[1] |
Azpeitia E, Tichtinsky G, Le Masson M, Serrano-Mislata A, Lucas J, Gregis V, Gimenez C, Prunet N, Farcot E, Kater M M, Bradley D, Madueño F, Godin C, Parcy F. 2021. Cauliflower fractal forms arise from perturbations of floral gene networks. Science, 373 (6551):192-197.
doi: 10.1126/science.abg5999
pmid: 34244409
|
[2] |
Belser C, Istace B, Denis E, Dubarry M, Baurens F C, Falentin C, Genete M, Berrabah W, Chèvre A M. 2018. Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nature Plants,4:879-887.
|
[3] |
Blümel M, Dally N, Jung C. 2015. Flowering time regulation in crops-what did we learn from Arabidopsis? Current Opinion in Biotechnology,32:121-129.
|
[4] |
Cao W, Cao B, Wang X, Bai J, Xu Y, Zhao J, Li X, He Y, Hu S. 2020. Alternatively spliced BobCAL transcripts alter curd morphotypes in a collection of Chinese cauliflower accessions. Horticulture Research, 7 (1):160.
|
[5] |
Chen R, Chen K, Yao X, Zhang X, Yang Y, Su X, Lyu M, Wang Q, Zhang G, Wang M, Li Y, Duan L, Xie T, Li H, Yang Y, Zhang H, Guo Y, Jia G, Ge X, Sarris P, Sun D. 2024. Genomic analyses reveal the stepwise domestication and genetic mechanism of curd biogenesis in cauliflower. Nature Genetics, 56 (6):1235-1244.
doi: 10.1038/s41588-024-01744-4
pmid: 38714866
|
[6] |
Chiu L, Zhou X, Burke S, Wu X, Prior R, Li L. 2010. The purple cauliflower arises from activation of a MYB transcription factor. Plant Physiology, 154 (3):1470-1480.
doi: 10.1104/pp.110.164160
pmid: 20855520
|
[7] |
Gao Jing, Qin Mengfan, Li Kun, Li Wu. 2024. Visualization analysis of research progress on genetic characteristics of yield traits in maize. Chinese Agricultural Science Bulletin, 40 (16):156-164. (in Chinese)
doi: 10.11924/j.issn.1000-6850.casb2024-0032
|
|
高婧, 秦梦凡, 李坤, 李武. 2024. 玉米产量性状遗传特性研究进展的可视化分析. 中国农学通报, 40 (16):156-164.
doi: 10.11924/j.issn.1000-6850.casb2024-0032
|
[8] |
Guo N, Wang S, Gao L, Liu Y, Wang X, Lai E, Duan M, Wang G, Li J, Yang M, Zong M, Han S, Pei Y, Borm T, Sun H, Miao L, Liu D, Yu F, Zhang W, Ji H, Zhu C, Xu Y, Bonnema G, Li J, Fei Z, Liu F. 2021. Genome sequencing sheds light on the contribution of structural variants to Brassica oleracea diversification. BMC Biology, 19 (1):93.
|
[9] |
He Q, Zhi H, Tang S, Xing L, Wang S, Wang H, Zhang A, Li Y, Gao M, Zhang H, Chen G, Dai S, Li J, Yang J, Liu H, Zhang W, Jia Y, Li S, Liu J, Qiao Z, Guo E, Jia G, Liu J, Diao X. 2021. QTL mapping for foxtail millet plant height in multi-environment using an ultra-high density bin map. Theoretical and Applied Genetics,134:557-72.
|
[10] |
Jia Junzhong, Tian Liping, Xue Lin, Wei Yinong. 2010. Dynamic QTL and correlated characters of tomato soluble solid content. Hereditas (Beijing), 32 (10):1077-1083. (in Chinese)
|
|
贾俊忠, 田丽萍, 薛琳, 魏亦农. 2010. 番茄可溶性固形物的动态QTL及相关性状. 遗传, 32 (10):1077-1083.
|
[11] |
Kempin S, Savidge B, Yanofsky M. 1995. Molecular basis of the cauliflower phenotype in Arabidopsis. Science, 267 (5197):522-525.
doi: 10.1126/science.7824951
pmid: 7824951
|
[12] |
Li N, Yang R, Shen S X, Zhao J J. 2024. Molecular mechanism of flowering time regulation in Brassica rapa:similarities and differences with Arabidopsis. Horticultural Plant Journal, 10 (3):615-628.
|
[13] |
Li Xixiang, Fang Zhiyuan. 2008. Descriptors and data standard for cauliflower(Brassica oleracea L. var. botrytis L. and Brassica oleracea L. var. italica Plenck). Beijing: China Agricultural Press:58-60. (in Chinese).
|
|
李锡香, 方智远. 2008. 花椰菜和青花菜种质资源描述规范和数据标准. 北京: 中国农业出版社:58-60.
|
[14] |
Mackay T. 2009. Q & A:genetic analysis of quantitative traits. Journal of Biology,83:23.
|
[15] |
Shan H Y, Cheng J, Zhang R, Yao X, Kong H Z. 2019. Developmental mechanisms involved in the diversification of flowers. Nature Plants,5:917-923.
|
[16] |
Shen Y, Yang Y, Xu E, Ge X, Xiang Y, Li Z. 2018. Novel and major QTL for branch angle detected by using DH population from an exotic introgression in rapeseed(Brassica napus L.). Theoretical and Applied Genetics,131:67-78.
|
[17] |
Sheng X, Cai S, Shen Y, Yu H, Wang J, Qiao S, Lin F, Gu H. 2024. QTL analysis and fine mapping of a major QTL and identification of candidate genes controlling curd setting height in cauliflower. Vegetable Research,4:e008
|
[18] |
Smith L, King G. 2000. The distribution of BoCAL-a alleles in Brassica oleracea is consistent with a genetic model for curd development and domestication of the cauliflower. Molecular Breeding, 6 (6):603-613.
|
[19] |
Sun Deling, Yao Xingwei, Chen Rui, Yang Yingxia, Shan Xiaozheng. 2025. Review and prospects of cauliflower breeding during the past 50 years in China. Acta Horticulturae Sinica, 52 (5):1159-1179. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2025-0177
|
|
孙德岭, 姚星伟, 陈锐, 杨迎霞, 单晓政. 2025. 国花椰菜育种50 年回顾与进展. 园艺学报, 52 (5):1159-1179.
doi: 10.16420/j.issn.0513-353x.2025-0177
|
[20] |
Tan H, Wang X, Fei Z, Li H, Tadmor Y, Mazourek M, Li L. 2020. Genetic mapping of green curd gene Gr in cauliflower. Theoretical and Applied Genetics, 133 (1):353-364.
doi: 10.1007/s00122-019-03466-2
pmid: 31676958
|
[21] |
Wang X, Han B, Sun Y, Kang X, Zhang M, Han H, Zhou S, Liu W, Lu Y, Yang X, Li X, Zhang J, Liu X, Li L. 2022. Introgression of chromosome 1P from Agropyron cristatum reduces leaf size and plant height to improve the plant architecture of common wheat. Theoretical and Applied Genetics,135:1951-1963.
|
[22] |
Wen Songqin, Li Jialin, Chi Zhuoheng, Xia Yan, Wang Shuming, Wu Di, Hao Yawen, Guo Qigao, Liang Guolu, Jing Danlong. 2024. The role of light and temperature related genes alternative splicing in regulating plant flowering time. Acta Horticulturae Sinica, 51 (8):1949-1963. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2023-0946
|
|
文宋琴, 李佳霖, 池卓恒, 夏燕, 王淑明, 吴頔, 郝雅雯, 郭启高, 梁国鲁, 景丹龙. 2024. 光和温度对开花时间基因可变剪接的影响研究进展. 园艺学报, 51 (8):1949-1963.
|
[23] |
Xin X Y, Li P R, Zhao X Y, Yu Y J, Wang W H, Jin G H, Wang J H, Sun L L, Zhang D H, Zhang F L, Yu S C, Su T B. 2024. Temperature- dependent jumonji demethylase modulates flowering time by targeting H3K36me2/ 3 in Brassica rapa. Nature Communication, 15 (1):5470.
|
[24] |
Shi Y, Song B, Liang Q, Su D, Lu W, Liu Y, Li Z. 2023. Molecular regulatory events of flower and fruit abscission in horticultural plants. Horticultural Plant Journal, 9 (5):867-883.
|
[25] |
Zhang C, Zhou Q, Liu W, Wu X, Li Z, Xu Y, Li Y, Imaizumi T, Hou X, Liu T. 2022. BrABF3 promotes flowering through the direct activation of CONSTANS transcription in Pak Choi. Plant Journal, 111 (1):134-148.
|
[26] |
Zhao J, Becker H, Ding H, Zhang Y, Zhang D, Ecke W. 2005. QTL of three agronomically important traits and their interactions with environment in a European × Chinese rapeseed population. Acta Genetica Sinica, 32 (9):969-978.
|
[27] |
Zhao Z, Sheng X, Yu H, Wang J, Shen Y, Gu H. 2020a. Identification of candidate genes involved in curd riceyness in cauliflower. International Journal of Molecular Sciences,21:1999.
|
[28] |
Zhao Z, Sheng X, Yu H, Wang J, Shen Y, Gu H. 2020b. Identification of QTLs associated with curd architecture in cauliflower. BMC Plant Biology,20:117.
|
[29] |
Zhou X, Sun T, Wang N, Ling H, Lu S, Li L. 2011. The cauliflower Orange gene enhances petiole elongation by suppressing expression of eukaryotic release factor 1. New Phytologist, 190 (1):89-100.
|
[30] |
Zu Feng, Zhao Kaiqin, Zhang Yunyun, Tian Zhengshu, Liu Yajun, Xi Junyu, Su Zhengqi, Fu Minglian. 2019. QTL mapping of flowering time and maturity time in Brassica napus L. Journal of Southern Agriculture, 50 (3):500-505. (in Chinese)
|
|
俎峰, 赵凯琴, 张云云, 田正书, 刘亚俊, 奚俊玉, 束正齐, 符明联. 2019. 甘蓝型油菜的花期与生育期QTL定位. 南方农业学报, 50 (3):500-505.
|