10.1007/BF02467511 URL |
[15] |
Eggersdorfer M, Wyss A. 2018. Carotenoids in human nutrition and health. Archives of Biochemistry and Biophysics, 652:18-26.
doi: S0003-9861(18)30165-6 pmid: 29885291 |
[16] |
Eisenreich W, Rohdich F, Bacher A. 2001. Deoxyxylulose phosphate pathway to terpenoids. Trends Plant Science, 6:78-84.
doi: 10.1016/S1360-1385(00)01812-4 URL |
[17] |
Fan R H, Lin B, Fang N Y, Ye X X, Huang M L, Zhong H Q. 2020. Transcriptome-sequencing analyses reveal flower color formation in Strelitzia reginae. Biologia Plantarum, 64:717-724.
doi: 10.32615/bp.2020.102 URL |
[18] | Fang Qiang. 2020. Cloning and functional characterization of carotenoid cleavage dioxygenases from Freesia hybrida[Ph. D. Dissertation]. Changchun: Northeast Normal University. (in Chinese) |
房强. 2020. 香雪兰类胡萝卜素裂解双加氧酶(FhCCDs)基因克隆与功能鉴定[博士论文]. 长春: 东北师范大学. | |
[19] |
Frank H A, Brudvig G W. 2004. Redox functions of carotenoids in photosynthesis. Biochemistry, 43:8607-8615.
doi: 10.1021/bi0492096 URL |
[20] |
Grotewold E. 2006. the genetics and biochemistry of floral pigments. Annual Review of Plant Biology, 57:761-780.
pmid: 16669781 |
[21] | Grünewald K, Hirschberg J, Hagen C. 2001. Ketocarotenoid biosynthesis outside of plastids in the unicellular green alga Haematococcus pluvialis. Biological Chemistry, 276:6023-6029. |
[22] |
Han Y, Wu M, Cao L, Yuan W, Dong M, Wang X, Chen W, Shang F. 2016. Characterization of OfWRKY3,a transcription factor that positively regulates the carotenoid cleavage dioxygenase gene OfCCD4 in Osmanthus fragrans. Plant Molecular Biology, 91 (45):485-496.
doi: 10.1007/s11103-016-0483-6 URL |
[23] |
Han Y J, Liu L X, Dong M F, Shang F D. 2013. cDNA cloning of the phytoene synthase(PSY)and expression analysis of PSY and carotenoid cleavage dioxygenase genes in Osmanthus fragrans. Biologia, 68:258-263.
doi: 10.2478/s11756-013-0002-z URL |
[24] | Han Y J, Wang X H, Chen W C, Dong M F, Yuan W G, Liu X, Shang F D. 2014. Differential expression of carotenoid-related genes determines diversified carotenoid coloration in flower petal of Osmanthus fragrans. Tree Genetics & Genomes, 10 (2):329-338. |
[25] |
Hirschberg J. 2001. Carotenoid biosynthesis in flowering plants. Current Opinionin Plant Biology, 4 (3):210-218.
doi: 10.1016/S1369-5266(00)00163-1 URL |
[26] | Huang Xin-lei, Wang Yan, Zhang Hui. 2019. Analysis of carotenoids compounds and their biosynthesis pathways in flowers of three Dendrobium species. Forest Research, 32 (5):107-113. (in Chinese) |
黄昕蕾, 王雁, 张辉. 2019. 3种石斛属植物类胡萝卜素成分及代谢途径分析. 林业科学研究, 32 (5):107-113. | |
[27] | Huanga K L, Miyajima I, Okubo H, Shen T M, Huang T S. 2001. Flower colours and pigments in hybrid tuberose(Polianthes). Scientia Horticulturae-Amsterdam, 88:235-241. |
[28] |
Hunter W N. 2007. The non-mevalonate pathway of isoprenoid precursor biosynthesis. Journal of Biological Chemistry, 282:21573-21577.
doi: 10.1074/jbc.R700005200 URL |
[29] |
Iijima L, Kishimoto S, Ohmiya A, Yagi M, Okamoto E, Miyahara T, Tsujimoto T, Ozeki Y, Uchiyama N, Hakamatsuka T, Kouno T, Cano E A, Shimizu M, Nishihara M. 2020. Esterified carotenoids are synthesized in petals of carnation(Dianthus caryophyllus)and accumulate in differentiated chromoplasts. Scientific Reports, 10 (1):15256.
doi: 10.1038/s41598-020-72078-4 pmid: 32938985 |
[30] |
Jeknić Z, Jeknić S, Jevremović S, Subotić A, Chen T H H. 2014. Alteration of flower color in Iris germanica L.‘Fire Bride’through ectopic expression of phytoene synthase gene(crtB)from Pantoea agglomerans. Plant Cell Reports, 33:1307-1321.
doi: 10.1007/s00299-014-1617-4 pmid: 24801678 |
[31] |
Jeknić Z, Morré J T, Jeknić S, Jevremović S, Subotić A, Chen T H. 2012. Cloning and functional characterization of a gene for capsanthin-capsorubin synthase from tiger lily(Lilium lancifolium Thunb. ‘Splendens’). Plant Cell Physiology, 53 (11):1899-1912.
doi: 10.1093/pcp/pcs128 URL |
[32] |
Jia L, Wang J, Wang R, Duan M, Qiao C, Chen X, Ma G, Zhou X, Zhu M, Jing F, Zhang S, Qu C, Li J. 2021. Comparative transcriptomic and metabolomic analyses of carotenoid biosynthesis reveal the basis of white petal color in Brassica napus. Planta, 253 (1):1-14.
doi: 10.1007/s00425-020-03501-3 URL |
[33] | Kishimoto S, Ohmiya A. 2006. Regulation of carotenoid biosynthesis in petals and leaves of chrysanthemum(Chrysanthemum morifolium Ramat.). Physiology Plant, 128:437-447. |
[34] |
Kishimoto S, Maoka T, Sumitomo K, Ohmiya A. 2005. Analysis of carotenoid composition in petals of calendula(Calendula officinalis L.). Bioscience,Biotechnology and Biochemistry, 69:2122-2128.
doi: 10.1271/bbb.69.2122 URL |
[35] | Kishimoto S, Oda-Yamamizo C, Ohmiya A. 2018. Regulation of carotenoid pigmentation in corollas of petunia. Plant Molecular Biology, 36:632-642. |
[36] | Kishimoto S, Sumitomo K, Yagi M, Nakayama M, Ohmiya A. 2007. Three routes to orange petal color via carotenoid components in 9 compositae species. The Japanese Society for Horticultural Science, 76:250-257. |
[37] |
Kishimoto S, Maoka T, Nakayama M, Ohmiya A. 2004. Carotenoid composition in petals of chrysanthemum(Dendranthema grandiflorum Ramat. Kitamura). Phytochemistry, 65:2781-2787.
pmid: 15474564 |
[38] |
Li X, Tang D Q, Du H, Shi Y M. 2018. Transcriptome sequencing and biochemical analysis of perianths and coronas reveal flower color formation in Narcissus pseudonarcissus. International Journal of Molecular Sciences, 19 (12):4006.
doi: 10.3390/ijms19124006 URL |
[39] |
Liu G, Thornburg R W. 2012. Knockdown of MYB 305 disrupts nectary starch metabolism and floral nectar production. The Plant Journal, 70 (3):377-388.
doi: 10.1111/j.1365-313X.2011.04875.x URL |
[40] |
Liu H, Kishimoto S, Yamamizo C, Fukuta N, Ohmiya A. 2013. Carotenoid accumulations and carotenogenic gene expressions in the petals of Eustoma grandiflorum. Plant Breeding, 132 (4):417-422.
doi: 10.1111/pbr.12043 URL |
[41] |
Liu Y C, Yeh C W, Chung J D, Tsai C Y, Chiou C Y, Yeh K W. 2019. Petal-specific RNAi-mediated silencing of the phytoene synthase gene reduces xanthophyll levels to generate new Oncidium orchid varieties with white-colour blooms. Plant Biotechnology Journal, 17 (11):2035-2037.
doi: 10.1111/pbi.13179 URL |
[42] | Liu Y J, Ye S H, Yuan G G, Ma X W, Heng S P, Yi B, Ma C Z, Shen J X, Tu J X, Fu T D, Wen J. 2020. Gene silencing of BnaA09.ZEP and BnaC09.ZEP confers orange color in Brassica napus flowers. The Plant Journal, 104 (4):923-949. |
[43] |
Lotan T, Hirschberg J. 1995. Cloning and expression in Escherichia coli of the gene encoding β-C-4 oxygenase,that converts β-carotene to the ketocarotenoid canthaxanthin in Haematococcus pluvialis. Febs Letters, 364:125-128.
pmid: 7750556 |
[44] | Lu Chen-fei, Huang He, Pan Zi-ang, Dai Si-lan. 2017. Expression pattern of carotenoid metabolism-related gene in chrysanthemum(Chrysanthemum × morifolium Ramat) //Advances in Ornamental Horticulture of China. Beijing: China Forestry Publishing House:156-163. (in Chinese) |
陆晨飞, 黄河, 潘子昂, 戴思兰. 2017. 部分中国传统大菊品种中类胡萝卜素呈色机制的初步分析//中国观赏园艺研究进展. 北京: 林业出版社:156-163. | |
[45] |
Mann V, Harker M, Pecker I, Hirschberg J. 2000. Metabolic engineering of astaxanthin production in tobacco flowers. Nature Biotechnology, 18:888-892.
pmid: 10932161 |
[46] |
Maoka T. 2020. Carotenoids as natural functional pigments. Journal of Natural Medicines, 74 (1):1-16.
doi: 10.1007/s11418-019-01364-x URL |
[47] | Matsui S. 1994. Carotenoids in cattleya flowers(Orchidaceae). Lindleyana, 9 (1):33-34. |
[48] |
Meng Y, Wang Z, Wang Y, Wang C, Zhu B, Liu H, Ji W, Wen J, Chu C, Tadege M, Niu L, Lin H. 2019. The MYB activator WHITE PETAL 1 associates with MtTT8 and MtWD40-1 to regulate carotenoid-derived flower Pigmentation in Medicago truncatula. Plant Cell, 31 (11):2751-2767.
doi: 10.1105/tpc.19.00480 URL |
[49] |
Mizuno T, Uehara A, Mizuta D, Yabuya T, Iwashina T. 2015. Contribution of anthocyanin-flavone copigmentation to grayed violet flower color of Dutch iris cultivar‘Tiger’s Eye’under the presence of carotenoids. Scientia Horticulturae, 186:201-206.
doi: 10.1016/j.scienta.2015.01.037 URL |
[50] |
Moehs C P, Tian L, Osteryoung K W, DellaPenna D. 2001. Analysis of carotenoid biosynthetic gene expression during marigold petal development. Plant Molecular Biology, 45:281-293.
pmid: 11292074 |
[51] |
Nambara E, Marion-Poll A. 2005. Abscisic acid biosynthesis and catabolism. Annual Review of Plant Biology, 56:165-185.
pmid: 15862093 |
[52] |
Nguyen T L H, Masuda J, Miyajima I, Thien N Q, Mojtahedi N, Hiramatsu M, Kim J H, Okubo H. 2012. Involvement of carotenoid cleavage dioxygenase 4 gene in tepal color change in Lilium brownii var. colchesteri. Journal of The Japanese Society For Horticultural Science, 81:366-373.
doi: 10.2503/jjshs1.81.366 URL |
[53] |
Nielsen K M, Lewis D H, Morgan E R. 2013. Characterization of carotenoid pigments and their biosynthesis in two yellow flowered lines of Sandersonia aurantiaca(Hook). Euphytica, 130 (1):25-34.
doi: 10.1023/A:1022328828688 URL |
[54] |
Nisar N, Lu S, Khin N C, Pgoson B J. 2015. Carotenoid metabolism in plants. Molecular Plant, 8 (1):68-82.
doi: 10.1016/j.molp.2014.12.007 URL |
[55] |
Ohmiya A, Tanase K, Hirashima M, Yamamizo C, Yagi M. 2013. Analysis of carotenogenic gene expression in petals and leaves of carnation(Dianthus caryophyllus L.). Plant Breeding, 132 (4):423-429.
doi: 10.1111/pbr.12061 URL |
[56] |
Ohmiya A, Kishimoto S, Aida R, Yoshioka S, Sumitomo K. 2006. Carotenoid cleavage dioxygenase(CmCCD4a)contributes to white color formation in Chrysanthemum petals. Plant Physiology, 142:1193-1201.
pmid: 16980560 |
[57] |
Ohmiya A, Sumitomo K, Aida R. 2009. “Yellow Jimba”:suppression of carotenoid cleavage dioxygenase(CmCCD4a)expression turns white chrysanthemum petals yellow. Journal of the Japanese Society for Horticultural Science, 78:450-455.
doi: 10.2503/jjshs1.78.450 URL |
[58] |
Phadungsawat B, Watanabe K, Mizuno S, Kanekatsu M, Suzuki S. 2020. Expression of CCD4 gene involved in carotenoid degradation in yellow-flowered Petunia × hybrida. Scientia Horticulturae, 261:108916.
doi: 10.1016/j.scienta.2019.108916 URL |
[59] |
Park C H, Chae S C, Park S Y, Kim J K, Kim Y J, Chung S O, Arasu M V, Al-Dhabi N A, Park S U. 2015. Anthocyanin and carotenoid contents in different cultivars of chrysanthemum(Dendranthema grandiflorum)flower. Molecules, 20 (6):11090-11102.
doi: 10.3390/molecules200611090 URL |
[60] |
Rosas-saavedra C, Stange C. 2016. Biosynthesis of carotenoids in plants:enzymes and color. Sub-cellular Biochemistry, 79:35-69.
doi: 10.1007/978-3-319-39126-7_2 pmid: 27485218 |
[61] |
Sagawa J M, Stanley L E, LaFountain A M, Frank H A, Liu C, Yuan Y W. 2016. An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers. New Phytologist, 209 (3):1049-1057.
doi: 10.1111/nph.13647 URL |
[62] |
Sathasivam R, Radhakrishnan R, Kim J K, Park S U. 2020. An update on biosynthesis and regulation of carotenoids in plants. South African Journal of Botany, 140:290-302.
doi: 10.1016/j.sajb.2020.05.015 URL |
[63] |
Shan Lu, Li Li. 2008. Carotenoid metabolism:biosynthesis,regulation,and beyond. Journal of Integrative Plant Biology, 50 (7):778-785.
doi: 10.1111/j.1744-7909.2008.00708.x |
[64] |
Stanley L, Yuan Y W. 2019. Transcriptional regulation of carotenoid biosynthesis in plants:so many regulators,so little consensus. Frontiers in Plant Science, 10:1017.
doi: 10.3389/fpls.2019.01017 pmid: 31447877 |
[65] | Sun T, Yuan H, Cao H, Yazdani M, Tadmor Y, Li L. 2018. Carotenoid metabolism in plants:the role of plastids. Molecules Plant, 11 (1):58-74. |
[66] | Sun Yue. 2020. The material basis of the formation of different color lines in Hedychium and the mining and polymorphism analysis of relative genes[M. D. Dissertation]. Guangzhou: South China Agricultural University. (in Chinese) |
孙悦. 2020. 姜花不同色系形成的物质基础及差异基因的挖掘和多态性分析[硕士论文]. 广州: 华南农业大学. | |
[67] |
Suzuki S, Nishihara M, Nakatsuka T, Misawa N, Ogiwara I, Yamamura S. 2007. Flower color alteration in Lotus japonicus by modification of the carotenoid biosynthetic pathway. Plant Cell Reports, 26 (7):951-959.
pmid: 17265153 |
[68] |
Tanaka Y, Ohmiya A. 2008. Seeing is believing:engineering anthocyanin and carotenoid biosynthetic pathways. Current Opinion in Biotechnology, 19 (2):190-197.
doi: 10.1016/j.copbio.2008.02.015 URL |
[69] |
Tanaka Y, Sasaki N, Ohmiya A. 2008. Biosynthesis of plant pigments:anthocyanins,betalains and carotenoids. The Plant Journal, 54 (4):733-749.
doi: 10.1111/j.1365-313X.2008.03447.x URL |
[70] |
Toledo-Ortiz G, Johansson H, Lee K P, Bou-Torrent J, Stewart K, Steel G, Rodríguez-Concepción M, Halliday K J. 2014. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. PLoS Genetics, 10 (6):e1004416.
doi: 10.1371/journal.pgen.1004416 URL |
[71] |
Wan H, Yu C, Han Y, Guo X, Ahmad S, Tang A, Wang J, Cheng T, Pan H, Zhang Q. 2018. Flavonols and carotenoids in yellow petals of rose cultivar(Rosa‘Sun City’):a possible rich source of bioactive compounds. Journal of Agricultural and Food Chemistry, 66 (16):4171-4181.
doi: 10.1021/acs.jafc.8b01509 URL |
[72] | Wang Huan, Kong Ying, Dou Xiao-ying, Lang Li-xin, Bai Jin-rong. 2021. Analysis of flower color formationin different types of bicolor lilies. Northwestern Journal of Botany, 41 (4):606-614. (in Chinese) |
王欢, 孔滢, 窦晓莹, 郎利新, 白锦荣. 2021. 不同类型双色百合的花色形成分析. 西北植物学报, 41 (4):606-614. | |
[73] | Wang H M, To K Y, Lai H M, Jeng S T. 2016. Modification of flower colour by suppressing β-ring carotene hydroxylase genes in Oncidium. Plant Biology(Stuttg), 18 (2):220-229. |
[74] |
Wang X, Yamagishi M. 2019. Mechanisms suppressing carotenoid accumulation in flowers differ depending on the hybrid groups of lilies(Lilium spp.). Scientia Horticulturae, 243:159-168.
doi: 10.1016/j.scienta.2018.08.025 |
[75] |
Wang Y, Zhang C, Dong B, Fu J, Hu S, Zhao H. 2018. Carotenoid accumulation and its contribution to flower coloration of Osmanthus fragrans. Front Plant Science, 9:1499.
doi: 10.3389/fpls.2018.01499 URL |
[76] |
Watanabe K, Oda-Yamamizo C, Sage-Ono K, Ohmiya A, Ono M. 2018. Alteration of flower colour in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4. Transgenic Research, 27 (1):25-38.
doi: 10.1007/s11248-017-0051-0 pmid: 29247330 |
[77] | Wei Z, Arazi T, Hod N, Zohar M, Isaacson T, Doron-Faigenboim A, Reznik N, Yedidia I. 2020. Transcriptome profiling of Ornithogalum dubium leaves and flowers toidentify key carotenoid genes for CRISPR gene editing. Plants(Basel), 9 (4):540. |
[78] |
Welsch R, Maass D, Voegel T, DellaPenna D, Beyer P. 2007. Transcription factor RAP2.2 and its interacting partner SINAT2:stable elements in the carotenogenesis of Arabidopsis leaves. Plant Physiology, 145:1073-1085.
pmid: 17873090 |
[79] |
Xia Y, Chen W, Xiang W, Wang D, Xue B, Liu X, Xing L, Wu D, Wang S, Guo Q, Liang G. 2021. Integrated metabolic profiling and transcriptome analysis of pigment accumulation in Lonicera japonica flower petals during colour-transition. BMC Plant Biology, 21 (1):98.
doi: 10.1186/s12870-021-02877-y URL |
[80] |
Yamagishi M, Kishimoto S, Nakayama M. 2010. Carotenoid composition and changes in expression of carotenoid biosynthetic genes in tepals of Asiatic hybrid lily. Plant Breeding, 129:100-107.
doi: 10.1111/j.1439-0523.2009.01656.x URL |
[81] | Yamamizo C, Hirashima M, Kishimoto S, Ohmiya A. 2011. Carotenoid composition in the yellow and pale green petals of Primula species. Flower Research Institute Research Report, 11:67-72. |
[82] |
Yang Y X, Wang J J, Ma Z H,Sun, G S, Zhang C W. 2014. De novo sequencing and comparative transcriptome analysis of white petals and red labella in Phalaenopsis for discovery of genes related to flower color and floral differentation. Acta Societatis Botanicorum Poloniae, 83 (3):191-199.
doi: 10.5586/asbp.2014.023 URL |
[83] |
Zhang B, Liu C, Wang Y, Yao X, Wang F, Wu J, King G J, Liu K. 2015. Disruption of a carotenoid cleavage dioxygenase 4 gene converts flower colour from white to yellow in Brassica species. New Phytologist, 206 (4):1513-1526.
doi: 10.1111/nph.13335 pmid: 25690717 |
[84] |
Zhang H L, Zhang S Y, Zhang H, Chen X, Liang F, Qin H L, Zhang Y, Cong R C, Xin H B, Zhang Z. 2020. Carotenoid metabolite and transcriptome dynamics underlying flower color in marigold(Tagetes erecta L.). Scientific Reports, 10 (1):16835.
doi: 10.1038/s41598-020-73859-7 URL |
[85] | Zhong Xin-ke. 2020. Study on the mechanisms of gibberellin and MYB regulating carotenoid metabolism in petals of Gerbera jamesonii[M. D. Dissertation]. Guangzhou: South China Agricultural University. (in Chinese) |
钟心珂. 2020. 赤霉素和MYB调控非洲菊花瓣类胡萝卜素代谢机制的研究[硕士论文]. 广州: 华南农业大学. | |
[86] |
Zhou X, Li J, Zhu Y, Ni S, Chen J, Feng X, Zhang Y, Li S, Zhu H, Wen Y. 2017. De novo assembly of the Camellia nitidissima transcriptome reveals key genes of flower pigment biosynthesis. Front Plant Science, 8:1545.
doi: 10.3389/fpls.2017.01545 URL |
[87] |
Zhu F, Luo T, Liu C, Wang Y, Yang H, Yang W, Zheng L, Xiao X, Zhang M, Xu R. 2017a. An R2R3-MYB transcription factor represses the transformation of α- and β-branch carotenoids by negatively regulating expression of CrBCH2 and CrNCED5 in flavedo of Citrus reticulata. New Phytologist, 216 (1):178-192.
doi: 10.1111/nph.14684 URL |
[88] |
Zhu Z, Chen G, Guo X, Yin W, Yu X, Hu J, Hu Z. 2017b. Overexpression of SlPRE2,an atypical bHLH transcription factor,affects plant morphology and fruit pigment accumulation in tomato. Scientific Reports, 7 (1):5786.
doi: 10.1038/s41598-017-04092-y URL |
[1] | YE Zimao, SHEN Wanxia, LIU Mengyu, WANG Tong, ZHANG Xiaonan, YU Xin, LIU Xiaofeng, and ZHAO Xiaochun, . Effect of R2R3-MYB Transcription Factor CitMYB21 on Flavonoids Biosynthesis in Citrus [J]. Acta Horticulturae Sinica, 2023, 50(2): 250-264. |
[2] | ZHENG Qingbo, BAO Zeyang, LAN Qingqing, ZHOU Yuwen, ZHOU Yufei, ZHENG Caixia, and LI Xu, . Advances in Studies on Adventitious Root Formation by Juvenile- and Auxin-determined [J]. Acta Horticulturae Sinica, 2023, 50(2): 441-450. |
[3] | SHAO Fengqing, LUO Xiurong, WANG Qi, ZHANG Xianzhi, WANG Wencai. Advances in Research of DNA Methylation Regulation During Fruit Ripening [J]. Acta Horticulturae Sinica, 2023, 50(1): 197-208. |
[4] | GE Shibei, ZHANG Xuening, HAN Wenyan, LI Qingyun, LI Xin. Research Progress on Plant Flavonoids Biosynthesis and Their Anti-stress Mechanism [J]. Acta Horticulturae Sinica, 2023, 50(1): 209-224. |
[5] | WANG Xiaobin, ZHANG Dong, SHI Xiaohua, LI Danqing, ZHANG Runlong, SHAO Lingmei, XU Tong, XIA Yiping, and ZHANG Jiaping, . A New Paeonia lactiflora Cultivar‘Purple Heart’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 115-116. |
[6] | XUE Weiwen, ZHOU Xianfang, ZHANG Zhaoqi, FANG Fang. Advances in Lignin Accumulation and Its Regulation on the Quality of Postharvest Fruit and Vegetables [J]. Acta Horticulturae Sinica, 2022, 49(9): 2023-2036. |
[7] | ZHANG Lugang, LU Qianqian, HE Qiong, XUE Yihua, MA Xiaomin, MA Shuai, NIE Shanshan, YANG Wenjing. Creation of Novel Germplasm of Purple-orange Heading Chinese Cabbage [J]. Acta Horticulturae Sinica, 2022, 49(7): 1582-1588. |
[8] | LU Tao, YU Hongjun, LI Qiang, JIANG Weijie. Effects of Leaf and Fruit Quantity Regulation on Growth,Fruit Quality and Yield of Tomato [J]. Acta Horticulturae Sinica, 2022, 49(6): 1261-1274. |
[9] | WANG Yan, SUN Zheng, FENG Shan, YUAN Xinyi, ZHONG Linlin, ZENG Yunliu, FU Xiaopeng, CHENG Yunjiang, Bao Manzhu, ZHANG Fan. The Negative Regulation of DcERF-1 on Senescence of Cut Carnation [J]. Acta Horticulturae Sinica, 2022, 49(6): 1313-1326. |
[10] | LIU Shangjia, L& Yao, CAO Bili, CHEN Zijing, GAO Song, XU Kun. Effects of High Temperature and Waterlogging Stress on Photosynthesis and Nitrogen Metabolism of Ginger Leaves [J]. Acta Horticulturae Sinica, 2022, 49(5): 1073-1080. |
[11] | XIANG Miaolian, WU Fan, LI Shucheng, MA Qiaoli, WANG Yinbao, XIAO Liuhua, CHEN Jinyin, CHEN Ming. Exogenous Melatonin Regulates Reactive Oxygen Metabolism to Induce Resistance of Postharvest Pear Fruit to Black Spot [J]. Acta Horticulturae Sinica, 2022, 49(5): 1102-1110. |
[12] | ZHOU Lin, ZOU Hongzhu, HAN Lulu, JIA Yinghua, WANG Yan. Research Progress on the Role of Glycosyltransferases in Color Formation of Petals [J]. Acta Horticulturae Sinica, 2022, 49(3): 687-700. |
[13] | WU Kongjie, HU Chengxiao, TAN Qiling, SUN Xuecheng, ZHAO Xiaohu, WU Songwei. Research Advanced on Character of Sugar Accumulation and Mechanism of Sucrose Transport in Citrus Fruit [J]. Acta Horticulturae Sinica, 2022, 49(12): 2543-2558. |
[14] | LU Chenfei, GAO Yuexia, HUANG He, DAI Silan. Carotenoid Metabolism and Regulation in Plants [J]. Acta Horticulturae Sinica, 2022, 49(12): 2559-2578. |
[15] | ZHAO Yong, ZHU Hongju, YANG Dongdong, GONG Chengsheng, LIU Wenge. Research Progress of Citric Acid Metabolism in the Fruit [J]. Acta Horticulturae Sinica, 2022, 49(12): 2579-2596. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd