园艺学报 ›› 2022, Vol. 49 ›› Issue (11): 2502-2518.doi: 10.16420/j.issn.0513-353x.2022-0486
彭银霞1, 张颖1, 朱康友1, 孙鑫3, 张克敏4, 孙周平1, 齐明芳1, 李天来1,2, 王峰1,2,*()
收稿日期:
2022-06-09
修回日期:
2020-09-29
出版日期:
2022-11-25
发布日期:
2022-11-25
通讯作者:
王峰
E-mail:fengwang@syau.edu.cn
基金资助:
PENG Yinxia1, ZHANG Ying1, ZHU Kangyou1, SUN Xin3, ZHANG Kemin4, SUN Zhouping1, QI Mingfang1, LI Tianlai1,2, WANG Feng1,2,*()
Received:
2022-06-09
Revised:
2020-09-29
Online:
2022-11-25
Published:
2022-11-25
Contact:
WANG Feng
E-mail:fengwang@syau.edu.cn
摘要:
总结了光对园艺作物抗坏血酸生物合成与代谢的调控作用,解析了光合作用和呼吸作用间的相互作用对抗坏血酸合成和代谢的影响,重点阐明了光调节关键因子对园艺作物抗坏血酸生物合成的调控机制和信号网络,以期为解析光调控植物抗坏血酸生物合成和代谢的分子机制及调控网络奠定理论基础,为利用基因工程和LED补光技术增加园艺作物抗坏血酸含量和培育功能性园艺产品提供理论和实践指导。
中图分类号:
彭银霞, 张颖, 朱康友, 孙鑫, 张克敏, 孙周平, 齐明芳, 李天来, 王峰. 园艺作物抗坏血酸生物合成中光的调控作用研究综述[J]. 园艺学报, 2022, 49(11): 2502-2518.
PENG Yinxia, ZHANG Ying, ZHU Kangyou, SUN Xin, ZHANG Kemin, SUN Zhouping, QI Mingfang, LI Tianlai, WANG Feng. Light Regulation of Ascorbic Acid Biosynthesis in Horticultural Crops[J]. Acta Horticulturae Sinica, 2022, 49(11): 2502-2518.
图1 植物抗坏血酸生物合成与代谢途径 HXK:己糖激酶;PGI:磷酸葡萄糖异构酶;PMI:磷酸甘露糖异构化;PMM:磷酸甘露糖突变酶;GMP:GDP-甘露糖焦磷酸化酶;GME:GDP-甘露糖-3,5-差向异构酶;GGP:GDP-L-半乳糖磷酸化酶;GPP:L-半乳糖-1-磷酸磷酸酶;GalDH:L-半乳糖脱氢酶;GLDH:L-半乳糖-1,4-内酯脱氢酶;GalUR:半乳糖醛酸还原酶;MIOX:肌醇加氧酶;APX:抗坏血酸过氧化物酶;MDAR:单脱氢抗坏血酸还原酶;AO:抗坏血酸氧化酶;GR:谷胱甘肽还原酶;DHAR:脱氢抗坏血酸还原酶;GSH:谷胱甘肽;GSSG:氧化型谷胱甘肽。数字代表AsA合成及代谢步骤。
Fig. 1 Biosynthetic and metabolic pathway of ascorbic acid in plants HXK:hexokinase;PGI:phosphoglucose isomerase;PMI:phosphomannose isomerase;PMM:phosphomannomutase;GMP:GDP-D-mannose pyrophosphorylase;GME:GDP-D-mannose 3’,5’-epimerase;GGP:GDP-L-galactose phosphorylase;GPP:L-galactose-1-P phosphatase;GalDH:L-galactose dehydrogenase;GLDH:L-galactono-1,4-lactone dehydrogenase;GalUR:D-galacturonate reductase;MIOX:myo-inositol oxygenase;APX:ascorbate peroxidase;MDAR:monodehydroascorbate reductase;AO:ascorbate oxidase;GR:glutathione reductase;DHAR:dehydroascorbate reductase;GSH:glutathione;GSSG:oxidized glutathione. Numbers represent AsA synthetic and metabolic steps.
编号 Code | 酶 Enzyme | 缩写 Abbreviation | 基因编号 ccession number | 参考文献 Reference |
---|---|---|---|---|
1 | 己糖激酶Hexokinase | HXK | At1g50460,At3g20040,At4g29130,At2g19860,At1g47840 | 2009 |
2 | 磷酸葡萄糖异构酶Phosphoglucoisomerase | PGI | At5g42740,At4g24620 | 2009 |
3 | 磷酸甘露糖异构化Phosphomannose isomerise | PMI | At1g67070,At3g02570 | 2008 |
4 | 磷酸甘露糖突变酶Phosphomannomutase | PMM | At2g45790 | 2008 |
5 | GDP-甘露糖焦磷酸化酶 GDP-mannose pyrophosphorylase | GMP/VTC1 | At2g39770,At3g55590,At4g30570,At1g74910 | 2000 |
6 | GDP-甘露糖-3,5-差向异构酶 GME GDP-mannose-3,5-epimerase | GME | At5g28840 | 2007 |
7 | GDP-L-半乳糖磷酸化酶 GDP-L-galactose phosphorylase | GGP/VTC2/ VTC5 | At4g26850,At5g55120 | Wolucka & van 2003 |
8 | L-半乳糖-1-磷酸磷酸酶 L-Galactose-1-phosphate phosphatase | GPP/VTC4 | At3g02870 | 2009 |
9 | L-半乳糖脱氢酶L-Galactose dehydrogenase | GalDH | At4g33670 | 1998 |
10 | L-半乳糖-1,4-内酯脱氢酶 L-Galactono-1,4-lactone dehydrogenase | GLDH | At3g47930 | 2005 |
11 | 半乳糖醛酸还原酶L-galactose dehydrogenase | GaIUR | At4g33670 | 2012 |
12 | 肌醇加氧酶Inositol oxygenase 4 | MIOX4 | At4g26260 | 2012 |
13 | 单脱氢抗坏血酸还原酶 Monodehydro ascorbate reductase | MDAR | At1g63940,At3g52880,At3g27820,At5g03630,At3g09940 | 2003 |
14 | 抗坏血酸过氧化物酶Ascorbate peroxidase | APX | At1g07890,At1g77490,At3g09640,At4g32320,At4g35970,At4g09010 At4g35000,At4g08390 | 2011 |
15 | 抗坏血酸氧化酶Ascorbate Oxidase | AO | At4g39830,At5g21105,At5g21100,At5g48450 | 1984 |
16 | 脱氢抗坏血酸还原酶 Dehydro ascorbate reductase | DHAR | At1g19570,At1g19550,At1g75270,At5g16710,At5g36270 | 2006 |
17 | 谷胱甘肽还原酶Glutathione reductase | GR | At3g24170,At3g54660 | 1998 |
表1 植物抗环血酸生物合成与代谢途径相关基因
Table 1 Ascorbic acid biosynthesis and metabolic pathway related genes in plants
编号 Code | 酶 Enzyme | 缩写 Abbreviation | 基因编号 ccession number | 参考文献 Reference |
---|---|---|---|---|
1 | 己糖激酶Hexokinase | HXK | At1g50460,At3g20040,At4g29130,At2g19860,At1g47840 | 2009 |
2 | 磷酸葡萄糖异构酶Phosphoglucoisomerase | PGI | At5g42740,At4g24620 | 2009 |
3 | 磷酸甘露糖异构化Phosphomannose isomerise | PMI | At1g67070,At3g02570 | 2008 |
4 | 磷酸甘露糖突变酶Phosphomannomutase | PMM | At2g45790 | 2008 |
5 | GDP-甘露糖焦磷酸化酶 GDP-mannose pyrophosphorylase | GMP/VTC1 | At2g39770,At3g55590,At4g30570,At1g74910 | 2000 |
6 | GDP-甘露糖-3,5-差向异构酶 GME GDP-mannose-3,5-epimerase | GME | At5g28840 | 2007 |
7 | GDP-L-半乳糖磷酸化酶 GDP-L-galactose phosphorylase | GGP/VTC2/ VTC5 | At4g26850,At5g55120 | Wolucka & van 2003 |
8 | L-半乳糖-1-磷酸磷酸酶 L-Galactose-1-phosphate phosphatase | GPP/VTC4 | At3g02870 | 2009 |
9 | L-半乳糖脱氢酶L-Galactose dehydrogenase | GalDH | At4g33670 | 1998 |
10 | L-半乳糖-1,4-内酯脱氢酶 L-Galactono-1,4-lactone dehydrogenase | GLDH | At3g47930 | 2005 |
11 | 半乳糖醛酸还原酶L-galactose dehydrogenase | GaIUR | At4g33670 | 2012 |
12 | 肌醇加氧酶Inositol oxygenase 4 | MIOX4 | At4g26260 | 2012 |
13 | 单脱氢抗坏血酸还原酶 Monodehydro ascorbate reductase | MDAR | At1g63940,At3g52880,At3g27820,At5g03630,At3g09940 | 2003 |
14 | 抗坏血酸过氧化物酶Ascorbate peroxidase | APX | At1g07890,At1g77490,At3g09640,At4g32320,At4g35970,At4g09010 At4g35000,At4g08390 | 2011 |
15 | 抗坏血酸氧化酶Ascorbate Oxidase | AO | At4g39830,At5g21105,At5g21100,At5g48450 | 1984 |
16 | 脱氢抗坏血酸还原酶 Dehydro ascorbate reductase | DHAR | At1g19570,At1g19550,At1g75270,At5g16710,At5g36270 | 2006 |
17 | 谷胱甘肽还原酶Glutathione reductase | GR | At3g24170,At3g54660 | 1998 |
图2 光信号调控植物抗坏血酸合成的信号网络 ERF98:乙烯响应因子98;CSN5B:COP9 signalosome subunit 5B;CSN8:COP9 signaling complex subunit 8;ZF3:Cys2/His2型锌蛋白;KJC1/2:核苷糖焦磷酸蛋白;VTC1:GDP-D-甘露糖焦磷酸化酶;VTC2:GDP-L-半乳糖磷酸化酶;HZ24:HD-ZIP I;ABI4:脱落酸不敏感4;HY5:光信号转录因子;CML10:钙调蛋白;AMR1:抗坏血酸甘露糖途径调节剂1;AMR1L1:AMR1类似蛋白;GBF3:GBF3转录因子;MYBS1:MYBS转录因子;bHLH59:碱性螺旋—环—螺旋蛋白59;NFYA10:血红素激活蛋白;PMM:磷酸甘露糖突变酶;VTC4:L-半乳糖-1-磷酸磷酸酶;GLDH:L-半乳糖-1,4-内酯脱氢酶;GME:GDP-甘露糖-3’,5’差向异构酶;GGP:GDP-L-半乳糖磷酸化酶;D-mal/L-gal pathway:D-甘露糖和L-半乳糖途径;
Fig. 2 Signal networks of light signaling regulation of ascorbic acid biosynthesis in plants ERF98:Ethylene response factor 98;CSN5B:COP9 signalosome subunit 5B;CSN8:COP9 signaling complex subunit 8;ZF3:Cys2/His2-type zinc-finger 3;KJC1/2:KONJAC1/2;VTC:L-galactose-1-phosphate phosphatase,GPP/VTC;HZ24:HD-ZIP I;ABI4:Abscisic acid insensitive 4;HY5:Long hypocotyl 5;CML10:Calmodulin-like 10;AMR1:Ascorbate mannose pathway modulator 1;AMR1L1:Ascorbate mannose pathway modulator 1 like 1;GBF3:G-box binding factor 3;MYBS1:myeloblastosis(MYB)S1;bHLH59:Basic helix-loop-helix protein 59;NFYA10:Nuclear factor Y-box 10;PMM:Phosphomannomutase;VTC4:L-galactose-1-phosphate phosphatase;GLDH:L-galactose-1,4-lactone dehydrogenase;GME:GDP-D-mannose 3’,5’-epimerase;GGP,GDP-L-galactose phosphorylase.
[1] |
Agius F, Amaya I, Botella M A, Valpuesta V. 2005. Functional analysis of homologous and heterologous promoters in strawberry fruits using transient expression. Journal of Experimental Botany, 56 (409):37-46.
doi: 10.1093/jxb/eri004 pmid: 15533885 |
[2] |
Agius F, González-Lamothe R, Caballero J L, Muñoz-Blanco J, Botella M A, Valpuesta V. 2003. Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nature Biotechnology, 21 (2):177-181.
doi: 10.1038/nbt777 pmid: 12524550 |
[3] |
Badejo A A, Wada K, Gao Y, Maruta T, Sawa Y, Shigeoka S, Ishikawa T. 2012. Translocation and the alternative D-galacturonate pathway contribute to increasing the Ascorbate level in ripening tomato fruits together with the D-mannose/L-galactose pathway. Journal of Experimental Botany, 63 (1):229-239.
doi: 10.1093/jxb/err275 pmid: 21984649 |
[4] |
Bartoli C G, Pastori G M, Foyer C H. 2000. Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes III and IV. Plant Physiology, 123 (1):335-344.
pmid: 10806250 |
[5] |
Bartoli C G, Tambussi E A, Diego F, Foyer C H. 2009. Control of ascorbic acid synthesis and accumulation and glutathione by the incident light red/far red ratio in Phaseolus vulgaris leaves. FEBS Letters, 583 (1):118-122.
doi: 10.1016/j.febslet.2008.11.034 pmid: 19059408 |
[6] |
Bartoli C G, Yu J, Gomez F, Fernández L, McIntosh L, Foyer C H. 2006. Interrelationships between light and respiration in the control of ascorbic acid synthesis and accumulation in Arabidopsis thaliana leaves. Journal of Experimental Botany, 57 (8):1621-1631.
pmid: 16714304 |
[7] |
Bienger I, Schopfer P. 1970. Photomodulation by phytochrome of the rate of accumulation of ascorbic acid in mustard seedlings(Sinapis alba L.). Planta, 93 (2):152-159.
doi: 10.1007/BF00387122 pmid: 24496710 |
[8] |
Bulley M, Rassam M, Hoser D, Otto W, Schünemann N, Wright M, MacRae E, Gleave A, Laing W. 2009. Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-L-galactose guanyl transferase is a major control point of vitamin C biosynthesis. Journal of Experimental Botany, 60 (3):765-778.
doi: 10.1093/jxb/ern327 pmid: 19129165 |
[9] |
Bulley S, Wright M, Rommens C, Yan H, Rassam M, Wang K L, Andre C, Brewster D, Karunairetnam S, Allan A C, Laing W A. 2012. Enhancing ascorbate in fruits and tubers through over-expression of the L-galactose pathway gene GDP-L-galactose phosphorylase. Plant Biotechnology Journal, 10 (4):390-397.
doi: 10.1111/j.1467-7652.2011.00668.x pmid: 22129455 |
[10] | Chen W, Hu T, Ye J, Wang B, Liu G Z, Wang Y, Yuan L, Li J M, Li F M, Ye Z B, Zhang Y Y. 2020. A CCAAT-binding factor,SlNFYA10,negatively regulates ascorbate accumulation by modulating the D-mannose/L-galactose pathway in tomato. Horticulture Research, 17 (1):200. |
[11] | Chen Z, Young T E, Ling J, Chang S, Gallie D R. 2003. Increasing vitamin C content of plants through enhanced ascorbate recycling. Proceedings of the National Academy of Sciences of the United States of America, 100 (6):3525-3530. |
[12] |
Chew O, Whelan J, Millar A H. 2003. Molecular definition of the Ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. Journal of Biological Chemistry, 278 (47):46869-46877.
doi: 10.1074/jbc.M307525200 URL |
[13] |
Cho K M, Nguyen H T K, Kim S Y, Shin J S, Cho D H, Hong S B, Shin J S, Ok S H. 2015. CML10,a variant of calmodulin,modulates ascorbic acid synthesis. New Phytologist, 209 (2):664-678.
doi: 10.1111/nph.13612 URL |
[14] |
Conklin P L, DePaolo D, Wintle B, Schatz C, Buckenmeyer G. 2013. Identification of Arabidopsis VTC 3 as a putative and unique dual function protein kinase:protein phosphatase involved in the regulation of the ascorbic acid pool in plants. Journal of Experimental Botany, 64 (10):2793-2804.
doi: 10.1093/jxb/ert140 URL |
[15] |
Conklin P L, Pallanca J E, Last R L, Smirnoff N. 1997. L-ascorbic acid metabolism in the ascorbate-deficient Arabidopsis mutant vtc7. Plant Physiology, 115:1277-1285.
pmid: 9390448 |
[16] |
Dowdle J, Ishikawa T, Gatzek S, Rolinski S, Smirnoff N. 2007. Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. The Plant Journal, 52 (4):673-689.
doi: 10.1111/j.1365-313X.2007.03266.x URL |
[17] |
Enfissi E M, Barneche F, Ahmed I, Lichtlé C, Gerrish C, McQuinn R P, Giovannoni J J, Lopez-Juez E, Bowler C, Bramley P M, Fraser P D. 2010. Integrative transcript and metabolite analysis of nutritionally enhanced DE-ETIOLATED 1 downregulated tomato fruit. The Plant Cell, 22 (4):1190-1215.
doi: 10.1105/tpc.110.073866 URL |
[18] |
Gilbert L, Alhagdow M, Nunes-Nesi A, Quemener B, Guillon F, Bouchet B, Faurobert M, Gouble B, Page D, Garcia V, Petit J, Stevens R, Causse M, Fernie A R, Lahaye M, Rothan C, Baldet P. 2009. GDP-d-mannose 3,5-epimerase(GME)plays a key role at the intersection of ascorbate and non-cellulosic cell-wall biosynthesis in tomato. The Plant Journal, 60 (3):499-508.
doi: 10.1111/j.1365-313X.2009.03972.x pmid: 19619161 |
[19] |
Green M A, Fry S C. 2005. Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-0-oxalyl-L threonate. Nature, 433:83-87.
doi: 10.1038/nature03172 URL |
[20] | He Jie, Gu Xiu-rong, Wei Chun-hua, Yang Xiao-zhen, Li Hao, Ma Jian-xiang,Zhang Yong,Yang Jian-qiang,Zhang Xian. 2016. Identification and expression analysis under abiotic stresses of the bHLH transcription factor gene family in watermelon. Acta Horticulturae Sinica, 43 (2):281-294. (in Chinese) |
何洁, 顾秀容, 魏春华, 杨小振, 李好, 马建祥, 张勇, 杨建强, 张显. 2016. 西瓜bHLH转录因子家族基因的鉴定及其在非生物胁迫下的表达分析. 园艺学报, 43 (2):281-294. | |
[21] |
Hemavathi, Upadhyaya C P,Young K E,Akula N,Kim H,Heung J J,Oh O M,Aswath C R,Chun S C,Kim D H,Park S W. 2009. Over-expression of strawberry D-galacturonic acid reductase in potato leads to accumulation of vitamin C with enhanced abiotic stress tolerance. Plant Science, 177 (6):659-667.
doi: 10.1016/j.plantsci.2009.08.004 URL |
[22] | Hossain M A, Nakano Y, Asada K. 1984. Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant and Cell Physiology, 25 (3):385-395. |
[23] |
Hu T X, Ye J, Tao P W, Li H X, Zhang J H, Zhang Y Y, Ye Z B. 2016. Tomato HD-ZIP I transcription factor,SlHZ24,modulates ascorbate accumulation through positively regulating the D-mannose/L-galactose pathway. The Plant Journal, 85 (1):16-29.
doi: 10.1111/tpj.13085 URL |
[24] | Hu Tixu. 2015. Cloning and functional identification of genes regulating tomato ascorbic acid synthesis [Ph. D. Dessertation]. Wuhan:Huazhong Agriculture University. (in Chinese) |
胡体旭. 2015. 调控番茄抗坏血酸合成的基因克隆与功能鉴定[博士论文]. 武汉: 华中农业大学. | |
[25] |
Imai T, Ban Y, Terakami S, Yamamoto T, Moriguchi T. 2009. L-Ascorbate biosynthesis in peach:cloning of six L-galactose pathway related genes and their expression during peach fruit development. Physiologia Plantarum, 136 (2):139-149.
doi: 10.1111/j.1399-3054.2009.01213.x URL |
[26] | Ivanov B N. 2014. Role of ascorbic acid in photosynthesis. Biochemistry, 79 (3):282-289. |
[27] |
Ivanov B N, Sacksteder C A, Kramer D M, Edwards G E. 2001. Light-induced ascorbate-dependent electron transport and membrane energization in chloroplasts of bundle sheath cells of the C 4 plant maize. Archives of Biochemistry and Biophysics, 385 (1):145-153.
pmid: 11361011 |
[28] |
Jain A K, Nessler C L. 2000. Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants. Molecular Breeding, 6 (1):73-78.
doi: 10.1023/A:1009680818138 URL |
[29] |
Jimenez A, Hernandez J A, Río L A D, Sevilla F. 1997. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiology, 114 (1):275-284.
pmid: 12223704 |
[30] | Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux P M. 1997. Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. The Plant Cell, 9 (4):627-640. |
[31] |
Kerchev P I, Pellny T K, Vivancos P D, Kiddle G, Hedden P, Driscoll S, Vanacker H, Verrier P, Hancock R D, Foyer C H. 2011. The transcription factor ABI 4 Is required for the ascorbic acid-dependent regulation of growth and regulation of jasmonate-dependent defense signaling pathways in Arabidopsis. The Plant Cell, 23 (9):3319-3334.
doi: 10.1105/tpc.111.090100 pmid: 21926335 |
[32] |
Kotchoni S O, Larrimore K E, Mukherjee M, Kempinski C F, Barth C. 2009. Alterations in the endogenous ascorbic acid content affect flowering time in Arabidopsis. Plant Physiology, 149:803-815.
doi: 10.1104/pp.108.132324 pmid: 19028878 |
[33] | Laing W A, Wright M A, Cooney J, Bulley S M. 2007. The missing step of the L-galactose pathway of ascorbate biosynthesis in plants,an L-galactose guanyl-transferase,increases leaf ascorbate content. Proceedings of the National Academy of Sciences of the United States of America, 104 (22):9534-9539. |
[34] | Laloum T, de Mita S, Gamas P, Baudin M, Niebel A. 2013. CCAAT-box binding transcription factors in plants:Y so many? Trends in Plant Science, 18 (3):157-166. |
[35] |
Lester G E. 2006. Environmental regulation of human health nutrients(ascorbic acid,β-carotene,and folic acid)in fruits and vegetables. HortScience, 41 (1):59-64.
doi: 10.21273/HORTSCI.41.1.59 URL |
[36] |
Li H, Liu Z W, Wu Z J, Wang Y X, Teng R M, Zhuang J. 2018a. Differentially expressed protein and gene analysis revealed the effects of temperature on changes in ascorbic acid metabolism in harvested tea leaves. Horticulture Research, 5:65.
doi: 10.1038/s41438-018-0070-x URL |
[37] | Li M J, Ma F W, Liu J, Li J. 2010. Shading the whole vines during young fruit development decreases ascorbate accumulation in kiwi. Physiologia Plantarum, 140 (3):225-237. |
[38] |
Li M, Ma F W, Shang, P F, Zhang M, Hou C M, Liang D. 2009. Influence of light on ascorbate formation and metabolism in apple fruits. Planta, 230:39-51.
doi: 10.1007/s00425-009-0925-3 pmid: 19337748 |
[39] | Li Qingzhu. 2011. Effect of overexpressing potato dehydroascorbate reductase(DHAR)gene in tomato[M. D. Dessertation]. Tai’an:Shangdong Agriculture University. (in Chinese) |
李青竹. 2011. 马铃薯脱氧抗坏血酸还原酶(DHAR)基因在番茄中超表达效应的应用[硕士论文]. 泰安: 山东农业大学. | |
[40] |
Li Y, Chu Z N, Luo J Y, Zhou Y H, Cai Y J, Lu Y E, Xia J H, Kuang H H, Ye Z B, Ouyang B. 2018b. The C2H2 zinc-finger protein SlZF3 regulates AsA synthesis and salt tolerance by interacting with CSN5B. Plant Biotechnology Journal, 16 (6):1201-1213.
doi: 10.1111/pbi.12863 URL |
[41] | Liu Jingyu, Teng Ruimin, Li Hui, Liu Hao, Zhuang Jing. 2020. Cloning and expression analysis under abiotic stress of the DHAR gene in Camellia sinensis. Acta Horticulturae Sinica, 47 (5):983-994. (in Chinese) |
刘婧愉, 滕瑞敏, 李辉, 刘昊, 庄静. 2020. 茶树DHAR 酶基因的克隆与非生物胁迫响应分析. 园艺学报, 47 (5):983-994. | |
[42] | Liu Pan, Geng Xingmin, Zhao Hui. 2020. Subcellular distribution and responses of antioxidant systems in leaves of three rhododendron cultivars under alkali stress. Acta Horticulturae Sinica, 47 (5):916-926. (in Chinese) |
刘攀, 耿兴敏, 赵晖. 2020. 碱胁迫下杜鹃花抗氧化体系的响应及亚细胞分布. 园艺学报, 47 (5):916-926. | |
[43] | Liu R, Howkit A, Stammitti L, Teyssier E, Rolin D, Mortain-Bertrand A, Halle S, Liu M, Kong J, Wu C, Degraeve-Guibault C, Chapman N H, Maucourt M, Hodgman T C, Tost J, Bouzayen M, Hong Y, Seymour G B, Giovannoni J J, Gallusci P. 2015. A DEMETER-like DNA demethylase governs tomato fruit ripening. Proceedings of the National Academy of Sciences of the United States of America, 112 (34):10804-10809. |
[44] |
Liu X Y, Wu R M, Bulley S M, Zhong C H, Li D W. 2022. Kiwifruit MYBS1-like and GBF 3 transcription factors influence L-ascorbic acid biosynthesis by activating transcription of GDP-L-galactose phosphorylase. New Phytologist, 234 (5):1782-1800.
doi: 10.1111/nph.18097 URL |
[45] |
Loewus F A. 1999. Biosynthesis and metabolism of ascorbic acid in plants and of analogs of ascorbic acid in fungi. Phytochemistry, 52 (2):193-210.
doi: 10.1016/S0031-9422(99)00145-4 URL |
[46] |
Lorence A, Chevone B I, Mendes P, Nessler C L. 2004. Myo-Inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiology, 134 (3):1200-1205.
doi: 10.1104/pp.103.033936 pmid: 14976233 |
[47] |
Ma G, Zhang L C, Setiawan C K, Yamawaki K, Asaia T, Nishikawa F, Maezawa C, Sato H, Kanemitsue N, Kato M. 2014. Effect of red and blue LED light irradiation on ascorbate content and expression of genes related to ascorbate metabolism in postharvest broccoli. Postharvest Biology and Technology, 94:97-103.
doi: 10.1016/j.postharvbio.2014.03.010 URL |
[48] |
Ma S Y, Li H X, Wang L, Li B Y, Wang Z Y, Ma B Q, Ma F W, Li M J. 2021. F-box protein MdAMR1L 1 regulates ascorbate biosynthesis in apple by modulating GDP-mannose pyrophosphorylase. Plant Physiology, 188 (1):653-669.
doi: 10.1093/plphys/kiab427 URL |
[49] |
Mackenzie S, Mcintosh L. 1999. Higher plant mitochondria. The Plant Cell, 11 (4):571-585.
doi: 10.1105/tpc.11.4.571 pmid: 10213779 |
[50] |
Maharaj R, Arul J, Nadeau P. 2014. UV-C irradiation effects on levels of enzymic and non-enzymic phytochemicals in tomato. Innovative Food Science and Emerging Technologies, 21:99-106.
doi: 10.1016/j.ifset.2013.10.001 URL |
[51] |
Maruta T, Yonemitsu M, Yabuta Y, Tamoi M, Ishikawa T, Shigeoka S. 2008. Arabidopsis phosphomannose isomerase 1,but not phosphomannose isomerase 2,is essential for ascorbic acid biosynthesis. Journal of Biological Chemistry, 283 (43):28842-28851.
doi: 10.1074/jbc.M805538200 URL |
[52] |
Massot C, Génard M, Stevens R, Gautier H. 2010. Fluctuations in sugar content are not determinant in explaining variations in vitamin C in tomato fruit. Plant Physiology and Biochemistry, 48 (9):751-757.
doi: 10.1016/j.plaphy.2010.06.001 pmid: 20621498 |
[53] |
Massot C, Stevens R, Génard M, Longuenesse J, Gautier H. 2012. Light affects ascorbate content and ascorbate-related gene expression in tomato leaves more than in fruits. Planta, 235:153-163.
doi: 10.1007/s00425-011-1493-x pmid: 21861113 |
[54] | May M J, Vernoux T, Leaver C, Montagu M V, Inze´ D. 1998. Glutathione homeostasis in plants:implications for environmental sensing and plant development. Journal of Experimental Botany, 49 (321):649-667. |
[55] |
Millar A H, Day D A. 1997. Alternative solutions to radical problems. Trends in Plant Science, 2 (8):288-290.
doi: 10.1016/S1360-1385(97)89948-7 URL |
[56] |
Millar A H, Mittova V, Kiddle G, Heazlewood J L, Bartoli C G, Theodoulou F L, Foyer C H. 2003. Control of Ascorbate synthesis by respiration and its implications for stress responses. Plant Physiology, 133 (2):443-447.
pmid: 14555771 |
[57] |
Monteiro J A, Nell T A, Barrett J E. 2002. Effects of exogenous sucrose on carbohydrate levels,flower respiration and longevity of potted miniature rose(Rosa hybrida)flowers during postproduction. Postharvest Biology and Technology, 26:221-229.
doi: 10.1016/S0925-5214(02)00010-8 URL |
[58] |
Munir S, Mumtaz M A, Ahiakpa J K, Liu G, Chen W, Zhou G, Zheng W, Ye Z, Zhang Y. 2020. Genome-wide analysis of Myo-inositol oxygenase gene family in tomato reveals their involvement in ascorbic acid accumulation. BMC Genomics, 21 (1):284.
doi: 10.1186/s12864-020-6708-8 pmid: 32252624 |
[59] |
Nishikawa F, Kato M, Hyodo H, Ikoma Y, Sugiura M, Yano M. 2005. Effect of sucrose on ascorbate level and expression of genes involved in the ascorbate biosynthesis and recycling pathway in harvested broccoli florets. Journal of Experimental Botany, 56 (409):65-72.
pmid: 15520028 |
[60] |
Noctor G, de Paepe R, Foyer C H. 2007. Mitochondrial redox biology and homeostasis in plants. Trends in Plant Science, 12 (9):125-134.
doi: 10.1016/j.tplants.2007.01.005 URL |
[61] |
Noguchi K, Yoshida K. 2008. Interaction between photosynthesis and respiration in illuminated leaves. Mitochondrion, 8 (1):87-99.
pmid: 18024239 |
[62] |
Noshi M, Hatanaka R, Tanabe N, Terai Y, Maruta T, Shigeoka S. 2016. Redox regulation of ascorbate and glutathione by a chloroplastic dehydroascorbate reductase is required for high-light stress tolerance in Arabidopsis. Bioscience,Biotechnology,and Biochemistry, 80 (5):1-8.
doi: 10.1080/09168451.2015.1056512 URL |
[63] |
Ntagkasa N, Woltering E J, Marcelis L F M. 2018. Light regulates ascorbate in plants:an integrated view on physiology and biochemistry. Environmental and Experimental Botany 147 (1):271-280.
doi: 10.1016/j.envexpbot.2017.10.009 URL |
[64] |
Ntagkas N, Woltering E, Nicole C, Labried C, Marcelis L F M. 2019. Light regulation of vitamin C in tomato fruit is mediated through photosynthesis. Environmental and Experimental Botany, 158:180-188.
doi: 10.1016/j.envexpbot.2018.12.002 URL |
[65] |
Nunes-Nesi A, Carrari F, Lytovchenko A, Smith A M O, Loureiro M E, Ratcliffe R G, Sweetlove L J, Fernie A R. 2005. Enhanced photosynthetic performance and growth as a consequence of decreasing mitochondrial malate dehydrogenase activity in transgenic tomato plants. Plant Physiology, 137 (2):611-622.
doi: 10.1104/pp.104.055566 pmid: 15665243 |
[66] |
Ögren E, Nilsson T, Sundblad L G. 1997. Relationship between respiratory depletion of sugars and loss of cold hardiness in coniferous seedlings over-wintering at raised temperatures:indications of different sensitivities of spruce and pine. Plant,Cell and Environment, 20 (2):247-453.
doi: 10.1046/j.1365-3040.1997.d01-56.x URL |
[67] |
Paul M J, Foyer C H. 2001. Sink regulation of photosynthesis. Journal of Experimental Botany, 52 (360):1383-1400.
doi: 10.1093/jexbot/52.360.1383 pmid: 11457898 |
[68] |
Pellny T K, Locato V, Vivancos P D, Markovic J, De Gara L, Pallardó F V, Foyer C H. 2009. Pyridine nucleotide cycling and control of intracellular redox state in relation to poly(ADP-ribose)polymerase activity and nuclear localization of glutathione during exponential growth of Arabidopsis cells in culture. Molecular Plant, 2 (3):442-456.
doi: 10.1093/mp/ssp008 pmid: 19825628 |
[69] |
Proietti S, Moscatello S, Colla G, Battistelli Y. 2004. The effect of growing spinach(Spinacia oleracea L.)at two light intensities on the amounts of oxalate,ascorbate and nitrate in their leaves. The Journal of Horticultural Science and Biotechnology, 79 (4):606-609.
doi: 10.1080/14620316.2004.11511814 URL |
[70] |
Reid M E. 1938. The effect of light on the accumulation of ascorbic acid in young cowpea plants. American Journal of Botany, 25 (9):701-711.
doi: 10.1002/j.1537-2197.1938.tb12839.x URL |
[71] |
Sawake S, Tajima N, Mortimer J C, Lao J, Ishikawa I, Yu X, Yamanashi Y, Yoshimi Y, Kawai-Yamada M, Dupree P, Tsumuraya Y, Kotake T. 2015. KONJAC1 and 2 are key factors for GDP-mannose generation and affect L-ascorbic acid and glucomannan biosynthesis in Arabidopsis. The Plant Cell, 27 (12):3397-3409.
doi: 10.1105/tpc.15.00379 pmid: 26672069 |
[72] |
Schimmeyer J, Bock R, Meyer E H. 2016. L-Galactono-1,4-lactone dehydrogenase is an assembly factor of the membrane arm of mitochondrial complex I in Arabidopsis. Plant Molecular Biology, 90 (1-2):117-126.
doi: 10.1007/s11103-015-0400-4 pmid: 26520835 |
[73] |
Shiroma S, Tanaka M, Sasaki T, Ogawa T, Yoshimura K, Sawa Y, Maruta T, Ishikawa T. 2019. Chloroplast development activates the expression of ascorbate biosynthesis-associated genes in Arabidopsis roots. Plant Science, 284:185-191.
doi: S0168-9452(19)30026-3 pmid: 31084871 |
[74] | Smirnoff N. 2011. Vitamin C:the metabolism and functions of Ascorbic acid in plants. Advances in Botanical Research, 59:109-155. |
[75] |
Smirnoff N. 2018. Ascorbic acid metabolism and functions:a comparison of plants and mammals. Free Radical Biology & Medicine, 122:116-129.
doi: 10.1016/j.freeradbiomed.2018.03.033 URL |
[76] |
Smirnoff N, Wheeler G L. 2000. Ascorbic acid in plants:biosynthesis and function. Critical Reviews in Biochemistry and Molecular Biology, 35 (4):291-314.
doi: 10.1080/10409230008984166 pmid: 11005203 |
[77] |
Sun X, Wang Y, Sui N. 2018. Transcriptional regulation of bHLH during plant response to stress. Biochemical and Biophysical Research Communications, 503 (2):397-401.
doi: S0006-291X(18)31625-5 pmid: 30057319 |
[78] | Tamim S A, Li F, Wang Y, Shang L, Zhang X, Tao J, Wang Y, Gai W, Dong H, Ahiakpa J K, Mumtaz M A, Zhang Y Y. 2022. Effect of shading on ascorbic acid accumulation and biosynthetic gene expression during tomato fruit development and ripening. Vegetable Research, 2:1. |
[79] |
Tokunaga T, Miyahara K, Tabata K, Esaka M. 2005. Generation and properties of ascorbic acid-overproducing transgenic tobacco cells expressing sense RNA for L-galactono-1,4-lactone dehydrogenase. Planta, 220 (6):854-863.
pmid: 15549373 |
[80] |
Torabinejad J, Donahue J L, Gunesekera B N, Allen-Daniels M J, Gillaspy G E. 2009. VTC 4 is a bifunctional enzyme that affects myoinositol and ascorbate biosynthesis in plants. Plant Physiology, 150 (2):951-961.
doi: 10.1104/pp.108.135129 pmid: 19339506 |
[81] |
Wang F, Wang X J, Zhang Y, Yan J R, Ahammed G J, Bu X, Sun X, Liu Y F, Xu T, Qi H Y, Qi M F, Li T L. 2022. SlFHY3 and SlHY5 act compliantly to enhance cold tolerance through the integration of myo-inositol and light signaling in tomato. New Phytologist, 233:2127-2143.
doi: 10.1111/nph.17934 URL |
[82] |
Wang F, Wu N, Zhang L Y, Ahammed G L, Chen X X, Xiang X, Zhou J, Xia X J, Shi K, Yu J Q, Foyer C H, Zhou Y H. 2018. Light signaling-dependent regulation of photoinhibition and photoprotection in tomato. Plant Physiology, 176:1311-1326.
doi: 10.1104/pp.17.01143 pmid: 29146776 |
[83] |
Wang J, Yu Y W, Zhang Z, Quan R D, Zhang H W, Ma L G, Deng X W, Huang R F. 2013. Arabidopsis CSN5B interacts with VTC1 and modulates ascorbic acid synthesis. The Plant Cell, 25 (2):625-636.
doi: 10.1105/tpc.112.106880 URL |
[84] | Wei Shenjun, Geng Dianxiang, Wu Qi, Zhang Xiaoyan, Su Nana, Cui Jin. 2015. Effect of UV-A irradiation on ascorbic acid content in soybean sprout. Soybean Science, 34 (3):420-426. (in Chinese) |
魏圣军, 耿殿祥, 邬奇, 张晓燕, 苏娜娜, 崔瑾. 2015. UV-A辐射对大豆芽苗菜中抗坏血酸含量的影响. 大豆科学, 34 (3):420-426. | |
[85] |
Wheeler G L, Jones M A, Smirnoff N. 1998. The biosynthetic pathway of vitamin C in higher plants. Nature, 393 (6683):365-369.
doi: 10.1038/30728 URL |
[86] |
Wolucka B,van Montagu M. 2003. GDP-mannose 3’,5’-epimerase forms GDP-L-gulose,a putative intermediate for the de novo biosynthesis of vitamin C in plants. Journal of Biological Chemistry, 278 (48):47483.
doi: 10.1074/jbc.M309135200 pmid: 12954627 |
[87] | Xiang L, Li Y, Rolland F, Ende W V D. 2011. Neutral invertase,hexokinase and mitochondrial ROS homeostasis:emerging links between sugar metabolism,sugar signaling and Ascorbate synthesis. Plant Signaling & Behavior, 6 (10):1567-1573. |
[88] |
Xu M J, Dong J F, Zhu M Y. 2005. Effects of germination conditions on ascorbic acid level and yield of soybean sprouts. Journal of the Science of Food and Agriculture, 85 (6):943-947.
doi: 10.1002/jsfa.2050 URL |
[89] |
Yabuta Y, Mieda T, Rapolu M, Nakamura A, Motoki T, Maruta T, Yoshimura K, Ishikawa T, Shigeoka S. 2007. Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in Arabidopsis. Journal of Experimental Botany, 58 (10):2661-2671.
doi: 10.1093/jxb/erm124 URL |
[90] |
Yang C, Huang S, Zeng Y, Liu C, Ma Q, Pruneda-Paz J, Kay S A, Li L. 2021. Two bHLH transcription factors,bHLH48 and bHLH60,associate with phytochrome interacting factor 7 to regulate hypocotyl elongation in Arabidopsis. Cell Reports, 35 (5):109054.
doi: 10.1016/j.celrep.2021.109054 URL |
[91] | Yang Tao. 2017. Study on effect of genetically modified polymerization on ascorbic acid content in tomato[M. D. Dessertation]. Wuhan:Huazhong Agriculture University. (in Chinese) |
杨涛. 2017. 转基因聚合影响番茄抗坏血酸含量的研究[硕士论文]. 武汉: 华中农业大学. | |
[92] |
Ye J, Li W, Ai G, Li C X, Liu G Z, Chen W F, Wang B, Wang W Q, Lu Y G, Zhang J H, Li H X, Ouyang B, Zhang H Y, Fei Z J, Giovannoni J J, Ye Z B, Zhang Y Y. 2019. Genome-wide association analysis identifies a natural variation in basic helix-loop-helix transcription factor regulating ascorbate biosynthesis via D-mannose/L-galactose pathway in tomato. PLoS Genetics, 15 (5):e1008149.
doi: 10.1371/journal.pgen.1008149 URL |
[93] |
Yoshimura K, Yabuta Y, Ishikawa T, Shigeoka S. 2000. Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiology, 123 (1):223-234.
pmid: 10806239 |
[94] | Yu Yi, Liu Wenke. 2015. Influence of light quality and photoperiod on growth and nutritional quality of three leaf-color lettuce cultivars under weak light. Chinese Journal of Agrometeorology, 36 (6):739-745. (in Chinese) |
余意, 刘文科. 2015. 弱光条件下光质和光周期对水培生菜生长与品质的影响. 中国农业气象, 36 (6):739-745. | |
[95] |
Yu Y W, Wang J, Li S H, Kakan X, Zhou Y, Miao Y C, Wang F F, Qin H, Huang R F. 2019. Ascorbic acid integrates the antagonistic modulation of ethylene and abscisic acid in the accumulation of reactive oxygen species. Plant Physiology, 179:1861-1875.
doi: 10.1104/pp.18.01250 pmid: 30723177 |
[96] |
Zha L Y, Zhang Y B, Liu W K. 2019. Dynamic responses of ascorbate pool and metabolism in lettuce to longterm continuous light provided by red and blue LEDs. Environmental and Experimental Botany, 163:15-23.
doi: 10.1016/j.envexpbot.2019.04.003 URL |
[97] |
Zhang C J, Liu J X, Zhang Y Y, Cai X F, Gong P J, Zhang J H, Wang T T, Li H X, Ye Z B. 2010. Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress,cold,and salt tolerance in tomato. Plant Cell Reports, 30 (3):389-398.
doi: 10.1007/s00299-010-0939-0 URL |
[98] | Zhang Huan, Zhang Lili, Li Wei, Xin Zenan, Zhang Dan, Cui Jin. 2012. Effects of photoperiod under red led on growth and quality of sunflower sprouts. Acta Horticulturae Sinica, 39 (2):297-304. (in Chinese) |
张欢, 章丽丽, 李薇, 邢泽南, 张丹, 崔瑾. 2012. 不同光周期红光对油葵芽苗菜生长和品质的影响. 园艺学报, 39 (2):297-304. | |
[99] |
Zhang H W, Si X M, Ji X, Fan R, Liu J X, Chen K L, Wang D W, Gao C X. 2018. Genome editing of upstream open reading frames enables translational control in plants. Nature Biotechnology, 36:894-894.
doi: 10.1038/nbt.4202 pmid: 30080209 |
[100] |
Zhang L C, Ma G, Yamawaki K, Ikoma Y, Matsumoto H, Yoshioka T, Ohta S, Kato M. 2015. Regulation of ascorbic acid metabolism by blue LED light irradiation in citrus juice sacs. Plant Science, 233:134-142.
doi: S0168-9452(15)00029-1 pmid: 25711821 |
[101] |
Zhang W, Lorence A, Gruszewski H A, Chevone B I, Nessler C L. 2009. AMR1,an Arabidopsis gene that coordinately and negatively regulates the mannose/L-galactose ascorbic acid biosynthetic pathway. Plant Physiology, 150 (2):942-950.
doi: 10.1104/pp.109.138453 URL |
[102] | Zhang Y. 2012. Ascorbic acid in plants:biosynthesis,regulation and enhancement. Berlin: Springer Science & Business Media. |
[103] |
Zhang Y Y, Li H X, Shu W B, Zhang C J, Zhang W, Ye Z B. 2011. Suppressed expression of ascorbate oxidase gene promotes ascorbic acid accumulation in tomato fruit. Plant Molecular Biology Reporter, 29 (3):638-645.
doi: 10.1007/s11105-010-0271-4 URL |
[104] |
Zhang Z J, Wang J, Zhang R X, Huang R F. 2012. ERF protein AtERF 98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. The Plant Journal, 71 (2):273-287.
doi: 10.1111/j.1365-313X.2012.04996.x URL |
[105] |
Zou L P, Li H X, Ouyang B, Zhang J H, Ye Z B. 2006. Cloning and mapping of genes involved in tomato ascorbic acid biosynthesis and metabolism. Plant Science, 170:120-127.
doi: 10.1016/j.plantsci.2005.08.009 URL |
[1] | 李镇希, 潘睿翾, 许美容, 郑正, 邓晓玲. 柑橘黄龙病菌双重实时荧光PCR检测方法的建立[J]. 园艺学报, 2023, 50(1): 188-196. |
[2] | 黄树苹, 谈 杰, 陈 霞, 张洪源, 李 烨, 王本启, 陈 浩, 吴雪霞, 张 敏, . 茄子新品种‘鄂茄六号’[J]. 园艺学报, 2022, 49(S2): 101-102. |
[3] | 蒙小玉, 穆悦, 胡杨, 吴潇, 朱辰, 王慧敏, 陶书田, 张绍铃, 殷豪. 几种果实表面积的三维激光扫描测定[J]. 园艺学报, 2022, 49(9): 1998-2006. |
[4] | 董桑婕, 葛诗蓓, 李岚, 贺丽群, 范飞军, 齐振宇, 喻景权, 周艳虹. 不同光质补光对辣椒幼苗生长、丛枝菌根共生和磷吸收的影响[J]. 园艺学报, 2022, 49(8): 1699-1712. |
[5] | 闫文渊, 秦军红, 段绍光, 徐建飞, 简银巧, 金黎平, 李广存. 水氮耦合对马铃薯光合特性、块茎形成和品质的影响[J]. 园艺学报, 2022, 49(7): 1491-1504. |
[6] | 张秋悦, 刘昌来, 于晓晶, 杨甲定, 封超年. 盐胁迫条件下杜梨叶片差异表达基因qRT-PCR内参基因筛选[J]. 园艺学报, 2022, 49(7): 1557-1570. |
[7] | 刘尚佳, 吕尧, 曹逼力, 陈子敬, 高松, 徐坤. 高温渍涝胁迫对姜叶片光合作用和氮代谢的影响[J]. 园艺学报, 2022, 49(5): 1073-1080. |
[8] | 张倩雯, 杨希航, 李峰, 邓颖天. miRNA调控园艺作物生长发育研究进展[J]. 园艺学报, 2022, 49(5): 1145-1161. |
[9] | 方能炎, 樊荣辉, 罗远华, 孔兰, 林榕燕, 叶秀仙, 林兵, 钟淮钦, 黄敏玲. 文心兰OnGI在拟南芥中异源表达促进开花[J]. 园艺学报, 2022, 49(4): 841-850. |
[10] | 王莹, 秦阳阳, 曾婷, 廖平, 张伟, 周彦, 周常勇. 柑橘黄脉病毒侵染对柠檬光合特性和叶绿体超微结构的影响[J]. 园艺学报, 2022, 49(4): 861-867. |
[11] | 陈同强, 张天柱, 王晓卓. 光照对番茄果实中番茄红素生物合成的调控研究进展[J]. 园艺学报, 2022, 49(4): 907-923. |
[12] | 吕燕, 段维军. 基于TaqMan MGB探针的山茶叶杯菌实时荧光PCR快速检测方法[J]. 园艺学报, 2022, 49(3): 663-670. |
[13] | 彭轶, 李元慧, 杨瑞, 张子怡, 李亚楠, 韩云昊, 赵文超, 王绍辉. 茉莉酸合成基因LoxD参与调控番茄的抗旱性[J]. 园艺学报, 2022, 49(2): 319-331. |
[14] | 杨妮, 万绮雯, 李逸民, 韩妙华, 滕瑞敏, 刘洁霞, 庄静. 外源亚精胺对盐胁迫下茶树光合特性及关键酶基因表达的影响[J]. 园艺学报, 2022, 49(2): 378-394. |
[15] | 陈兴浩, 刘晗琪, 张新建, 程相军, 杨敏生, 张军. 彩叶杨‘全红’和‘炫红’光合生理特性的比较分析[J]. 园艺学报, 2022, 49(2): 437-447. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司