https://www.ahs.ac.cn/images/0513-353X/images/top-banner1.jpg|#|苹果
https://www.ahs.ac.cn/images/0513-353X/images/top-banner2.jpg|#|甘蓝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner3.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner4.jpg|#|灵芝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner5.jpg|#|桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner6.jpg|#|黄瓜
https://www.ahs.ac.cn/images/0513-353X/images/top-banner7.jpg|#|蝴蝶兰
https://www.ahs.ac.cn/images/0513-353X/images/top-banner8.jpg|#|樱桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner9.jpg|#|观赏荷花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner10.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner11.jpg|#|月季
https://www.ahs.ac.cn/images/0513-353X/images/top-banner12.jpg|#|菊花

园艺学报 ›› 2025, Vol. 52 ›› Issue (8): 1987-2020.doi: 10.16420/j.issn.0513-353x.2024-0969

• 综述 • 上一篇    下一篇

茉莉酸及其衍生物提高园艺作物采后低温抗性的研究进展

谭筱玉1, 牛军鹏2,3, 王全智1, 张丽2, 朱丽娟2, 王国栋3, 郑贺云4, 郁志芳2, 段玉权5, 姜丽2, 孙秀秀6, 杨瑛7, 罗伟奇6, 李雪晖2, 管乐2, 赵艳岭1, 李国晓1, 殷从飞1, 葛成1, 马敏2, 贾璐婷2, 张旭2, 赵垚垚5,*(), 耿新丽4,*(), 王利斌2,8,*(), 张绍铃2,*()   

  1. 1 江苏农林职业技术学院农学园艺学院, 江苏镇江 212400
    2 南京农业大学, 南京 210095
    3 陕西师范大学生命科学学院, 西安 710119
    4 新疆维吾尔自治区葡萄瓜果研究所, 新疆吐鲁番 838200
    5 中国农业科学院农产品加工研究所, 北京 100193
    6 美国农业部园艺研究实验室, 美国佛罗里达皮尔斯堡 34945
    7 安徽农业大学园艺学院, 合肥 230036
    8 贺州学院食品与生物工程学院, 广西贺州 542899
  • 收稿日期:2025-06-13 修回日期:2025-07-15 出版日期:2025-08-25 发布日期:2025-08-19
  • 通讯作者:
  • 基金资助:
    江苏农林职业技术学院青年扶持项目(2021kj27); 广西自然科学基金项目(2022JJA130045); 国家自然科学基金项目(31872070); 31830081和31701868(31830081); 31830081和31701868(31701868); 2022年度师市科技计划项目(2022XX5); 现代农业产业技术体系建设专项资助(CARS-25); 新疆西甜瓜产业技术体系项目(XJARS-06); 新疆“三农”骨干人才培养项目(2022SNGGGCO010); 江苏农林职业技术学院揭榜挂帅类项目(2023kj114); 江苏农林职业技术学院亚夫科技创新与服务项目(2024kj01); 江苏省青蓝工程优秀青年骨干教师项目(102603054); 江苏农林职业技术学院基金扶持类项目(2017kj05)

Recent Advances in JAs-Induced Improvement of Postharvest Chilling Resistance in Horticultural Crops

TAN Xiaoyu1, NIU Junpeng2,3, WANG Quanzhi1, ZHANG Li2, ZHU Lijuan2, WANG Guodong3, ZHENG Heyun4, YU Zhifang2, DUAN Yuquan5, JIANG Li2, SUN Xiuxiu6, YANG Ying7, LUO Weiqi6, LI Xuehui2, GUAN Le2, ZHAO Yanling1, LI Guoxiao1, YIN Congfei1, GE Cheng1, MA Min2, JIA Luting2, ZHANG Xu2, ZHAO Yaoyao5,*(), GENG Xinli4,*(), WANG Libin2,8,*(), and ZHANG Shaoling2,*()   

  1. 1 School of Agronomy and HorticultureJiangsu Vocational College of Agriculture and Forestry,Zhenjiang, Jiangsu 212499, China
    2 Nanjing Agricultural University, Nanjing 210095, China
    3 College of Life ScienceShaanxi Normal University, Xi’an 710119, China
    4 Research Institute of Grape and Melon of Xinjiang Uygur AutonomousTurpan, Xinjiang 838200, China
    5 Institute of Food Science and TechnologyChinese Academy of Agricultural Sciences, Beijing 100193
    6 U.S. Horticultural Research LaboratoryFt. Pierce, Florida 34945, USA
    7 College of HorticultureAnhui Agricultural University, Hefei 230036, China
    8 School of Food and Biological EngineeringHezhou University,Hezhou, Guangxi 542899, China
  • Received:2025-06-13 Revised:2025-07-15 Published:2025-08-25 Online:2025-08-19

摘要:

园艺作物在0 ~ 15 ℃低温下贮藏会触发一系列复杂的生理与生化反应,破坏细胞膜的完整性、流动性和功能(半透性),导致冷害的发生。为了应对低温胁迫,植物会启动(非)CBF依赖性信号转导通路;其中,CE1-CBF-COR转录级联反应是CBF依赖性信号转导通路的关键环节。此外,一些内源激素如茉莉酸(JA)、乙烯(ETH)和脱落酸(ABA)等也迅速积累,参与植物对低温的应答。JA及其衍生物统称JAs,它们以α-亚麻酸或十六碳三烯酸为底物,经过氧化、环化、还原、β-氧化、修饰与活化等过程生成。JAs合成后与其受体COI1结合,介导阻遏蛋白JAZs的泛素化降解,释放出转录因子MYC2,激活下游信号转导过程,诱发一些生理生化反应(包括增加抗氧化物质合成、提高抗氧化酶活性、抑制膜脂代谢、增强精氨酸代谢、促进能量代谢、激活其他植物激素信号转导通路等),维持细胞膜的完整性、流动性和功能(半透性),提高园艺作物采后抗低温胁迫的能力。近年来,研究发现:(a)MYC2可通过与MYC3和MYC4形成同源或异源二聚体调控下游靶基因的转录;(b)BBX37可独立或协同ICE1一起激活下游CBFs基因的转录;(c)MED16可增强MED25的稳定性,正向调控茉莉酸信号的转录输出等。本文中概述了园艺作物的采后冷害表征,阐述了(非)CBF依赖性信号转导通路对低温胁迫的响应过程,归纳了植物JAs合成、信号传递途径及其调控机制,解析了JAs缓解园艺作物冷害中的应用及作用机制,并系统总结了JAs信号转导途径与(非)CBF依赖性信号转导通路在低温胁迫过程中的关联性,并对未来的研究方向提出了展望。未来的研究方向应聚焦于:(a)深入发掘和验证JAs信号转导途径与(非)CBF依赖性信号转导通路的关联性;(b)揭示基因转录后加工和蛋白翻译后修饰在JAs合成或信号转导过程中的作用;(c)探索JAs与其他植物内源激素抵抗低温胁迫的协同作用;(d)解析新发现组件(MYC3/4、MED16、BBX37等)在低温响应过程中的机制。

关键词: 采后, 低温胁迫, (非)CBF依赖信号转导通路, JAs合成和信号转导途径, 调控机制, 关联性

Abstract:

Low-temperature(0-15 ℃)storage would trigger a series of the complicated physio- biochemical reactions in horticulture crops,damage the integrity,fluidity,and functionality (semi-permeability)of cell membranes,thereby causing chilling injury. To mitigate chilling damage,the CBF-(in)dependent signal transduction pathways are initiated in plants;among them,the CE1-CBF-COR transcriptional cascade is of great importance in the CBF-dependent signal transduction pathway. In addition,some endogenous hormones such as jasmonic acid(JA),ethylene(ETH)and abscisic acid(ABA) also rapidly accumulate during plant response to low temperature. JA and its derivatives are collectively referred to as JAs,which are formed after oxidation,cyclization,reduction,β-oxidation,modification and activation of α-linolenic acid or hexadecatrienoic acid. Upon JAs synthesis followed by perception by COI1,the transcription factor MYC2 is released from the repressor protein JAZs,which was ubiquitinated for degradation,to activate the downstream signal transduction process,causing the induction of several physio-biochemical alternations(including increment of antioxidant biosynthesis,improvement of antioxidant enzyme activity,inhibition of lipid metabolism,enhancement of arginine metabolism,promotion of energy metabolism,and activation of other plant hormone signal transduction pathways). The abovementioned responses would help to maintain the integrity,fluidity,and functionality(semi-permeability)of cell membrane,and thus improve the capacity of horticultural crops postharvest to resist low temperature stress. In recent years,studies have revealed that:(a)MYC2 regulates the transcription of downstream target genes by forming homodimers or heterodimers with MYC3 and MYC4;(b)BBX37 can activate the transcription of downstream CBFs genes independently or in synergy with ICE1;(c)MED16 enhances the stability of MED25,positively regulating the transcriptional output of JAs signaling,among other functions. This paper first elaborates on the characteristics of postharvest chilling injury in horticultural crops,reviews the roles of CBF-(in)dependent signal transduction pathways in plant responses to low-temperature stress,summarizes the biosynthesis,signaling pathways,and regulatory mechanisms of JAs,and introduces the applications and mechanisms of action of JAs in alleviating chilling injury in horticultural crops. Based on these,this paper systematically summarizes the association between the JAs signaling pathway and CBF-(in)dependent signal transduction pathways during low-temperature stress and proposes future research directions. Future research directions should focus on:(a)delving deeper into and validating the associations between JAs signaling pathways and CBF-(in)dependent signaling cascades;(b)elucidating the roles of post-transcriptional processing of genes and post-translational modifications of proteins in the synthesis or signaling transduction of JAs;(c)exploring the synergistic effects of JAs with other endogenous plant hormones in resistance to low temperature stress;and(d)dissecting the mechanisms of newly discovered components(MYC3/4,MED16,BBX37,etc.)in the low temperature response process.

Key words: postharvest, low-temperature stress, CBF-(in)dependent signaling pathways, JAs biosynthetic and transduction pathways, regulatory mechanisms, relationship