园艺学报 ›› 2023, Vol. 50 ›› Issue (2): 441-450.doi: 10.16420/j.issn.0513-353x.2021-1226
郑清波1,2, 鲍泽洋1, 蓝青青1, 周钰雯1, 周雨菲1, 郑彩霞3,*(), 李旭1,2,*()
收稿日期:
2022-08-19
修回日期:
2022-11-03
出版日期:
2023-02-25
发布日期:
2023-03-06
通讯作者:
*(E-mail:hzxyzcx@163.com,ybulixu@163.com)
基金资助:
ZHENG Qingbo1,2, BAO Zeyang1, LAN Qingqing1, ZHOU Yuwen1, ZHOU Yufei1, ZHENG Caixia3,*(), LI Xu1,2,*()
Received:
2022-08-19
Revised:
2022-11-03
Online:
2023-02-25
Published:
2023-03-06
Contact:
*(E-mail:hzxyzcx@163.com,ybulixu@163.com)
摘要:
扦插的核心是诱导外植体产生不定根,童性和生长素作为最主要限制因素影响不定根发生。本文着重阐述生长素合成、转运和信号转导以及童性对不定根发生的影响机制,对童性和生长素协同作用进行了综述和展望。
中图分类号:
郑清波, 鲍泽洋, 蓝青青, 周钰雯, 周雨菲, 郑彩霞, 李旭. 童性与生长素对不定根发生的影响研究进展[J]. 园艺学报, 2023, 50(2): 441-450.
ZHENG Qingbo, BAO Zeyang, LAN Qingqing, ZHOU Yuwen, ZHOU Yufei, ZHENG Caixia, LI Xu. Advances in Studies on Adventitious Root Formation by Juvenile- and Auxin-determined[J]. Acta Horticulturae Sinica, 2023, 50(2): 441-450.
[1] |
Abe M, Katsumata H, Komeda Y, Takahashi T. 2003. Regulation of shoot epidermal cell differentiation by a pair of homeodomain proteins in Arabidopsis. Development, 130:635-643.
doi: 10.1242/dev.00292 URL |
[2] |
Alvarez R, Nissen S J, Sutter E G. 1989. Relationship between indole-3-aetic acid levels in apple(Malus pumila Mill)rootstocks cultured in vitro and adventitious root formation in presence of indole-3-butyric acid. Plant Physiology, 89:439-443.
doi: 10.1104/pp.89.2.439 pmid: 16666562 |
[3] |
Bellini C, Pacurar D I, Perrone I. 2014. Adventitious roots and lateral roots:similarities and differences. Annual Review of Plant Biology, 65:639-666.
doi: 10.1146/arplant.2014.65.issue-1 URL |
[4] |
Bennett T, Hines G, Leyser O. 2014. Canalization:what the flux? Trends in Genetics, 30:41-48.
doi: 10.1016/j.tig.2013.11.001 pmid: 24296041 |
[5] |
Boer D R, Freire-Rios A, van den Berg W A M. 2014. Structural basis for DNA binding specificity by the auxin-dependent ARF transcription factors. Cell, 156:577-589.
doi: 10.1016/j.cell.2013.12.027 pmid: 24485461 |
[6] |
Casimiro I, Marchant A, Bhalerao R P, Beeckman T, Dhooge S. 2001. Auxin transport promotes Arabidopsis lateral root initiation. The Plant Cell, 13:843-852.
doi: 10.1105/tpc.13.4.843 URL |
[7] |
Chen L Q, Tong J H, Xiao L T. 2016. YUCCA-mediated auxin biogenesis is required for cell fate transition occurring during de novo root organogenesis in Arabidopsis. Journal of Experimental Botany, 67:4273-4284.
doi: 10.1093/jxb/erw213 URL |
[8] |
Chuck G, Cigan A M, Saeteurn K, Hake S. 2007. The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nature Genetics, 39:544-549.
doi: 10.1038/ng2001 |
[9] |
da Costa C T, Offringa R, Fett-Neto A G. 2020. The role of auxin transporters and receptors in adventitious rooting of Arabidopsis thaliana pre-etiolated flooded seedlings. Plant Science, 290:110294.
doi: 10.1016/j.plantsci.2019.110294 URL |
[10] |
Dong Chun-juan, Cao Ning, Wang Ling-ling, Zhang Huan-xin, Wang Hong-fei, Tai Lian-li, Shang Qing-mao. 2016. Regulatory roles of cotyledon-generated auxin in adventitious root formation on the hypocotyls of cucumber seedlings. Acta Horticulturae Sinica, 43 (10):1929-1940. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2016-0184 |
董春娟, 曹宁, 王玲玲, 张焕欣, 王红飞, 台连丽, 尚庆茂. 2016. 黄瓜子叶源生长素对下胚轴不定根发生的调控作用. 园艺学报, 43 (10):1929-1940.
doi: 10.16420/j.issn.0513-353x.2016-0184 |
|
[11] | Dong Ning-guang, Qi Jian-xun, Chen Yong-hao, Hao Yan-bin. 2016. Physiological and biochemical basis of hazelnut rhizogenesis promoted by embedded stock etiolation. Journal of Fruit Science, 33:1510-1516. (in Chinese) |
董宁光, 齐建勋, 陈永浩, 郝艳宾. 2016. 沙藏埋枝处理对促进平欧杂种榛绿枝扦插生根的机制分析. 果树学报, 33:1510-1516. | |
[12] |
Druege U, Hilo A, Pérez-Pérez J M, Klopotek Y, Acosta M, Shahinnia F, Zerche S, Franken P, Hajirezaei M R. 2019. Molecular and physiological control of adventitious rooting in cuttings:phytohormone action meets resource allocation. Annals of Botany, 123:929-949.
doi: 10.1093/aob/mcy234 pmid: 30759178 |
[13] |
Du Xue-mei, Yang Ting-zhen, Gao Jing-dong, Wang Qian, Cai Hua-cheng, Li Chun-yan, Wang Shu-ting, Gong Gui-hua. 2019. Progress of rooting mechanism study in apple cutting propagation, Journal of Agriculture, 9 (12):17-22. (in Chinese)
doi: 10.11923/j.issn.2095-4050.cjas18110009 |
杜学梅, 杨廷桢, 高敬东, 王骞, 蔡华成, 李春燕, 王淑婷, 弓桂花. 2019. 苹果扦插繁殖生根机理研究进展. 农学学报, 9 (12):17-22.
doi: 10.11923/j.issn.2095-4050.cjas18110009 |
|
[14] |
Feng S, Xu Y, Guo C, Zheng J, Zhou B, Zhang Y. 2016. Modulation of miR156 to identify traits associated with vegetative phase change in tobacco (Nicotiana tabacum). Journal of Experimental Botany, 67:1493-1504.
doi: 10.1093/jxb/erv551 pmid: 26763975 |
[15] |
Frangedakis E, Saint-Marcoux D, Moody L A, Rabbinowitsch E, Langdale J A. 2017. Nonreciprocal complementation of KNOX gene function in land plants. New Phytologist, 216:591-604.
doi: 10.1111/nph.14318 pmid: 27886385 |
[16] |
Geisler M, Aryal B, di Donato M, Hao P C. 2017. A critical view on ABC transporters and their interacting partners in auxin transport. Plant and Cell Physiology, 58:1601-1614.
doi: 10.1093/pcp/pcx104 pmid: 29016918 |
[17] |
Gray W M, Kepinski S, Rouse D, Leyser O, Estelle M. 2001. Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature, 414:271-276.
doi: 10.1038/35104500 URL |
[18] |
Gutierrez L, Bussell J D, Pacurar D I, Schwambach J, Pacurar M, Bellini C. 2009. Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. The Plant Cell, 21:3119-3132.
doi: 10.1105/tpc.108.064758 pmid: 19820192 |
[19] | Hu Xiao-qing. 2021. Identification of the BpSPL gene family in Betula platyphylla Suk. and BpSPL12 function analysis in adventitious root formation[Ph. D. Dissertation]. Harbin:Northeast Forestry University. (in Chinese) |
胡晓晴. 2021. 白桦BpSPL基因家族鉴定及BpSPL12基因在不定根发生中的功能研究[博士论文]. 哈尔滨: 东北林业大学. | |
[20] |
Korasick D A, Enders T A, Strader L C. 2013 Auxin biosynthesis and storage forms. Journal Experimental Botany, 64:2541-2555.
doi: 10.1093/jxb/ert080 URL |
[21] |
Li X, Shen F, Xu X Z, Zheng Q B, Wang Y, Wu T, Li W, Qiu C P, Xu X F, Han Z H, Zhang X Z. 2021. An HD-ZIP transcription factor,MxHB13,integrates auxin-regulated and juvenility-determined control of adventitious rooting in Malus xiaojinensis. The Plant Journal, 107:1663-1680.
doi: 10.1111/tpj.15406 pmid: 34218490 |
[22] |
Liao C Y, Smet W, Brunoud G, Yoshida S, Vernoux T, Weijers D. 2015. Reporters for sensitive and quantitative measurement of auxin response. Nature Methods, 12:207-210.
doi: 10.1038/nmeth.3279 |
[23] |
Liu J, Sheng L, Xu Y, Li J, Yang Z, Huang H, Xu L. 2014. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. The Plant Cell, 26:1081-1093.
doi: 10.1105/tpc.114.122887 URL |
[24] | Lu Zhan-ling, Zuo Qiao-li, Wang Rong-hua, Liu Ya-qi, Qin Rong-ling, Wang Xiao-ya, Bao Lu. 2022. Expression and function analysis of CsSBP24 during adventitious root development in tea plant. Molecular Plant Breeding, https://kns.cnki.net/kcms/detail/46.1068.S.20210609.1611.025.html (in Chinese) |
鲁占领, 左巧丽, 王荣花, 刘雅琪, 覃荣玲, 王晓雅, 鲍露. 2022. 茶树CsSBP24在不定根发育过程中的表达和功能分析. 分子植物育种, https://kns.cnki.net/kcms/detail/46.1068.S.20210609.1611.025.html | |
[25] | Ma Qing. 2021. Study on the molecular mechannism of BpmiR156/BpSPL16 affecting adventitious root of Betula[Ph. D. Dissertation]. Harbin: Northeast Forestry University. (in Chinese) |
马庆. 2021. BpmiR156/BpSPL16调控白桦不定根发生的作用机制研究[博士论文]. 哈尔滨: 东北林业大学. | |
[26] |
Ma Y, Xue H, Zhang F, Jiang Q, Yang S, Yue P, Wang F, Zhang Y, Li L, He P, Zhang Z. 2021. The miR156/SPL module regulates apple salt stress tolerance by activating MdWRKY100 expression. Plant Biotechnology Journal, 19:311-323.
doi: 10.1111/pbi.v19.2 URL |
[27] | Mashiguchi K, Tanaka K, Sakai T. 2011. The main auxin biosynthesis pathway in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 108:18512-18517. |
[28] |
Miao Z Q, Zhao P X, Mao J L, Yu L H, Yuan Y, Tang H, Liu Z B, Xiang C B. 2018. HOMEOBOX PROTEIN52 mediates the crosstalk between ethylene and auxin signaling during primary root elongation by modulating auxin transport-related gene expression. The Plant Cell, 30:2761-2778.
doi: 10.1105/tpc.18.00584 URL |
[29] | Poethig R S. 2009. Small RNAs and developmental timing in plants. Current Opinion in Genetics & Development, 19:374-378. |
[30] |
Porfirio S, da Silva M D R G, Cabrita M J, Azadi P, Peixe A. 2016. Reviewing current knowledge on olive(Olea europaea L.) adventitious root formation. Scientia Horticulturae, 198:207-226.
doi: 10.1016/j.scienta.2015.11.034 URL |
[31] |
Preston J C, Hileman L C. 2010. SQUAMOSA-PROMOTER BINDING PROTEIN 1 initiates flowering in Antirrhinum majus through the activation of meristem identity genes. The Plant Journal, 62:704-712.
doi: 10.1111/j.1365-313X.2010.04184.x pmid: 20202170 |
[32] |
Rasmussen A, Hosseini S A, Hajirezaei M R, Druege U, Geelen D. 2015. Adventitious rooting declines with the vegetative to reproductive switch and involves a changed auxin homeostasis. Journal of Experimental Botany, 66:1437-1452.
doi: 10.1093/jxb/eru499 pmid: 25540438 |
[33] |
Ruedell C M, de Almeida M R, Fett-Neto A G. 2015. Concerted transcription of auxin and carbohydrate homeostasis-related genes underlies improved adventitious rooting of microcuttings derived from far-red treated Eucalyptus globulus Labill mother plants. Plant Physiology and Biochemistry, 97:11-19.
doi: 10.1016/j.plaphy.2015.09.005 URL |
[34] |
Saito T, Opio P, Wang S, Ohkawa K, Kondo S, Maejima T, Ohara H. 2019. Association of auxin,cytokinin,abscisic acid,and plant peptide response genes during adventitious root formation in Marubakaido apple rootstock(Malus prunifolia Borkh. var. ringo Asami). Acta Physiologiae Plantarum, 41:41.
doi: 10.1007/s11738-019-2827-8 |
[35] |
Schwab R, Palatnik J F, Riester M, Schommer C, Schmid M, Weigel D. 2005. Specific effects of microRNAs on the plant transcriptome. Development Cell, 8:517-527.
doi: 10.1016/j.devcel.2005.01.018 URL |
[36] |
Shao Y, Zhou H Z, Wu Y, Zhang H, Lin J, Jiang X, Mao C. 2019. OsSPL3,an SBP-domain protein,regulates crown root development in rice. The Plant Cell, 31:1257-1275.
doi: 10.1105/tpc.19.00038 URL |
[37] |
Simonini S, Kater M M. 2014. Class I BASIC PENTACYSTEINE factors regulate HOMEOBOX genes involved in meristem size maintenance. Journal of Experimental Botany, 65:1455-1465.
doi: 10.1093/jxb/eru003 pmid: 24482368 |
[38] |
Song Xiao-bo, Chang Ying-ying, Liu Hao, Xu Hui-min, Pei Dong. 2019. Reference gene selection and genes expression analysis during adventitious root formation in walnut. Acta Horticulturae Sinica, 46 (10):1907-1918. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2018-0845 |
宋晓波, 常英英, 刘昊, 徐慧敏, 裴东. 2019. 核桃不定根发生阶段内参基因筛选与关键基因表达分析. 园艺学报, 46 (10):1907-1918.
doi: 10.16420/j.issn.0513-353x.2018-0845 |
|
[39] |
Sorin C, Bussell J D, Camus I, Ljung K, Kowalczyk M, Geiss G, Mckhann H, Garcon C, Vaucheret H, Sanberg G, Belllini C. 2005. Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1. The Plant Cell, 17:1343-1359.
doi: 10.1105/tpc.105.031625 URL |
[40] |
Stevens M E, Woeste K E, Pijut P M. 2018. Localized gene expression changes during adventitious root formation in black walnut(Juglans nigra L.). Tree Physiology, 38:877-894.
doi: 10.1093/treephys/tpx175 pmid: 29378021 |
[41] |
Sukumar P, Maloney G S, Muday G K. 2013. Localized induction of the ATP-binding cassette B19 auxin transporter enhances adventitious root formation in Arabidopsis. Plant Physiology, 162:1392-1405.
doi: 10.1104/pp.113.217174 URL |
[42] |
Sun B B, Chen L Q, Liu J C, Zhang X N, Yang Z N, Liu W, Xu L. 2016. TAA family contributes to auxin production during de novo regeneration of adventitious roots from Arabidopsis leaf explants. Science Bulletin, 61:1728-1731.
doi: 10.1007/s11434-016-1185-9 URL |
[43] |
Wang J W, Park M Y, Wang L J, Koo Y, Chen X Y, Weigel D, Poethig R S. 2011. miRNA control of vegetative phase change in trees. PLoS Genetics, 7:e1002012.
doi: 10.1371/journal.pgen.1002012 URL |
[44] | Wang Li-min, Chen Jie-zhen, Ou Liang-xi, Cai Chang-he. 2012. Research and progress on juvenile period in fruit trees. Guangdong Agricultural Sciences, 39 (10):46-50. (in Chinese) |
王丽敏, 陈洁珍, 欧良喜, 蔡长河. 2012. 果树童期研究进展. 广东农业科学, 39 (10):46-50. | |
[45] | Wei Hai-rong, Chen Xin, Zong Xiao-juan, Wang Jia-wei, Zhang Qing-xia, Zhang dao-hui, Liu Qing-zhong. 2013. Fluctuations of oxidase activities and carbon and nitrogen content during the rooting process of sweet cherry dwarf rootstock‘Gisela’softwood cutting. Scientia Silvae Sinicae, 49 (9):172-177. (in Chinese) |
魏海蓉, 陈新, 宗晓娟, 王甲威, 张庆霞, 张道辉, 刘庆忠. 2013. 甜樱桃矮化砧‘吉塞拉6号’扦插过程中氧化酶活性和碳氮含量变化. 林业科学, 49 (9):172-177. | |
[46] |
Wei M, Liu Q, Wang Z, Yang J, Li W, Chen Y, Lu H, Nie J, Liu B, Lv K, Mao X, Chen S, Sanders J, Wei H, Li C. 2020. PuHox52-mediated hierarchical multilayered gene regulatory network promotes adventitious root formation in Populus ussuriensis. New Phytologist, 228:1369-1385.
doi: 10.1111/nph.v228.4 URL |
[47] |
Weijers D, Wagner D. 2016. Transcriptional responses to the auxin hormone. Annual Review of Plant Biology, 67:539-574.
doi: 10.1146/annurev-arplant-043015-112122 pmid: 26905654 |
[48] |
Wendling I, Trueman S J, Xavier A. 2014. Maturation and related aspects in clonal forestry-part II:Reinvigoration,rejuvenation and juvenility maintenance. New Forests, 45:473-486.
doi: 10.1007/s11056-014-9415-y URL |
[49] |
Wu G, Park M Y, Conway S R, Wang J W, Weigel D, Poethig R S. 2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell, 138:750-759.
doi: 10.1016/j.cell.2009.06.031 URL |
[50] |
Wu G, Poethig R S. 2006. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development, 133:3539-3547.
doi: 10.1242/dev.02521 URL |
[51] |
Xiao Z F, Ji N, Zhang X Z, Zhang Y Z, Wang Y, Wu T, Xu X F, Han Z H. 2014. The loss of juvenility elicits adventitious rooting recalcitrance in apple rootstocks. Plant Cell Tissue and Organ Culture, 119:51-63.
doi: 10.1007/s11240-014-0513-5 URL |
[52] | Xiao Zu-fei. 2014. Impact of the juvenility on the adventitious rooting of leafy cuttings in apple rootstocks[Ph. D. Dissertation]. Beijing: China Agriculture University. (in Chinese) |
肖祖飞. 2014. 童性对苹果砧木绿枝扦插生根的影响[博士论文]. 北京: 中国农业大学. | |
[53] |
Xie K, Shen J, Hou X, Yao J, Li X, Xiao J, Xiong L. 2012. Gradual increase of miR156 regulates temporal expression changes of numerous genes during leaf development in rice. Plant Physiology, 158:1382-1394.
doi: 10.1104/pp.111.190488 pmid: 22271747 |
[54] |
Xie K, Wu C, Xiong L. 2006. Genomic organization,differential expression,and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiology, 142:280-293.
doi: 10.1104/pp.106.084475 URL |
[55] |
Xu M, Hu T, Zhao J, Park M Y, Earley K W, Wu G, Poethig R S. 2016. Developmental functions of miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE(SPL)genes in Arabidopsis thaliana. PLoS Genetics, 12:e1006263.
doi: 10.1371/journal.pgen.1006263 URL |
[56] |
Xu M, Zhu L, Shou H, Wu P. 2005. A PIN1 family gene,OsPIN1,involved in auxin-dependent adventitious root emergence and tillering in rice. Plant Cell Physiology, 46:1674-1681.
doi: 10.1093/pcp/pci183 URL |
[57] |
Xu X Z, Li X, Hu X W, Wu T, Wang Y, Xu X F, Zhang X Z, Han Z H. 2017. High miR156 expression is required for auxin-induced adventitious root formation via MxSPL26 independent of PINs and ARFs in Malus xiaojinensis. Frontiers in Plant Science, 8:1059.
doi: 10.3389/fpls.2017.01059 URL |
[58] | Xu Xiao-zhao. 2017. Molecular basis of rooting recalcitrance in‘Chistock 1’(Malus xiaojinensis)leafy cuttings[Ph. D. Dissertation]. Beijing: China Agriculture University. (in Chinese) |
徐晓召. 2017. ‘中砧1号’成龄期绿枝插穗难生根的分子机制初探[博士论文]. 北京: 中国农业大学. | |
[59] |
Yamamoto Y, Kamiya N, Morinaka Y, Matsuoka M, Sazuka T. 2007. Auxin biosynthesis by the YUCCA genes in rice. Plant Physiology, 143:1362-1371.
doi: 10.1104/pp.106.091561 pmid: 17220367 |
[60] |
Ye B B, Shang G D, Pan Y, Xu Z G, Zhou C M, Mao Y B, Bao N, Sun L J, Xu T D, Wang J W. 2019. AP2/ERF transcription factors integrate age and wound signals for root regeneration. The Plant Cell, 32:226-241.
doi: 10.1105/tpc.19.00378 URL |
[61] |
Yu H, Chen X, Hong Y Y, Wang Y, Xu P, Ke S D, Liu H Y, Zhu J K, Oliver D J, Xiang C B. 2008. Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. The Plant Cell, 20:1134-1151.
doi: 10.1105/tpc.108.058263 URL |
[62] |
Yu L, Xiang C. 2013. Arabidopsis Enhanced Drought Tolerance1/HOMEODOMAIN GLABROUS11 confers drought tolerance in transgenic rice without yield penalty. Plant Physiology, 162:1378-1391.
doi: 10.1104/pp.113.217596 URL |
[63] |
Yu L H, Wu S J, Peng Y S, Liu R N, Chen X, Zhao P, Xu P, Zhu J B, Jiao G L, Pei Y, Xiang C B. 2016. Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. Plant Biotechnology Journal, 14:72-84.
doi: 10.1111/pbi.12358 URL |
[64] |
Yue J, Hu X, Huang J. 2014. Origin of plant auxin biosynthesis. Trends in Plant Science, 19:764-770.
doi: 10.1016/j.tplants.2014.07.004 pmid: 25129418 |
[65] |
Yun J, Sun Z, Jiang Q, Wang Y, Wang C, Luo Y, Zhang F, Li X. 2021. The miR156b-GmSPL9d module modulates nodulation by targeting multiple core nodulation genes in soybean. New Phytologist, 233:1881-1899.
doi: 10.1111/nph.17899 pmid: 34862970 |
[66] | Zenser N, Ellsmore A, Leasure C, Callis J. 2001. Auxin modulates the degradation rate of Aux/IAA proteins. Proceedings of the National Academy of Sciences of the United States of America, 98:11795-11800. |
[67] | Zhang Gang-min, Yang Wen-li, Jia Yu-bin, Peng Wei-xiu. 1999. An anatomical study on rooting of cuttings of Taxus cuspidata var. nana. Acta Horticulturae Sinica, 26 (3):201-203. (in Chinese) |
张钢民, 杨文利, 贾玉彬, 彭伟秀. 1999. 矮紫杉插条生根的解剖研究. 园艺学报, 26 (3):201-203. | |
[68] |
Zhao M L, Yang S G, Chen C Y, Li C, Shan W, Lu W J, Cui Y H, Liu X C, Wu K Q. 2015. Arabidopsis BREVIOEDICELLUS interacts with the SWI2/SNF 2 chromatin remodeling ATPase BRAHMA to regulate KNAT2 and KNAT6 expression in control of inflorescence architecture. PLoS Genetics, 11:e1005125.
doi: 10.1371/journal.pgen.1005125 URL |
[69] |
Zhu J, Li Y, Lin J, Wu Y, Guo H, Shao Y, Mao C. 2019. CRD1,an Xpo1 domain protein,regulates miRNA accumulation and crown root development in rice. The Plant Journal, 100:328-342.
doi: 10.1111/tpj.v100.2 URL |
[1] | 饶智雄, 安玉艳, 曹荣祥, 唐泉, 汪良驹. 外源ALA缓解ABA抑制草莓根系伸长生长的机理研究[J]. 园艺学报, 2023, 50(3): 461-474. |
[2] | 于婷婷, 李欢, 宁源生, 宋建飞, 彭璐琳, 贾竣淇, 张玮玮, 杨洪强. 苹果GRAS全基因组鉴定及其对生长素的响应分析[J]. 园艺学报, 2023, 50(2): 397-409. |
[3] | 胡若琳, 王佳丽, 杨慧勤, 袁超, 牛义, 汤青林, 魏大勇, 田时炳, 杨洋, 王志敏. 茄子生长素响应因子SmARF5对分枝发育的影响[J]. 园艺学报, 2022, 49(9): 1895-1906. |
[4] | 杨丽媛, 王倩, 王许会, 徐通达, 马军. 草莓生长素合成关键酶FveTAA1保守氨基酸位点T111的生物学功能研究[J]. 园艺学报, 2021, 48(9): 1695-1705. |
[5] | 林胜男, 刘杰玮, 张晓妮, 包满珠, 傅小鹏. 香石竹WRKY家族全基因组鉴定及其表达分析[J]. 园艺学报, 2021, 48(9): 1768-1784. |
[6] | 鱼尚奇, 张锐, 郭众仲, 宋岩, 付嘉智, 武鹏雨, 马治浩. 核桃内果皮硬化期生长素动态变化及差异表达基因分析[J]. 园艺学报, 2021, 48(3): 487-504. |
[7] | 侯黔东, 沈天娇, 余欢欢, 仇志浪, 文壮, 张惠敏, 吴亚维, 文晓鹏. 甜樱桃GH3基因家族全基因组鉴定与表达分析[J]. 园艺学报, 2021, 48(12): 2360-2374. |
[8] | 刘璐, 谷思, 张伟伟, 赵帅琪, 李安然, 邢宇. 森林草莓FvMOB1与FvM4K1互作及响应生长素调控初探[J]. 园艺学报, 2021, 48(11): 2185-2196. |
[9] | 韦燕红,刘 桢,李 珂,孟 媛,汪 蕙,毛江萍,马豆豆,李少欢,马娟娟,卢 显,张 东*. 苹果miR396家族鉴定及在不定根发育过程中的表达分析[J]. 园艺学报, 2020, 47(7): 1237-1252. |
[10] | 李运合, 刘 敏, 刘建东, 吴青松. 杧果MiPGP1和MiPGP2的表达分析及其对拟南芥不定根形成的影响[J]. 园艺学报, 2020, 47(12): 2317-2330. |
[11] | 颜爽爽, 邱正坤, 余炳伟, 明方艳, 陈长明, 雷建军, 曹必好. 植物生长素响应高温胁迫研究进展[J]. 园艺学报, 2020, 47(11): 2238-2246. |
[12] | 张彦苹1,2,*,刘照坤3,朱旭东4,王 晨4,李庆魁1,袁卫明1,娄晓鸣1. 桃果实中miR160a与其靶基因ARF的鉴定及对IAA的响应分析[J]. 园艺学报, 2019, 46(4): 613-622. |
[13] | 张淑辉1,王贵芳2,罗静静1,陈晓璐1,肖元松1,彭福田1,*. 桃PpSnRK1蛋白激酶对植株根系生长的影响[J]. 园艺学报, 2019, 46(11): 2099-2108. |
[14] | 宋晓波1,常英英1,刘 昊1,2,徐慧敏3,裴 东1,*. 核桃不定根发生阶段内参基因筛选与关键基因表达分析[J]. 园艺学报, 2019, 46(10): 1907-1918. |
[15] | 韩朋良,刘肖娟,刘 鑫,董元花,胡大刚*,郝玉金*. 苹果生长素阻遏蛋白基因MdIAA26的分子克隆与功能鉴定[J]. 园艺学报, 2018, 45(6): 1041-1053. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司