[1] |
Andersson M, Turesson H, Nicolia A, Fält A S, Samuelsson M, Hofvander P. 2017. Efficient targeted multiallelic mutagenesis in tetraploid potato(Solanum tuberosum)by transient CRISPR-Cas9 expression in protoplasts Plant Cell Report, 36 (1):117-128.
|
[2] |
Butler N M, Douches D S. 2016. Sequence-specific nucleases for genetic improvement of potato. American Journal of Potato Research, 93 (4):303-320.
|
[3] |
Butler N M, Jansky S H, Jiang J M. 2020. First-generation genome editing in potato using hairy root transformation. Plant Biotechnology Journal, 18 (11):2201-2209.
|
[4] |
Čermák T, Curtin S J, Gil-Humanes J, Čegan R, Kono T J Y, Konečná E, Belanto J J, Starker C G, Mathre J W, Greenstein R L, Voytas D F. 2017. A multipurpose toolkit to enable advanced genome engineering in plants. The Plant Cell, 29 (6):1196-1217.
doi: 10.1105/tpc.16.00922
pmid: 28522548
|
[5] |
Chincinska I A, Miklaszewska M, Soltys-Kalina D. 2023. Recent advances and challenges in potato improvement using CRISPR/Cas genome editing. Planta, 257 (1):25.
|
[6] |
Cui D, Huo S S, Wang X, Zheng Z Q, Zhang Y H, Zhang J L, Zhong F. 2020. Establishment of canine macrophages stably expressing GFP-tagged canine LC 3 protein for effectively detecting autophagy. Molecular and Cellular Probes, 49 (1):101493.
|
[7] |
Dangol S D, Barakate A, Stephens J, Caliskan M E, Bakhsh A. 2019. Genome editing of potato using CRISPR technologies:current development and future prospective. Plant Cell,Tissue and Organ Culture, 139 (2):403-416.
|
[8] |
Du Jingya, Chen Kaiyuan, Pu Jin, Zhou Huiying, Zhu Guangtao, Zhang Chunzhi, Du Hui. 2023. The modification of gene editing vector for efficient GFPuv fluorescence screening and it’s application in potato genetic transformation. Scientia Agriculture Sinica, 56 (11):2223-2236. (in Chinese)
|
|
杜静雅, 陈凯园, 普金, 周会英, 祝光涛, 张春芝, 杜慧. 2023. 高效GFPuv荧光筛选基因编辑载体的改造及其在马铃薯遗传转化中的应用. 中国农业科学, 56 (11):2223-2236.
|
[9] |
Halterman D, Guenthner J, Collinge S, Butler N, Douches D. 2016. Biotech potatoes in the 21st century:20 years since the first biotech potato. American Journal of Potato Research, 93 (1):1-20.
|
[10] |
Honma Y, Yamakawa T. 2019. High expression of GUS activities in sweet potato storage roots by sucrose-inducible minimal promoter. Plant Cell Report, 38 (11):1417-1426.
|
[11] |
Hraška M, Rakouský S, Čurn V. 2006. Green fluorescent protein as a vital marker for non-destructive detection of transformation events in transgenic plants. Plant Cell,Tissue and Organ Culture, 86 (3):303-318.
|
[12] |
Josefa M A, Cristina M L, Félix J M R, Fernando T, Mustafa B, Saleh A. 2023. Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein and hairy roots:a perfect match for gene functional analysis and crop improvement. Current Opinion in Biotechnology, 79 (1):102876.
|
[13] |
Kiryushkin A S, Ilina E L, Guseva E D, Pawlowski K, Demchenko K N. 2021. Hairy CRISPR:genome editing in plants using hairy root transformation. Plants(Basel), 11 (1):51.
|
[14] |
Lin C S, Hsu C T, Yang L H, Lee L Y, Fu J Y, Cheng Q W, Wu F H, Hsiao H C W, Zhang Y S, Zhang R, Chang W J, Yu C T, Wang W, Liao L J, Gelvin S B, Shih M C. 2018. Application of protoplast technology to CRISPR/Cas 9 mutagenesis:from single-cell mutation detection to mutant plant regeneration. Plant Biotechnology Journal, 16 (7):1295-1310.
|
[15] |
Liu Guangyu, Xu Xiaojing, Xia Keke, Sun Haixi, Tao Yueru, Cui Zhen, Gu Ying. 2022. Optimization of CRISPR/Cas 9 genome editing systems in protoplasts of Setaria italica. Journal of Henan Agricultural Sciences, 51 (1):34-42. (in Chinese)
|
|
刘光宇, 徐晓静, 夏科科, 孙海汐, 陶月如, 崔震, 顾颖. 2022. 基于原生质体的谷子CRISPR/Cas9 基因编辑系统优化. 河南农业科学, 51 (1):34-42.
|
[16] |
Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho M J, Scelonge C, Lenderts B, Chamberlin M, Cushatt J, Wang L J, Ryan L, Khan T, Chow-Yiu J, Hua W, Yu M, Banh J, Bao Z M, Brink K, Igo E, Rudrappa B, Shamseer P, Bruce W, Newman L, Shen B, Zheng P Z, Bidney D, Falco C, Register J, Zhao Z Y, Xu D P, Jones T, Kamm W G. 2016. Morphogenic regulators baby boom and wuschel improve monocot transformation. The Plant Cell, 28 (9):1998-2015.
|
[17] |
Lu Chenfei, Gao Yuexia, Huang He, Dai Silan. 2022. Carotenoid metabolism and regulation in plants. Acta Horticulturae Sinica, 49 (12):2559-2578. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2021-0531
|
|
陆晨飞, 高月霞, 黄河, 戴思兰. 2022. 植物类胡萝卜素代谢及调控研究进展. 园艺学报, 49 (12):2559-2578.
doi: 10.16420/j.issn.0513-353x.2021-0531
|
[18] |
Ow D W, De Wet J R, Helinski D R, Howell S H, Wood K V, Deluca M. 1986. Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science, 234 (4778):856-859.
doi: 10.1126/science.234.4778.856
pmid: 17758108
|
[19] |
Poddar S, Tanaka J, Cate J H D, Staskawicz B, Cho M J. 2020. Efficient isolation of protoplasts from rice calli with pause points and its application in transient gene expression and genome editing assays. Plant Methods, 16 (1):151.
doi: 10.1186/s13007-020-00692-4
pmid: 33292393
|
[20] |
Ramessar K, Peremarti A, Gómez-Galera S, Naqvi S, Moralejo M, Muñoz P, Capell T, Christou P. 2007. Biosafety and risk assessment framework for selectable marker genes in transgenic crop plants:a case of the science not supporting the politics. Transgenic Research, 16 (3):261-280.
doi: 10.1007/s11248-007-9083-1
pmid: 17436060
|
[21] |
Ron M, Kajala K, Pauluzzi G, Wang D X, Reynoso M A, Zumstein K, Garcha J, Winte S, Masson H, Inagki S, Federici F, Sinha N, Deal R B, Bailey-Serres J, Brady S M. 2014. Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiology, 166 (2):455-469.
doi: 10.1104/pp.114.239392
|
[22] |
Song Qianna, Duan Yonghong, Feng Ruiyun. 2024. Establishment of CRISPR/Cas9-mediated highly efficient gene editing system in microtubers of potatoes. Biotechnology Bulletin, 40 (9):33-41. (in Chinese)
doi: 10.13560/j.cnki.biotech.bull.1985.2024-0536
|
|
宋倩娜, 段永红, 冯瑞云. 2024. CRISPR/Cas9介导的高效四倍体马铃薯试管薯基因编辑体系的建立. 生物技术通报, 40 (9):33-41.
doi: 10.13560/j.cnki.biotech.bull.1985.2024-0536
|
[23] |
Stauber R H, Horie K, Carney P, Hudson E A, Tarasova N I, Gaitanaris G A, Pavlakis G N. 1998. Development and applications of enhanced green fluorescent protein mutants. Biotechniques, 24 (3):462-466,468-471.
pmid: 9526659
|
[24] |
Sundar I K, Sakthivel N. 2008. Advances in selectable marker genes for plant transformation. Journal of Plant Physiology, 165 (16):1698-1716.
doi: 10.1016/j.jplph.2008.08.002
pmid: 18789557
|
[28] |
Wang S J, Wang G, Li H L, Li F, Wang J B. 2023. Agrobacterium tumefaciens-mediated transformation of embryogenic callus and CRISPR/ Cas9-mediated genome editing in‘Feizixiao’litchi. Horticultural Plant Journal, 9 (5):947-957.
|
[29] |
Yang H M, Baker S F, Gonzalez M E, Topham D J, Martínez-Sobrido L, Zand M, Holden-Wiltse J, Wu H L. 2016. An improved method for estimating antibody titers in microneutralization assay using green fluorescent protein. Journal of Biopharmaceutical Statistics, 26 (3):409-420.
doi: 10.1080/10543406.2015.1052475
pmid: 26010892
|
[30] |
Ye M W, Yao M F, Li C H, Gong M. 2023. Salt and osmotic stress can improve the editing efficiency of CRISPR/Cas9-mediated genome editing system in potato. Peer Journal, 11 (1):e15771.
|
[31] |
Yin K Q, Gao C X, Qiu J L. 2017. Progress and prospects in plant genome editing. Nature Plants, 3 (8):17107.
|
[32] |
Zhang Q X, Walawage S L, Tricoli D M, Dandekar A M, Leslie C A. 2015. A red fluorescent protein(DsRED)from Discosoma sp. as a reporter for gene expression in walnut somatic embryos. Plant Cell Report, 34 (5):861-869.
|
[33] |
Zhang Y, Massel K, Godwin I D, Gao C X. 2019. Applications and potential of genome editing in crop improvement. Genome Biology, 20 (1):13.
doi: 10.1186/s13059-019-1622-6
pmid: 30651124
|
[25] |
Takahashi Y, Kinoshita T, Matsumoto M, Shimazaki K. 2016. Inhibition of the Arabidopsis bHLH transcription factor by monomerization through abscisic acid-induced phosphorylation. The Plant Journal, 87 (6):559-567.
doi: 10.1111/tpj.13217
pmid: 27227462
|
[26] |
Wang H Y, Zheng Y S, Zhou Q, Li Y, Liu T K, Hou X L. 2024. Fast,simple,efficient Agrobacterium rhizogenes-mediated transformation system to non-heading Chinese cabbage with transgenic roots. Horticultural Plant Journal, 10 (2):450-460.
|
[27] |
Wang J, Su H Y, Wu Z B, Wang W S, Zhou Y B, Li M F. 2022. Integrated metabolites and transcriptomics at different growth stages reveal polysaccharide and flavonoid biosynthesis in Cynomorium songaricum. International Journal of Molecular Sciences, 23 (18):10675.
|