园艺学报 ›› 2025, Vol. 52 ›› Issue (8): 1987-2020.doi: 10.16420/j.issn.0513-353x.2024-0969
谭筱玉1, 牛军鹏2,3, 王全智1, 张丽2, 朱丽娟2, 王国栋3, 郑贺云4, 郁志芳2, 段玉权5, 姜丽2, 孙秀秀6, 杨瑛7, 罗伟奇6, 李雪晖2, 管乐2, 赵艳岭1, 李国晓1, 殷从飞1, 葛成1, 马敏2, 贾璐婷2, 张旭2, 赵垚垚5,*(), 耿新丽4,*(
), 王利斌2,8,*(
), 张绍铃2,*(
)
收稿日期:
2025-06-13
修回日期:
2025-07-15
出版日期:
2025-08-25
发布日期:
2025-08-19
通讯作者:
基金资助:
TAN Xiaoyu1, NIU Junpeng2,3, WANG Quanzhi1, ZHANG Li2, ZHU Lijuan2, WANG Guodong3, ZHENG Heyun4, YU Zhifang2, DUAN Yuquan5, JIANG Li2, SUN Xiuxiu6, YANG Ying7, LUO Weiqi6, LI Xuehui2, GUAN Le2, ZHAO Yanling1, LI Guoxiao1, YIN Congfei1, GE Cheng1, MA Min2, JIA Luting2, ZHANG Xu2, ZHAO Yaoyao5,*(), GENG Xinli4,*(
), WANG Libin2,8,*(
), and ZHANG Shaoling2,*(
)
Received:
2025-06-13
Revised:
2025-07-15
Published:
2025-08-25
Online:
2025-08-19
摘要:
园艺作物在0 ~ 15 ℃低温下贮藏会触发一系列复杂的生理与生化反应,破坏细胞膜的完整性、流动性和功能(半透性),导致冷害的发生。为了应对低温胁迫,植物会启动(非)CBF依赖性信号转导通路;其中,CE1-CBF-COR转录级联反应是CBF依赖性信号转导通路的关键环节。此外,一些内源激素如茉莉酸(JA)、乙烯(ETH)和脱落酸(ABA)等也迅速积累,参与植物对低温的应答。JA及其衍生物统称JAs,它们以α-亚麻酸或十六碳三烯酸为底物,经过氧化、环化、还原、β-氧化、修饰与活化等过程生成。JAs合成后与其受体COI1结合,介导阻遏蛋白JAZs的泛素化降解,释放出转录因子MYC2,激活下游信号转导过程,诱发一些生理生化反应(包括增加抗氧化物质合成、提高抗氧化酶活性、抑制膜脂代谢、增强精氨酸代谢、促进能量代谢、激活其他植物激素信号转导通路等),维持细胞膜的完整性、流动性和功能(半透性),提高园艺作物采后抗低温胁迫的能力。近年来,研究发现:(a)MYC2可通过与MYC3和MYC4形成同源或异源二聚体调控下游靶基因的转录;(b)BBX37可独立或协同ICE1一起激活下游CBFs基因的转录;(c)MED16可增强MED25的稳定性,正向调控茉莉酸信号的转录输出等。本文中概述了园艺作物的采后冷害表征,阐述了(非)CBF依赖性信号转导通路对低温胁迫的响应过程,归纳了植物JAs合成、信号传递途径及其调控机制,解析了JAs缓解园艺作物冷害中的应用及作用机制,并系统总结了JAs信号转导途径与(非)CBF依赖性信号转导通路在低温胁迫过程中的关联性,并对未来的研究方向提出了展望。未来的研究方向应聚焦于:(a)深入发掘和验证JAs信号转导途径与(非)CBF依赖性信号转导通路的关联性;(b)揭示基因转录后加工和蛋白翻译后修饰在JAs合成或信号转导过程中的作用;(c)探索JAs与其他植物内源激素抵抗低温胁迫的协同作用;(d)解析新发现组件(MYC3/4、MED16、BBX37等)在低温响应过程中的机制。
谭筱玉, 牛军鹏, 王全智, 张丽, 朱丽娟, 王国栋, 郑贺云, 郁志芳, 段玉权, 姜丽, 孙秀秀, 杨瑛, 罗伟奇, 李雪晖, 管乐, 赵艳岭, 李国晓, 殷从飞, 葛成, 马敏, 贾璐婷, 张旭, 赵垚垚, 耿新丽, 王利斌, 张绍铃. 茉莉酸及其衍生物提高园艺作物采后低温抗性的研究进展[J]. 园艺学报, 2025, 52(8): 1987-2020.
TAN Xiaoyu, NIU Junpeng, WANG Quanzhi, ZHANG Li, ZHU Lijuan, WANG Guodong, ZHENG Heyun, YU Zhifang, DUAN Yuquan, JIANG Li, SUN Xiuxiu, YANG Ying, LUO Weiqi, LI Xuehui, GUAN Le, ZHAO Yanling, LI Guoxiao, YIN Congfei, GE Cheng, MA Min, JIA Luting, ZHANG Xu, ZHAO Yaoyao, GENG Xinli, WANG Libin, and ZHANG Shaoling. Recent Advances in JAs-Induced Improvement of Postharvest Chilling Resistance in Horticultural Crops[J]. Acta Horticulturae Sinica, 2025, 52(8): 1987-2020.
园艺作物 Horticultural crop | 冷害症状 Chilling injury symptoms | 临界冻害温度/℃ Critical chilling temperature |
---|---|---|
果树Fruit tree | ||
苹果(亚热带季风气候区) Apple(Subtropical monsoon climate region) | 内部变褐,褐芯,脆化,软烫伤 Internal browning,brown core,soggy breakdown,soft scald | 2 ~ 3 |
凤梨释迦Atemoya | 表皮变黑,不成熟,果肉变色Skin darkening,failure to ripen,pulp discoloration | 4 |
油梨Avocado | 果肉灰褐色褪色Grayish-brown discoloration of flesh | 4.5 ~ 13 |
木橘Bael | 表皮出现褐色斑点Brown spots on skin | 3 |
香蕉(绿色或成熟) Banana(green or ripe) | 成熟时颜色暗淡Dull color when ripened | 11.5 ~ 13 |
面包果Breadfruit | 非正常成熟,暗褐色褪色Abnormal ripening,dull brown discoloration | 7 ~ 12 |
蔓越莓Cranberry | 橡胶质地,红褐色果肉Rubbery texture,red flesh | 2 |
番石榴Guava fruit | 果肉损伤,腐烂Pulp injury,decay | 4.5 |
西柚Grapefruit | 烫伤痕迹,点状腐蚀,水渍Scald,pitting,watery breakdown | 10 |
柠檬Lemon | 点状腐蚀,膜质染色,红色斑点Pitting,membranous staining,red blotch | 11 ~ 13 |
酸橙Lime | 点状腐蚀,随着时间推移变成棕褐色Pitting,turning tan with time | 7 ~ 9 |
荔枝Lychee | 表皮变褐Skin browning | 3 |
杧果Mango | 表皮呈灰鳞片状褪色,成熟不均匀 Grayish scald-like discoloration of skin,uneven ripening | 10 ~ 13 |
山竹Mangosteen | 皮层硬化褐变Hardening and browning of the cortex | 4 ~ 8 |
新鲜橄榄Olive,fresh | 内部变褐Internal browning | 7 |
橘Orange | 点状腐蚀,棕色污渍Pitting,brown stain | 3 |
木瓜Papaya | 不成熟,变味,腐烂Pitting,failure to ripen,off-flavor,decay | 7 |
西番莲Passion fruit | 表皮褪色成暗红色,味道变淡,腐烂 Dark red discoloration on skin,loss of flavor,decay | 10 |
菠萝Pineapple | 成熟后呈暗绿色Dull green when ripened | 7 ~ 10 |
石榴Pomegranate | 点状腐烂,内外部褐变Pitting,external and internal browning | 4.5 |
红毛丹Rambutan | 外果皮变黑Darkening of exocarp | 10 |
树番茄Tamarillo | 表面点状腐蚀,褪色Surface pitting,discoloration | 3 ~ 4 |
瓜类Melons and gourds | ||
哈密瓜Cantaloup | 点状腐蚀,表面腐化Pitting,surface decay | 2 ~ 5 |
网纹瓜Crenshaw and Persian | 红褐色褪色,麻点,表面腐烂,不成熟 Reddish-tan discoloration,pitting,surface decay,failure to ripen | 7 ~ 10 |
蜜瓜Honeydew | 红褐色褪色,麻点,表面腐烂,不成熟 Reddish-tan discoloration,pitting,surface decay,failure to ripen | 7 ~ 10 |
白兰瓜Casaba | 红褐色褪色,麻点,表面腐烂,不成熟 Reddish-tan discoloration,pitting,surface decay,failure to ripen | 7 ~ 10 |
西瓜Watermelon | 点状腐蚀,异味Pitting,objectionable flavor | 4.5 |
蔬菜(果菜)Vegetables(fruits and vegetables) | ||
佛手瓜Choyote | 暗褐色褪色,点状腐蚀,果肉变黑Dull brown discoloration,pitting,flesh darkening | 5 ~ 10 |
黄瓜Cucumber | 点状腐蚀,水渍状斑点,腐烂Pitting,water-soaked spots,decay | 7 |
茄子Eggplant | 表皮有烫伤痕迹,黑斑病,种子变黑Surface scald,alternaria rot,blackening of seeds | 7 |
豆薯Jicama | 表面腐烂,褪色Surface decay,discoloration | 13 ~ 18 |
秋葵Okra pod | 褪色,水浸区域,点状腐蚀,腐烂Discoloration,water-soaked areas,pitting,decay | 7 |
南瓜和硬壳南瓜 Pumpkin and hard-shell squash | 腐烂,特别是黑斑病Decay,especially alternaria rot | 10 |
利马豆Phaseolus lunatus | 锈褐色斑块、斑点或区域Rusty brown specks,spots,or areas | 0 ~ 2 |
菜豆Phaseolus vulgaris | 点状腐蚀和褐斑Pitting and russeting | 7 |
辣椒(甜)Pepper(sweet) | 豆荚和花萼上的片状腐烂,黑斑病,种子变黑 Sheet pitting,alternaria rot on pods and calyxes,darkening of seed | 7 |
西红柿(成熟期)Tomato(ripe) | 浸水,软化,腐烂Water-soaking and softening,decay | 7 ~ 10 |
西红柿(绿熟期)Tomato(mature green) | 成熟时色泽差,黑斑病Poor color when ripe,alternaria rot | 13 |
蔬菜(叶菜)Vegetables(leafy vegetables) | ||
石刁柏Asparagus | 暗淡,灰绿色,尖端软弱无力Dull,gray-green,and limp tips | 0 ~ 2 |
蕹菜Water convolvulus | 茎叶变黑Darkening of leaves and stems | 10 |
表1 不同果蔬在受到低温胁迫时产生的冷害症状及其对应的临界低温值
Table 1 Chilling injury symptoms of different fruits and vegetables with their critical chilling temperatures
园艺作物 Horticultural crop | 冷害症状 Chilling injury symptoms | 临界冻害温度/℃ Critical chilling temperature |
---|---|---|
果树Fruit tree | ||
苹果(亚热带季风气候区) Apple(Subtropical monsoon climate region) | 内部变褐,褐芯,脆化,软烫伤 Internal browning,brown core,soggy breakdown,soft scald | 2 ~ 3 |
凤梨释迦Atemoya | 表皮变黑,不成熟,果肉变色Skin darkening,failure to ripen,pulp discoloration | 4 |
油梨Avocado | 果肉灰褐色褪色Grayish-brown discoloration of flesh | 4.5 ~ 13 |
木橘Bael | 表皮出现褐色斑点Brown spots on skin | 3 |
香蕉(绿色或成熟) Banana(green or ripe) | 成熟时颜色暗淡Dull color when ripened | 11.5 ~ 13 |
面包果Breadfruit | 非正常成熟,暗褐色褪色Abnormal ripening,dull brown discoloration | 7 ~ 12 |
蔓越莓Cranberry | 橡胶质地,红褐色果肉Rubbery texture,red flesh | 2 |
番石榴Guava fruit | 果肉损伤,腐烂Pulp injury,decay | 4.5 |
西柚Grapefruit | 烫伤痕迹,点状腐蚀,水渍Scald,pitting,watery breakdown | 10 |
柠檬Lemon | 点状腐蚀,膜质染色,红色斑点Pitting,membranous staining,red blotch | 11 ~ 13 |
酸橙Lime | 点状腐蚀,随着时间推移变成棕褐色Pitting,turning tan with time | 7 ~ 9 |
荔枝Lychee | 表皮变褐Skin browning | 3 |
杧果Mango | 表皮呈灰鳞片状褪色,成熟不均匀 Grayish scald-like discoloration of skin,uneven ripening | 10 ~ 13 |
山竹Mangosteen | 皮层硬化褐变Hardening and browning of the cortex | 4 ~ 8 |
新鲜橄榄Olive,fresh | 内部变褐Internal browning | 7 |
橘Orange | 点状腐蚀,棕色污渍Pitting,brown stain | 3 |
木瓜Papaya | 不成熟,变味,腐烂Pitting,failure to ripen,off-flavor,decay | 7 |
西番莲Passion fruit | 表皮褪色成暗红色,味道变淡,腐烂 Dark red discoloration on skin,loss of flavor,decay | 10 |
菠萝Pineapple | 成熟后呈暗绿色Dull green when ripened | 7 ~ 10 |
石榴Pomegranate | 点状腐烂,内外部褐变Pitting,external and internal browning | 4.5 |
红毛丹Rambutan | 外果皮变黑Darkening of exocarp | 10 |
树番茄Tamarillo | 表面点状腐蚀,褪色Surface pitting,discoloration | 3 ~ 4 |
瓜类Melons and gourds | ||
哈密瓜Cantaloup | 点状腐蚀,表面腐化Pitting,surface decay | 2 ~ 5 |
网纹瓜Crenshaw and Persian | 红褐色褪色,麻点,表面腐烂,不成熟 Reddish-tan discoloration,pitting,surface decay,failure to ripen | 7 ~ 10 |
蜜瓜Honeydew | 红褐色褪色,麻点,表面腐烂,不成熟 Reddish-tan discoloration,pitting,surface decay,failure to ripen | 7 ~ 10 |
白兰瓜Casaba | 红褐色褪色,麻点,表面腐烂,不成熟 Reddish-tan discoloration,pitting,surface decay,failure to ripen | 7 ~ 10 |
西瓜Watermelon | 点状腐蚀,异味Pitting,objectionable flavor | 4.5 |
蔬菜(果菜)Vegetables(fruits and vegetables) | ||
佛手瓜Choyote | 暗褐色褪色,点状腐蚀,果肉变黑Dull brown discoloration,pitting,flesh darkening | 5 ~ 10 |
黄瓜Cucumber | 点状腐蚀,水渍状斑点,腐烂Pitting,water-soaked spots,decay | 7 |
茄子Eggplant | 表皮有烫伤痕迹,黑斑病,种子变黑Surface scald,alternaria rot,blackening of seeds | 7 |
豆薯Jicama | 表面腐烂,褪色Surface decay,discoloration | 13 ~ 18 |
秋葵Okra pod | 褪色,水浸区域,点状腐蚀,腐烂Discoloration,water-soaked areas,pitting,decay | 7 |
南瓜和硬壳南瓜 Pumpkin and hard-shell squash | 腐烂,特别是黑斑病Decay,especially alternaria rot | 10 |
利马豆Phaseolus lunatus | 锈褐色斑块、斑点或区域Rusty brown specks,spots,or areas | 0 ~ 2 |
菜豆Phaseolus vulgaris | 点状腐蚀和褐斑Pitting and russeting | 7 |
辣椒(甜)Pepper(sweet) | 豆荚和花萼上的片状腐烂,黑斑病,种子变黑 Sheet pitting,alternaria rot on pods and calyxes,darkening of seed | 7 |
西红柿(成熟期)Tomato(ripe) | 浸水,软化,腐烂Water-soaking and softening,decay | 7 ~ 10 |
西红柿(绿熟期)Tomato(mature green) | 成熟时色泽差,黑斑病Poor color when ripe,alternaria rot | 13 |
蔬菜(叶菜)Vegetables(leafy vegetables) | ||
石刁柏Asparagus | 暗淡,灰绿色,尖端软弱无力Dull,gray-green,and limp tips | 0 ~ 2 |
蕹菜Water convolvulus | 茎叶变黑Darkening of leaves and stems | 10 |
图1 园艺作物响应冷害低温的生理生化变化示意图 Wang,1989;Paull,1990;Theocharis et al.,2012。在低温环境下,植物细胞会触发一系列复杂的生理生化级联反应,导致冷害症状的出现。首先,细胞膜从液晶态转变为凝胶态,导致膜半透性丧失、膜蛋白代谢功能紊乱、原生质流动性降低等。伴随着电解质渗漏、能量供应减少和氧化应激产生,细胞膜损伤加剧。若持续低温,细胞膜将承受不可逆的损害,进而产生冷害症状
Fig. 1 Physio-biochemical responses of horticultural crops to chilling temperature Wang,1989;Paull,1990;Theocharis et al.,2012. Cryogenic temperature triggers a series of the complicated physio-biochemical alternations in plant cell,leading to the occurrence of chilling injury symptom. Firstly,cell membrane was changed from liquid crystal phase to gelatinous phase,resulting in the loss of membrane semi-permeability,disfunction of membrane proteins,decrement of protoplasm fluidity,and so on. In accompany with the occurrence of electrolyte leakage,energy reduction,and oxidative stress,cell membrane damage is exacerbated. If the chilling-exposure continues,cell membrane would be irreversibly damaged,causing chilling injury symptom
图2 植物CBF依赖性信号转导通路示意图 Li et al.,2017a;Liu et al.,2017b;Ding et al.,2019。ICE1-CBF-COR转录级联反应是CBF依赖性信号转导通路的关键环。在冷害低温下,膜蛋白复合体COLD1-RGA1感知环境信号,导致Ca2+内流,激活CRLK和EGR2-OST1-ICE1信号转导途径,增强ICE1的稳定性和转录活性,促进CBFs基因的转录。另一方面,CRPK1信号转导途径负调控CBFs的稳定性,避免细胞对低温的过度响应。翻译后的CBFs蛋白可结合下游CORs基因启动子中的顺式作用元件“CRT/DRE”,启动下游靶基因转录过程。CBF:C-重复序列结合因子;COLD1:chilling tolerance divergence 1;COR:低温响应基因;CRLK:钙调素调控类受体激酶;CRPK1:低温应答蛋白激酶1;EGR2:生长调控E分枝2;ICE1:CBF表达诱导剂1;MAP3K:丝裂原活化蛋白激酶激酶激酶;MEKK:丝裂原活化蛋白激酶;MKK:丝裂原活化蛋白激酶激酶;MPK:丝裂原活化蛋白激酶;OST1:气孔开放因子1;P:磷酸化;RGA1:G蛋白α亚基
Fig. 2 CBF-dependent signaling pathway in plants Li et al.,2017a;Liu et al.,2017b;Ding et al.,2019. The ICE1-CBF-COR transcriptional cascade is of great importance for the CBF-dependent signaling pathway. During chilling stress,the membrane protein complex COLD1-RGA1 senses environmental signals to induce Ca2+ influx. After perception of Ca2+ signals,CRLK and EGR2-OST1-ICE1 signaling pathways are activated to enhance the stability and transcriptional activity of ICE1,resulting in the upregulated expression levels of CBFs. On the other hand,the CRPK1 signal transduction pathway,which negatively regulates the stability of CBFs,is also initiated to avoid the cellular over-response to low temperature. After translation,CBFs could bind to cis-acting element(CRT/DRE)in the promoters of the downstream CORs genes and then initiate their transcription. CBF:C-repeat binding factors;COLD1:Chilling tolerance divergence 1;COR:Cold responsive gene;CRLK:Calcium/calmodulin-regulated receptor-like kinase;CRPK1:Cold-responsive protein kinase 1;EGR2:Clade-E growth-regulating 2;MAP3K:Mitogen-activated protein kinase kinase kinase;MEKK:MAPK/ERK Kinase Kinase;MKK:MAPK Kinase;MPK:Mitogen-activated protein kinase;ICE1:Inducer of CBF expression 1;OST1:Open stomata 1; P:Phosphorylation;RGA1:Rice G-protein α subunit 1
图3 植物JAs生物合成途径示意图 Sharma & Laxmi,2016;Ali & Baek,2020;Wan & Xin,2022。JAs以α-LeA和HTA为底物经氧化、环化、还原、β-氧化、修饰与活化等过程产生。α-LeA和HTA从叶绿体膜上释放出来后,经LOX、AOS和AOC的催化转化为12-OPDA和dn-OPDA。后两者通过ABC转运蛋白或离子障转运进入过氧化物酶体后在OPR2/3、OPCL1、ACX、MFP和KAT等酶的催化作用下形成(+)-7-iso-JA。(+)-7-iso-JA被转运至细胞质后,一部分经JAR1的催化形成JA-Ile,另一部分在JMT的作用下产生MeJA。ACX:酰基辅酶A氧化酶;AOC:丙二烯氧化物环化酶;AOS:丙二烯氧化物合酶;4,5-didehydro-JA:4,5-去氢茉莉酸;dn-OPDA:dinor OPDA;10,11-EHT:10,11(S) -环氧十六碳三烯酸;12,13-EOT:12,13-(S) -环氧十八碳三烯酸;11-HPHT:11-氢过氧十六碳三烯酸;13-HPOT:13-氢过氧十八碳三烯酸;HTA:十六碳三烯酸;(+)-7-iso-JA:(+)-7-异-茉莉酸;JA-Ile:茉莉酸—异亮氨酸;JAR1:茉莉酸-异亮氨酸合成酶;JMT:茉莉酸羧基甲基转移酶;KAT:3-酮酰基辅酶A硫解酶;α-LeA:α-亚麻酸;LOX:脂氧合酶;MeJA:茉莉酸甲酯;MFP:多功能蛋白;OPC-8:3-氧代-2(顺-2’ -戊烯基)-环戊烷-1-辛酸;OPC:8-CoA:3-氧代-2(顺-2’-戊烯基)-环戊烷-1-辛酰辅酶A;OPCL1:OPC-8辅酶A连接酶1;12-OPDA:12-氧-植物二烯酸;OPR:OPDA还原酶;PLs:磷脂酶;tn-OPDA:tetranor-OPDA
Fig. 3 Biosynthetic pathway of JAs in plants Sharma & Laxmi,2016;Ali & Baek,2020;Wan & Xin,2022. JAs is derived from α-LeA and HTA via oxidation,cyclization,reduction,β-oxidation,modification and activation. Upon release from chloroplast membrane,α-LeA and HTA are catalyzed by LOX,AOS and AOC into 12-OPDA and dn-OPDA,which are then transported into peroxisome by ABC transporter or ionic barrier. In peroxisome,12-OPDA and dn-OPDA are converted into (+)-7-iso-JA via the actions of several enzymes,including OPR2/3,OPCL1,ACX,MFP and KAT. After transportation into the cytoplasm,(+)-7-iso-JA could be catalyzed by JAR1 and JMT to form JA-Ile and MeJA,respectively. ACX:Acyl-CoA oxidase;AOC:Alle-neoxide cyclase;AOS:Allene oxide synthase;4,5-didehydro-JA:4,5-Didehydro-jasmonic acid;dn-OPDA:Dinor OPDA;10,11-EHT:10,11(S)-epoxy- hexadeca(tri)enoic acid;12,13-EOT:12,13-(S)-epoxy-octadecatrienoic acid;11-HPHT:11-Hydroperoxyhexadecatrienoic acid;13-HPOT:13-Hydroperoxyoctadecatrienoic acid;HTA:Hexadecatrienoic acid;(+)-7-iso-JA:(+)-7-iso-Jasmonic acid;JA-Ile:Jasmonoyl-isoleucine;JAR1:Jasomonate resistant 1;JMT:Jasmonic acid carboxyl methyltransferase;KAT:3-Ketoacyl-CoA thiolase;α-LeA:α-Linolenic acid;LOX:Lipoxygenases;OPC-8:3-Oxo-2-((Z)-pent-2-en-1-yl)cyclopentane-1-octanoic acid;MeJA:Methyl jasmonate;MFP:Multifunctional protein;OPC:8-CoA:3-Oxo-2-((Z)-pent-2-en-1-yl)cyclopentane-1-octanoyl-CoA;OPCL1:OPC-8 coenzyme A ligase1;12-OPDA:12-Oxo-phytodienoic acid;OPR:OPDA reductase;PLs:Phospholipases;tn-OPDA:Tetranor-OPDA
图4 植物JAs信号转导过程 Sharma & Laxmi,2016;Ali & Baek,2020;Li et al.,2022。JA-Ile在JAT1的协助下从细胞质转运到细胞核中并启动JAs信号转导过程。当JA-Ile少量时,阻遏蛋白JAZs通过招募NINJA、TPL和HDA6/19,形成封闭的转录抑制复合体,抑制MYC2的转录活性。在植物生长发育特定阶段或遭受(非)生物胁迫时,细胞核内的JA-Ile迅速积累,诱导JAZs与E3泛素连接酶复合体SCFCOI1中的COI1互作,在IP5和26S蛋白酶的协助下将JAZs泛素化降解,解除对MYC2的转录抑制。然后MYC2与同源物MYC3和MYC4形成同源或异源二聚体,结合到G-box元件。随后,MED25将GTFs和RNA聚合酶II招募到启动子上进行转录。此外,MED16通过与MED25相互作用促进MED25的稳定性来激活JAs响应基因的表达。COI1:冠菌素不敏感蛋白1;CUL:泛素连接酶;E1,E2:泛素结合酶;GTF:通用转录因子;HDA6,HDA19:组蛋白去乙酰化酶6,19;JA-Ile:茉莉酰异亮氨酸;JAT1:茉莉酸转运蛋白1;JAZ:茉莉酸ZIM结构域蛋白;MED16,MED25:调解复合体亚基16,25;MYC:骨髓细胞瘤病病毒基因相关转录因子;NINJA:JAZ的新型互作蛋白;RBX1:环盒蛋白1; RNA Pol II:RNA聚合酶II;SCF:SCF泛素连接酶复合体;SKP1:S期激酶相关蛋白1;TPL:TOPLESS蛋白;Ubi:泛素
Fig. 4 JAs signal transduction process in plants Sharma & Laxmi,2016;Ali & Baek,2020;Li et al.,2022. JA-Ile is transported from cytosol into the nucleus with the aid of JAT1 to initiate its signal transduction process. When JA-Ile is low,the repressor protein JAZs recruits NINJA,TPL,and HDA6/19 to form a closed transcriptional inhibition complex to inhibit MYC2 transcriptional activity. At the specific developmental stages or under(a)biotic stress,the rapid accumulation of JA-Ile in the nucleus promotes the interaction between JAZs and COI1 in the E3 ubiquitin ligase complex SCFCOI1,leading to the ubiquitin-mediated degradation of JAZs by IP5 and 26S proteasome. Then,MYC2 is released from JAZs. Then,MYC2 forms homodimers or heterodimers with its homologs MYC3 and MYC4,which bind to the G-box element. Subsequently,MED25 recruits General Transcription Factors(GTFs)and RNA polymerase II to the promoter to initiate transcription. Additionally,MED16 enhances the stability of MED25 through interaction with it,which is crucial for activating the expression of JAs-responsive genes. COI1:Coronatine insensitive 1;CUL:Cullin;E1,E2:Ubiquitin-conjugating enzymes;GTF:General transcription factor;HDA6,HDA19:Histone deacetylase 6,19;JA:Jasmonic acid;JA-Ile:Jasmonyl isoleucine;JAT1:Jasmonic acid transfer protein 1;JAZ:Jasmonate ZIM domain;MED16,25:Mediator complex subunit 16;MYC:Myelocytomatosis transcription factor;NINJA:Novel interactor of JAZ;RBX1:Ring box 1;RNA Pol II:RNA polymerase II;SCF:Skp1-cullin-F-box e3 ubiquitin ligase complex;SKP1:S-phase kinase-associated protein 1;TPL:Topless;Ubi:Ubiquitin
图5 植物体内部分物质合成、代谢途径 a:植物AsA和GSH合成途径(Forman et al.,2009;Ishikawa et al.,2018)。(I)D-甘露糖/L-半乳糖途径(也被称Smirnoff-Wheeler通路)是植物合成AsA的最主要途径。D-葡萄糖-6-磷酸在细胞质中依次通过GPI、PMI、PMM、GMP、GME、GDP- GGP、GPP和GalDH的作用产生L-半乳糖-1,4-内酯;后者转运进入线粒体中后被GalLDH氧化形成AsA。(II)植物GSH是以谷氨酸为底物经谷氨酸-半胱氨酸连接酶和谷胱甘肽合酶催化产生。b:植物类胡萝卜素和脱落酸合成途径(Nurbekova et al.,2021;Sun et al.,2022;Wu et al.,2022b)。植物类胡萝卜素和脱落酸的生物合成均始于MEP途径。经MEP途径产生的牻牛儿牻牛儿基焦磷酸在PSY、PDS、ZISO、ZDS以及CRTISO的催化作用下产生番茄红素,后者被LCYE和LCYB环化形成β-胡萝卜素和α-胡萝卜素。β-胡萝卜素可进一步在BCH/CrtZ、ZEP、NSY或异构酶等作用下形成玉米黄质(zeaxanthin)、紫黄质(violaxanthin)、新黄质(neoxanthin)、9-顺-紫黄质(9-cis-violaxanthin)和9’-顺-新黄质(9’-cis-neoxanthin)等物质。通过类胡萝卜素合成途径产生的9-顺-紫黄质和9’-顺-新黄质可依次通过NCED、ABA2和AAO3的催化产生ABA。c:植物活性氧清除途径(Hasanuzzaman et al.,2022)。(Ⅰ)抗坏血酸—谷胱甘肽循环;(Ⅱ)超氧化物歧化酶-谷胱甘肽过氧化物酶循环;(Ⅲ)过氧化氢酶途径。d:植物精氨酸代谢途径(Cao et al.,2012;Zhang et al.,2012;Winter et al.,2015)。精氨酸可经ADC-AIH-NLP途径和ARG-ODC途径形成腐胺,后者可进一步在SPDS和SPMS的催化作用下形成精胺和亚精胺。作为中间代谢物的鸟氨酸可通过OTC、ASSY和ASL等酶的催化产生前体精氨酸,以维持其在细胞中的水平。此外,鸟氨酸也可经δOAT、P5CS、GAD、P5CDH和P5CR等酶的作用转化为γ-氨基丁酸或脯氨酸。AAO3:脱落醛氧化酶;ABA2:黄素脱氢酶;ADC:精氨酸脱羧酶;ADP:腺苷二磷酸;AIH:精氨酸代琥珀酸亚胺水解酶;APX:抗坏血酸过氧化物酶;ARG:精氨酸酶;AsA:抗坏血酸;ASL:精氨酸代琥珀酸裂解酶;ASSY:精氨酸代琥珀酸合成酶;ATP:腺苷三磷酸;BCH/CrtZ:β-胡萝卜素羟化酶;CRTISO:胡萝卜素异构酶;DHA:脱氢抗坏血酸;DHAR:脱氢抗坏血酸还原酶;GAD:谷氨酸脱羧酶;GalDH:L-半乳糖脱氢酶;GalLDH:L-半乳糖内酯脱氢酶;GCL:谷氨酸-半胱氨酸连接酶;GGP:GDP-L-半乳糖磷酸酶;GME:GDP-甘露糖-3’,5’-异构酶;GMP:GDP-D-甘露糖焦磷酸化酶;GPI:葡萄糖-6-磷酸异构酶;GPP:L-半乳糖-1-磷酸磷酸酶;GPX:谷胱甘肽过氧化物酶;GR:谷胱甘肽还原酶;GSA:谷氨酸-Y-半醛;GSH:谷胱甘肽;GSS:谷胱甘肽合酶;GSSG:氧化型谷胱甘肽;H2O2:过氧化氢;LCYB:番茄红素β-环化酶;LCYE:ε-环化酶;MDHAR:单脱氢抗坏血酸还原酶;MEP:甲基赤藓糖醇磷酸;NCED:9-顺-环氧类胡萝卜素双加氧酶;NLP:N-氨甲酰腐胺酰胺酶;NOS:一氧化氮合酶;NSY:新黄质合酶;δOAT:鸟氨酸-δ-氨基转移酶;ODC:鸟氨酸脱羧酶;OTC:鸟氨酸氨甲酰转移酶;PDS:八氢番茄红素脱氢酶;i:无机磷酸;PMI:甘露糖-6-磷酸异构酶;PPM:磷酸甘露糖变位酶;ProDH:脯氨酸脱氢酶;PSY:八氢番茄红素合成酶;P5C:吡咯啉-5-羧酸;P5CDH:吡咯啉-5-羧酸脱氢酶;P5CR:吡咯啉-5-羧酸还原酶;P5CS:吡咯啉-5-羧酸合成酶;SOD:超氧化物歧化酶;SPDS:精胺合成酶;SPMS:精氨酸合成酶;ZDS:ζ-胡萝卜素脱氢酶;ZEP:玉米黄质环氧化酶;ZISO:ζ-胡萝卜素异构酶
Fig. 5 Synthesis and metabolic pathways of some substances in plants a:The biosynthetic pathways of AsA and GSH in plant(Forman et al.,2009;Ishikawa et al.,2018).(I)D-mannose/L-galactose pathway(also known as Smirnoff Wheeler pathway)is the most important pathway for AsA biosynthesis in plant. D-glucose-6-phosphate in cytosol is converted into L-galactono-1,4-lactone by GPI,PMI,PMM,GMP,GME,GDP-GGP,GPP,and GalDH;after transportation into mitochondria,L-galactono-1,4-lactone is oxidized into AsA with the aid of GalLDH.(II)GSH is derived from glutamic acid through the actions of glutamate-cysteine ligase and glutathione synthase. b:The biosynthetic pathways of carotenoids and abscisic acid in plant(Nurbekova et al.,2021;Sun et al.,2022;Wu et al.,2022b). The biosynthesis of carotenoids and abscisic acid in plant begins with MEP pathway. Geraniol pyrophosphate,which is produced via MEP pathway,is catalyzed by PSY,PDS,ZISO,ZDS and CRTISO to produce lycopene. The latter is then cyclized by LCYE and LCYB to form β-carotene and α-carotene. β-carotene could further be converted into zeaxanthin,violaxanthin,neoxanthin,9-cis-violaxanthin and 9’-cis-neoxanthin with the aid of various enzymes,including BCH/CrtZ,ZEP,NSY and uncharacterized isomerase. Moreover,9-cis-violaxanthin and 9’-cis-neoxanthine,which are derived from the carotenoid-biosynthetic pathway,could be acted as the substrates for ABA formation through the catalytic actions of NCED,ABA2 and AAO3. c:Reactive oxygen species scavenging pathways in plant(Hasanuzzaman et al.,2022).(Ⅰ)Ascorbate-glutathion cycle;(Ⅱ)superoxide dismutase-glutathion peroxidase cycle;(Ⅲ)the catalase pathway. d:Arginine metabolic pathway in plant(Cao et al.,2012;Zhang et al.,2012;Winter et al.,2015). Putrescine in plant is produced from arginine via ADC-AIH-NLP and ARG-ODC pathways. After formation,putrescine would further be converted by SPDS and SPMS into spermidine and spermidine. Ornithine,as an metabolic intermediate during putrescine formation,could be acted as the substrate for arginine regeneration,with the aid of OTC,ASSY and ASL,to maintain its level in plant cell;additionally,ornithine might also be catalyzed by δOAT,P5CS,GAD,P5CDH and P5CR,producing γ-aminobutyric acid or proline. AAO3:Abscisic-aldehyde oxidase;ABA2:Xanthoxin dehydrogenase;ADC:Arginine decarboxylase;ADP:Adenosine diphosphate;AIH:Agmatine iminohydrolase;APX:Ascorbate peroxidase;ARG:Arginase;AsA:Ascorbic acid;ASL:Argininosuccinate lyase;ASSY:Argininosuccinate synthase;ATP:Adenosine triphosphate;BCH/CrtZ:β-Carotenehydroxylase;CRTISO:Carotene isomerase;DHA:Dehydroascorbate;DHAR:Dehydroascorbate reductase;GAD:Glutamate decarboxylase;GalDH:L -galactose dehydrogenase;GalLDH:L -galactono-1,4-lactone dehydrogenase;GCL:Glutamate cysteine ligase;GGP:GDP- L -galactose phosphorylase;GME:GDP-mannose-3’,5’-epimerase;GMP:GDP-mannose pyrophosphorylase;GPI:Glucose-6-phosphate isomerase;GPP:L-galactose-1-phosphate phosphatase;GPX: Glutathione peroxidase;GR:Glutathione reductase;GSA:Glutamic-y-semialdehyde;GSH:Glutathione;GSS:Glutathione synthase;GSSG:oxidized glutathione;H2O2:Hydrogen peroxide;LCYB:Lycopeneβ-cyclase;LCYE:Lycopene ε-cyclase;MDHAR:Monodehydroascorbate reductase;MEP:Methylerythritol phosphate;NCED:9-cis-epoxycarotenoid dioxygenase;NLP:N-carbamoylputrescine amidase;NOS:NO synthase;NSY:Neoxanthinsynthase;δOAT:Ornithine-δ-aminotransferase;ODC:Ornithine decarboxylase;OTC:Ornithine transcarbamylase;PDS:Phytoene desaturase;Pi:Inorganic phosphate;PMI:Mannose-6-phosphate isomerase;PPM:Phosphomanno mutase;ProDH:Proline dehydrogenase;PSY:Phytoene synthase;P5C:Pyrroline-5-carboxylate;P5CDH:Pyrroline-5-carboxylate dehydrogenase;P5CR:Pyrroline-5-carboxylate reductase;P5CS:Pyrroline-5-carboxylate synthetase;SOD:Superoxide dismutase;SPDS:Spermidine synthase;SPMS:Spermine synthase;ZDS:ζ-Carotene desaturase;ZEP:Zeaxanthinepoxidase;ZISO:ζ-Carotene isomera
图6 JAs提高园艺作物低温抗性的机制 Bolt et al.,2017;Sun et al.,2019;An et al.,2021,2022;Song et al.,2022. 低温诱导JAs的生物合成。而后,JAs可通过其信号转导过程中的一些元件直接或间接激活(非)CBF依赖性信号转导通路,引发了一系列的生理和生化反应,如增加抗氧化物质合成、提高抗氧化酶活性、抑制膜脂代谢、增强精氨酸代谢、促进能量代谢以及激活其他植物激素信号转导途径等。这些响应维持了细胞膜的完整性、流动性和功能性(半透性),进而提高了园艺作物抗低温胁迫能力。ABA:脱落酸;ABI4:脱落酸不敏感蛋白4;ABI5-like:ABI5样蛋白;ACX:酰基辅酶A氧化酶;AOC:丙二烯氧化物环化酶;AOS:丙二烯氧化物合酶;BBX37:B-box蛋白;CBF:C-重复序列结合因子;COI1:冠菌素不敏感蛋白1;COR:低温响应基因;CUL:泛素连接酶;4,5-didehydro-JA:4,5-去氢茉莉酸;dn-OPDA:dinor OPDA;E1,E2:泛素结合酶;10,11-EHT:10,11(S)-环氧十六碳三烯酸;12,13-EOT:12,13-(S)-环氧十八碳三烯酸;ERF:乙烯响应因子;ETH:乙烯;11-HPHT:11-氢过氧十六碳三烯酸;13-HPOT:13-氢过氧十八碳三烯酸;HTA:十六碳三烯酸;ICE1:CBF表达诱导剂1;(+)-7-iso-JA:(+)-7-异-茉莉酸;JA-Ile:茉莉酸—异亮氨酸;JAR1:茉莉酸-异亮氨酸合成酶;JAT1:茉莉酸转运蛋白1;JAZ:茉莉酸ZIM结构域蛋白;JMT:茉莉酸羧基甲基转移酶;KAT:3-酮酰基辅酶A硫解酶;α-LeA:α-亚麻酸;LOX:脂氧合酶;MeJA:茉莉酸甲酯;MFP:多功能蛋白;MYC:骨髓细胞瘤病病毒基因相关转录因子;NINJA:JAZ的新型互作蛋白;OPC-8:3-氧代-2(顺-2’-戊烯基)-环戊烷-1-辛酸;OPC:8-CoA:3-氧代-2(顺-2’ -戊烯基)-环戊烷-1-辛酰辅酶A;OPCL1:OPC-8辅酶A连接酶1;12-OPDA:12-氧-植物二烯酸;OPR:OPDA还原酶;PLs:磷脂酶;RBX1:环盒蛋白1;RNA Pol II:RNA聚合酶II;SKP1:S期激酶相关蛋白1;tn-OPDA:tetranor-OPDA;TPL:TOPLESS蛋白;Ubi:泛素
Fig. 6 Mechanism on the JAs-induced improvement of chilling resistance in horticultural crops Bolt et al.,2017;Sun et al.,2019;An et al.,2021,2022;Song et al.,2022. Low temperature induces JAs biosynthesis. Afterwards,JAs could directly or indirectly activate the CBF-(in)dependent signal transduction pathway with the aid of several signaling transduction elements,triggering a series of the complicated physio-biochemical alternation(including increment of antioxidant biosynthesis,improvement of antioxidant enzyme activity,inhibition of lipid metabolism,enhancement of arginine metabolism,promotion of energy metabolism,and activation of other plant hormone signal transduction pathways). The abovementioned responses could maintain the integrity,fluidity,and functionality(semi-permeability)of cell membrane,thereby improving the resistance of horticultural crops to chilling stress. ABA:Abscisic acid;ABI4:ABA insensitive 4;ABI5-like:ABA insensitive 5-like;ACX:Acyl-CoA oxidase;AOC:Alle-neoxide cyclase;AOS:Allene oxide synthase;BBX37:B-box protein BBX37;CBF:C-repeat binding factors;COI1:Coronatine insensitive 1;COR:Cold responsive genes;CUL:Cullin;4,5-didehydro-JA:4,5-Didehydro- jasmonic acid;dn-OPDA:Dinor OPDA;E1,E2:Ubiquitin-conjugating enzymes;10,11-EHT:10,11(S)-epoxy-hexadeca (tri)enoic acid;12,13-EOT:12,13-(S)-epoxy-octadecatrienoic acid;ERF:Ethylene responsive factor;ETH:Ethylene;11-HPHT:11-Hydroperoxyhexadecatrienoic acid;13-HPOT:13-Hydroperoxyoctadecatrienoic acid;HTA:Hexadecatrienoic acid;ICE1:Inducer of CBF expression 1;(+)-7-iso-JA:(+)-7-iso-Jasmonic acid;JA-Ile:Jasmonoyl-isoleucine;JAR1:Jasomonate resistant 1;JAT1:Jasmonic acid transfer protein 1;JAZ:Jasmonate ZIM domain;JMT:Jasmonic acid carboxyl methyltransferase;KAT:3-Ketoacyl-CoA thiolase;α-LeA:α-Linolenic acid;LOX:Lipoxygenases;MeJA:Methyl jasmonate;MFP:Multifunctional protein;MYC:Myelocytomatosis transcription factor;NINJA:Novel interactor of JAZ;OPC-8:3-Oxo-2-((Z)-pent-2-en-1-yl)cyclopentane-1-octanoic acid;OPC:8-CoA:3-Oxo-2-((Z)-pent-2-en-1-yl)cyclopentane-1-octanoyl-CoA;OPCL1:OPC-8 coenzyme A ligase1;12-OPDA:12-Oxo-phytodienoic acid;OPR:OPDA reductase;PLs:Phospholipases;RBX1:Ring box 1;RNA Pol II:RNA polymerase II;SKP1:S-phase kinase-associated protein 1;tn-OPDA:Tetranor-OPDA;TPL:Topless;Ubi:Ubiquitin
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[178] |
|
[179] |
|
[180] |
|
[181] |
|
[182] |
|
[183] |
|
[184] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[185] |
|
[186] |
|
[187] |
|
[188] |
|
[189] |
|
[190] |
|
[22] |
|
[23] |
|
[24] |
|
陈明, 张洁茹, 杨航云, 王印宝, 郑致远, 曾教科, 陈金印, 付永琦, 向妙莲. 2024. 茉莉酸甲酯诱导采后脐橙抗青霉病的机制研究. 园艺学报, 51 (9):2183-2194.
|
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[191] |
|
[192] |
|
[193] |
|
[194] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
|
[90] |
|
[91] |
|
[92] |
|
[93] |
|
[94] |
|
[95] |
|
[96] |
|
[97] |
|
[98] |
|
[99] |
|
[100] |
|
[101] |
|
[102] |
|
[103] |
|
[104] |
|
[105] |
|
[106] |
|
[107] |
|
[108] |
|
[109] |
|
[110] |
|
[111] |
|
[112] |
|
[113] |
|
[114] |
|
[115] |
|
[116] |
|
[117] |
|
[118] |
|
[119] |
|
[120] |
|
[121] |
|
[122] |
|
[123] |
|
[124] |
|
[125] |
|
[126] |
|
[127] |
|
[128] |
|
[129] |
|
[130] |
|
[131] |
|
[132] |
|
[133] |
|
[134] |
|
[135] |
|
[136] |
|
[137] |
|
[138] |
|
[139] |
|
[140] |
|
[141] |
|
[142] |
|
[143] |
|
[144] |
|
[145] |
|
[146] |
|
[147] |
|
[148] |
|
[149] |
|
[150] |
|
[151] |
|
[152] |
|
[153] |
|
[154] |
|
[155] |
|
[156] |
|
[157] |
|
[158] |
|
[159] |
|
[160] |
|
[161] |
|
[162] |
|
[163] |
|
[164] |
|
[165] |
|
[166] |
|
[167] |
|
[168] |
|
[169] |
|
[170] |
|
[171] |
|
[172] |
|
[173] |
|
[174] |
|
[175] |
|
[176] |
|
[177] |
|
[1] | 冯玲佳, 刘毓婕, 何林彤, 王新超, 叶萌. 芳樟醇合成调控机制及其生态功能研究[J]. 园艺学报, 2025, 52(8): 2270-2290. |
[2] | 萧志浩, 郑涵锴, 张曼楠, 唐怀千, 王嘉颖, 张余洋, 张俊红, 叶志彪, 叶杰. 非生物胁迫下钾对番茄苗期生长发育的影响[J]. 园艺学报, 2025, 52(6): 1599-1618. |
[3] | 许桐, 王越, 吴丽娜, 张航, 尹立来, 徐柯宇, 郑小林. 褪黑素处理对‘桃形李’采后果实品质及花色苷代谢的影响[J]. 园艺学报, 2025, 52(2): 395-405. |
[4] | 贺丹丹, 何宏泰, 王文庭, 周文美, 刘燕敏, 刘骕骦. 甜瓜GolS家族基因鉴定及其响应低温胁迫的表达分析[J]. 园艺学报, 2025, 52(1): 136-148. |
[5] | 梁国平, 曾宝珍, 刘铭, 边志远, 陈佰鸿, 毛娟. 山葡萄VaSR基因家族的鉴定及VaSR1抗寒功能验证与互作蛋白筛选[J]. 园艺学报, 2025, 52(1): 37-50. |
[6] | 李雅晨, 郑艳梅, 宋雯佩, 李大卫, 梁红, 张宪智. 富氢水在植物生长发育及逆境胁迫响应中的作用研究进展[J]. 园艺学报, 2024, 51(7): 1489-1500. |
[7] | 黄彭, 丁捷, 刘春燕, 李红莹, 李昕渝, 刘耀文, 秦文. 可食性复合涂膜对蓝莓的保鲜效果综合评价[J]. 园艺学报, 2024, 51(6): 1361-1376. |
[8] | 武祥琪, 孙鹂, 俞浙萍, 俞沁佩, 梁森苗, 郑锡良, 戚行江, 张淑文. 杨梅MrSPL4在响应干旱和低温胁迫中的作用研究[J]. 园艺学报, 2024, 51(5): 927-938. |
[9] | 罗健东, 邱梦青, 周慧敏, 解为玮, 黄海鑫, 刘洁琪, 张梓敏, 徐健, 陈程杰, 何业华, 刘朝阳. 菠萝AcZFP1的克隆及其在低温胁迫下的功能分析[J]. 园艺学报, 2024, 51(3): 495-508. |
[10] | 孙权, 何政辰, 叶俊丽, 魏冉冉, 尹映紫, 柴利军, 谢宗周, 徐强, 徐娟, 郭文武, 程运江, 邓秀新. 与呼吸跃变型果实共贮藏改善柑橘果实色泽和品质[J]. 园艺学报, 2024, 51(3): 601-615. |
[11] | 沈衡, 王琳, 李骞, 袁守娟, 郑伟, 王涛涛, 叶志彪, 杨长宪. 番茄风味和功能性成分研究进展[J]. 园艺学报, 2024, 51(2): 423-438. |
[12] | 冯一清, 仇胜囡, 吴月, 解阳, 张晓伟, 毕焕改, 艾希珍. 褪黑素对日光温室黄瓜耐冷性的影响[J]. 园艺学报, 2024, 51(11): 2633-2644. |
[13] | 何义仲, 庞尧, 孙浩谦, 李欣宇, 王振豪, 钱卫, 张印, 何发, 尹杭, 赖恒鑫, 淳长品, 付行政, 彭良志. 果实抗坏血酸生物合成、代谢循环及其调控的研究进展[J]. 园艺学报, 2023, 50(9): 1899-1915. |
[14] | 何斌, 徐勤超, 戢小梅, 王小玲, 张文东, 程运江, 曾云流. 气调保鲜技术在猕猴桃贮藏保鲜中的应用进展[J]. 园艺学报, 2023, 50(9): 1916-1928. |
[15] | 丁捷, 刘春燕, 黄彭, 李红莹, 陈黎维, 蒲小燕, 刘耀文, 秦文. 蓝莓保鲜技术研究进展[J]. 园艺学报, 2023, 50(9): 1944-1958. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司