园艺学报 ›› 2022, Vol. 49 ›› Issue (9): 1895-1906.doi: 10.16420/j.issn.0513-353x.2021-0700
胡若琳1, 王佳丽1, 杨慧勤1, 袁超1, 牛义1,*(), 汤青林1, 魏大勇1, 田时炳2, 杨洋2, 王志敏1,*()
收稿日期:
2021-10-16
修回日期:
2022-05-17
出版日期:
2022-09-25
发布日期:
2022-10-08
通讯作者:
牛义,王志敏
E-mail:niuy2001134@163.com;minzniwang_555@163.com
基金资助:
HU Ruolin1, WANG Jiali1, YANG Huiqin1, YUAN Chao1, NIU Yi1,*(), TANG Qinglin1, WEI Dayong1, TIAN Shibing2, YANG Yang2, WANG Zhimin1,*()
Received:
2021-10-16
Revised:
2022-05-17
Online:
2022-09-25
Published:
2022-10-08
Contact:
NIU Yi,WANG Zhimin
E-mail:niuy2001134@163.com;minzniwang_555@163.com
摘要:
以茄子(Solanum melongena)‘S12’为试验材料,同源克隆了生长素响应因子(auxin response factor ARF5)基因SmARF5,该基因开放阅读框全长2 793 bp,编码930个氨基酸,定位于细胞核。分别构建载体pGBKT7-SmARF5-Full和截短体pGBKT7-SmARF5-674aa进行酵母转化试验。结果表明,SmARF5具有转录激活活性,SmARF5全长可以与SmIAA16和SmIAA26蛋白互作,截短体SmARF5-674aa不与SmIAA16和SmIAA26互作。构建过表达载体pCAMBIA-2301G-SmARF5并转化入烟草。结果表明,与野生型相比,SmARF5转基因烟草植株出现明显分枝,茎粗增大。以上结果表明SmARF5可能通过生长素信号转导途径在植物分枝形成过程中发挥重要作用。
中图分类号:
胡若琳, 王佳丽, 杨慧勤, 袁超, 牛义, 汤青林, 魏大勇, 田时炳, 杨洋, 王志敏. 茄子生长素响应因子SmARF5对分枝发育的影响[J]. 园艺学报, 2022, 49(9): 1895-1906.
HU Ruolin, WANG Jiali, YANG Huiqin, YUAN Chao, NIU Yi, TANG Qinglin, WEI Dayong, TIAN Shibing, YANG Yang, WANG Zhimin. Cloning and Functional Analysis of Auxin Response Factor Gene SmARF5 in Solanum melongena[J]. Acta Horticulturae Sinica, 2022, 49(9): 1895-1906.
用途 Purpose | 引物 Primer | 序列(5′-3′) Sequence(5′-3′) | 限制酶 Restriction enzyme |
---|---|---|---|
全长克隆 Full-cloning | SmARF5-F SmARF5-R | ATGGGGTCTGTTGAAGTAAAGA GTGGAAGGCAAAGTTCAATAAAAGC | |
亚细胞定位 Subcellular localization | pCAMBIA1300-GFP-SmARF5-F pCAMBIA1300-GFP-SmARF5-R | CAAATCGACTCTAGAAAGCTTATGGGGTCTGTTGAAGTAAAGAACA GCCCTTGCTCACCATGGTACCGTTCGGAAATTCTGATGTTGAGC | HindⅢ KpnⅠ |
遗传转化 Genetic transformation | SmARF5-2301G-F SmARF5-2301G-R | GCTCTAGAGCATGGGGTCTGTTGAAGTAAA CGAGCTCGTCAGTTCGGAAATTCTGATG | XbaⅠ SacⅠ |
酵母双杂交 Yeast two- hybrid assay | pGADT7-SmARF5-F pGADT7-SmARF5-Full-R pGADT7-SmARF5-674aa-R pGBKT7-SmARF5-F pGBKT7-SmARF5-R pGBKT7-SmIAA16-F pGBKT7-SmIAA16-R pGBKT7-SmIAA26-F pGBKT7-SmIAA26-R | CGCCATATGATGGGGTCTGTTGAAGTAAAGAACA TCCCCCGGGTCAGTTCGGAAATTCTGATGTTGA CCGCTCGAGGCTATCTGCTACAGCTTGATAA CGCCATATGATGGGGTCTGTTGAAGTAAAGAACA TCCCCCGGGTCAGTTCGGAAATTCTGATGTTGA TCCCCCGGGAATGGTAGGGGAAGAAGAAA GCGTCGACTCAGTTAATTCTGTTCTTGC TCCCCCGGGAATGGAAGGTTATTCAAGAA GCGTCGACCTATGGCTGCTGCTTAGTTC | NdeⅠ SmaⅠ XhoⅠ NdeⅠ SmaⅠ SmaⅠ SalⅠ SmaⅠ SalⅠ |
qRT-PCR | qRT-SmARF5-F qRT-SmARF5-R α-tubuin-F α-tubuin-R | ACTGTCCGTTGGTATGAGGT CAGGCCATCTCAGTGGATCC ATGAGAGAGTGCATATCGAT TTCACTGAAGAAGGTGTTGAA |
表1 引物序列列表
Table 1 The list of primer sequence
用途 Purpose | 引物 Primer | 序列(5′-3′) Sequence(5′-3′) | 限制酶 Restriction enzyme |
---|---|---|---|
全长克隆 Full-cloning | SmARF5-F SmARF5-R | ATGGGGTCTGTTGAAGTAAAGA GTGGAAGGCAAAGTTCAATAAAAGC | |
亚细胞定位 Subcellular localization | pCAMBIA1300-GFP-SmARF5-F pCAMBIA1300-GFP-SmARF5-R | CAAATCGACTCTAGAAAGCTTATGGGGTCTGTTGAAGTAAAGAACA GCCCTTGCTCACCATGGTACCGTTCGGAAATTCTGATGTTGAGC | HindⅢ KpnⅠ |
遗传转化 Genetic transformation | SmARF5-2301G-F SmARF5-2301G-R | GCTCTAGAGCATGGGGTCTGTTGAAGTAAA CGAGCTCGTCAGTTCGGAAATTCTGATG | XbaⅠ SacⅠ |
酵母双杂交 Yeast two- hybrid assay | pGADT7-SmARF5-F pGADT7-SmARF5-Full-R pGADT7-SmARF5-674aa-R pGBKT7-SmARF5-F pGBKT7-SmARF5-R pGBKT7-SmIAA16-F pGBKT7-SmIAA16-R pGBKT7-SmIAA26-F pGBKT7-SmIAA26-R | CGCCATATGATGGGGTCTGTTGAAGTAAAGAACA TCCCCCGGGTCAGTTCGGAAATTCTGATGTTGA CCGCTCGAGGCTATCTGCTACAGCTTGATAA CGCCATATGATGGGGTCTGTTGAAGTAAAGAACA TCCCCCGGGTCAGTTCGGAAATTCTGATGTTGA TCCCCCGGGAATGGTAGGGGAAGAAGAAA GCGTCGACTCAGTTAATTCTGTTCTTGC TCCCCCGGGAATGGAAGGTTATTCAAGAA GCGTCGACCTATGGCTGCTGCTTAGTTC | NdeⅠ SmaⅠ XhoⅠ NdeⅠ SmaⅠ SmaⅠ SalⅠ SmaⅠ SalⅠ |
qRT-PCR | qRT-SmARF5-F qRT-SmARF5-R α-tubuin-F α-tubuin-R | ACTGTCCGTTGGTATGAGGT CAGGCCATCTCAGTGGATCC ATGAGAGAGTGCATATCGAT TTCACTGAAGAAGGTGTTGAA |
图4 含重组诱饵质粒pGBKT7-SmARF5的酵母在SD/-Trp/X-α-gal培养基上呈蓝色(具转录活性)
Fig. 4 Yeast of recombinant bait plasmid pGBKT7-SmARF5 is blue on SD/-Trp/X-α-gal medium(transcriptionally active)
图6 SmARF5转基因烟草T0代的PCR检测 WT:野生型;D:ddH2O;P:重组质粒;1 ~ 16:转基因植株;M:Trans 2K plus DNA marker。
Fig. 6 PCR identification of T0 generation of SmARF5 transgenic tobacco WT:Wild type;D:ddH2O;P:Recombinant plasmid;1-16:Transgenic plants;M:Trans 2K plus DNA marker.
[1] | An Jianping, Song Laiqing, Zhao Lingling, You Chunxiang, Wang Xiaofei, Hao Yujin. 2018. Cloning and functional characterization of an auxin response factor gene MdARF5 in apple. Scientia Agricultura Sinica, 51 (7):1345-1352. (in Chinese) |
安建平, 宋来庆, 赵玲玲, 由春香, 王小非, 郝玉金. 2018. 苹果生长素响应因子MdARF5的克隆与功能鉴定. 中国农业科学, 51 (7):1345-1352. | |
[2] | Cao Zi-lin. 2019. Molecular mechanisms of endogenous hormone regulation in stump sprouting of Hippophae rhamnoides subspsinesis[M. D. Dissertation]. Beijing: Beijing Forestry University. (in Chinese) |
曹子林. 2019. 中国沙棘平茬萌蘖内源激素调控的分子机制[硕士论文]. 北京: 北京林业大学. | |
[3] |
Ckurshumova W, Smirnova T, Marcos D, Zayed Y, Berleth T. 2014. Irrepressible MONOPTEROS/ARF 5 promotes de novo shoot formation. New Phytologist, 204 (3):556-566.
doi: 10.1111/nph.13014 pmid: 25274430 |
[4] |
Crawford S, Shinohara N, Sieberer T, Williamson L, George G, Hepworth J, Müller D, Domagalska M A, Leyser O. 2010. Strigolactones enhance competition between shoot branches by dampening auxin transport. Development, 137 (17):2905-2913.
doi: 10.1242/dev.051987 pmid: 20667910 |
[5] |
Domagalska M A, Leyser O. 2011. Signal integration in the control of shoot branching. Nature Reviews Molecular Cell Biology, 12 (4):211-221.
doi: 10.1038/nrm3088 pmid: 21427763 |
[6] |
Donner T J, Sherr I, Scarpella E. 2009. Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves. Development, 136 (19):3235-3246.
doi: 10.1242/dev.037028 pmid: 19710171 |
[7] | Eduardo G G, Alice P, Josáíé M F Z, Carlos T, Richard G H I, Pilar C. 2017. Abscisic acid signaling is controlled by a BRANCHED1/HD-ZIP I cascade in Arabidopsis axillary buds. Proceedings of the National Academy of Sciences, 114 (2):E245-E254. |
[8] | Feng Shuangshuang, Luo Jiayi, Zhu Xijian, Jiang Jibin, Huang Sanwen, Zhang Jinzhe. 2020. Homozygous mutant construction and function analysis of TCP transcription factor StBRC1a in diploid potato. Acta Horticulturae Sinica, 47 (1):63-72. (in Chinese) |
冯爽爽, 罗嘉翼, 朱曦鉴, 蒋继滨, 黄三文, 张金喆. 2020. 二倍体马铃薯StBRC1a功能缺失突变体的获得及其功能分析. 园艺学报, 47 (1):63-72. | |
[9] |
Finlayson S A. 2007. Arabidopsis TEOSINTE BRANCHED1-LIKE 1 regulates axillary bud outgrowth and is homologous to monocot TEOSINTE BRANCHED1. Plant and Cell Physiology, 48 (5):667-677.
pmid: 17452340 |
[10] | Fu Da-qi. 2016. Leaves syringe method//Operational guidance of virus-induced gene siliencing in plant. Beijing: China Agricultral University Press:52-57. (in Chinese) |
傅达奇. 2016. 叶片注射侵染法//植物中病毒诱导基因沉默技术操作指导. 北京: 中国农业大学出版社:52-57. | |
[11] |
Gomez-Roldan V, Fermas S, Brewer P B, Puech-Pagès V, Dun E A, Pillot J P, Letisse F, Matusova R, Danoun S, Portais J C, Bouwmeester H, Bécard G, Beveridge C A, Rameau C, Rochange S F. 2008. Strigolactone inhibition of shoot branching. Nature, 455 (7210):89-194.
doi: 10.1038/nature07252 URL |
[12] |
Gregor S, Klaus T. 2005. Shoot and inflorescence branching. Current Opinion in Plant Biology, 8 (5):506-511.
pmid: 16054429 |
[13] |
Guilfoyle T J, Hagen G. 2007. Auxin response factors. Current Opinion In Plant Biology, 10 (5):453-460.
pmid: 17900969 |
[14] | Hardtke C S, Berleth T. 1998. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. The EMBO journal, 17 (5):188-189. |
[15] | Hu Yong-jun, Tian Su-bo, Li Xiao-gang. 2012. Eggplant multiple buds + lateral branch grafting technology. Science Planting and Raising,(11):27. (in Chinese) |
胡永军, 田素波, 李小刚. 2012. 茄子多芽 + 侧枝嫁接技术. 科学种养,(11):27. | |
[16] | Kenneth V T, Folke S. 1933. Studies on the growth hormone of plants:III. The inhibiting action of the growth substance on bud development. Proceedings of the National Academy of Sciences of the United States of America, 19:714-716. |
[17] | Liu Congcong. 2017. The mechanisms of auxin and strigolactone control lateral branching outgrowth through cytokinin in tomato plants[M. D. Dissertation]. Hangzhou: Zhejiang University. (in Chinese) |
刘丛丛. 2017. 生长素及独脚金内酯通过细胞分裂素调控番茄侧枝生长发育的机制研究[硕士论文]. 杭州: 浙江大学. | |
[18] |
Liu S Y, Zhang Y W, Feng Q S, Qin L, Pan C T, Lamin-Samu A T, Lu G. 2018. Tomato AUXIN RESPONSE FACTOR 5 regulates fruit set and development via the mediation of auxin and gibberellin signaling. Scientific Reports, 8 (1):2971.
doi: 10.1038/s41598-018-21315-y pmid: 29445121 |
[19] | Liu Songyu, Yan Yanqiu, Feng Qiushuo, Lu Gang. 2018. Function analysis of SlARF12gene during fruit development in tomato. Acta Horticulturae Sinica, 45 (4):678-690. (in Chinese) |
刘松瑜, 闫艳秋, 冯秋硕, 卢钢. 2018. 番茄生长素响应因子基因SlARF12在果实发育过程中的功能分析. 园艺学报, 45 (4):678-690. | |
[20] |
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CTmethod. Methods, 25:402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[21] |
McSteen P, Leyser O. 2005. Shoot branching. Annual Review of Plant Biology, 56:353-374.
pmid: 15862100 |
[22] |
Philip B B, Elizabeth A, Brett J. F, Catherine R, Christine A B. 2009. Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiology, 150 (1):482-493.
doi: 10.1104/pp.108.134783 pmid: 19321710 |
[23] |
Snowden K C, Napoli C A. 2003. A quantitative study of lateral branching in petunia. Functional Plant Biology, 30 (9):987-994.
doi: 10.1071/FP03081 pmid: 32689083 |
[24] |
Shimizu-Sato S, Tanaka M, Mori H. 2009. Auxin-cytokinin interactions in the control of shoot branching. Plant Molecular Biology, 69 (4):429-435.
doi: 10.1007/s11103-008-9416-3 pmid: 18974937 |
[25] | Sun Qian. 2020. Research on the function of strigolactones in the regulation of shoot branching in tomato[M. D. Dissertation]. Hangzhou: Zhejiang University. (in Chinese) |
孙倩. 2020. 独角金内酯调控番茄侧枝生长的功能研究[硕士论文]. 杭州: 浙江大学. | |
[26] |
Thomas G, Oliver C, Elisabeth S, Dörte M, Rubén H, Gregor S, Klaus T. 2003. Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristemformation. Genes Development, 17 (9):1175-1187.
doi: 10.1101/gad.260703 URL |
[27] |
Tiwari S B, Hagen G, Guilfoyle T. 2003. The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell, 15 (2):533-543.
pmid: 12566590 |
[28] |
Tiwari S B, Wang X J, Hagen G, Guilfoyle T J. 2001. AUX/IAA proteins are active repressors,and their stability and activity are modulated by auxin. Plant Cell, 13 (12):2809-2822.
pmid: 11752389 |
[29] |
Ulmasov T, Murfett J, Hagen G, Guilfoyle T J. 1997. ARF1,a transcription factor that binds to auxin response elements. Science, 276 (5320):1865-1868.
pmid: 9188533 |
[30] | Wang Min-xia. 2016. Functional analysis of rice(Orzya sativa L.)tillering regulator gene OsIAA16 and development of genetic modifiers of the d14 mutant[Ph. D. Dissertation]. Beijing:Chinese Academy of Agricultural Sciences. (in Chinese) |
王闵霞. 2016. 水稻分蘖调控基因OsIAA16的功能研究和d14突变体遗传修饰因子的创制[博士论文]. 北京: 中国农业科学院. | |
[31] |
Woodward A W, Bonnie B. 2005. Auxin:regulation,action,and interaction. Ann Bot, 95 (5):707-735.
doi: 10.1093/aob/mci083 URL |
[32] |
Xu C Z, Shen Y, He F, Fu X K, Yu H, Lu W X, Li Y L, Li C F, Fan D, Wang H C, Luo K M. 2019. Auxin-mediated Aux/IAA-ARF-HB signaling cascade regulates secondary xylem development in Populus. The New Phytologist, 222 (2):752-767.
doi: 10.1111/nph.15658 URL |
[33] |
Xue Zhi-fei, Wang Xia, Li Fu-peng, Ma Chao-zhi. 2018. Homologous cloning of BnGS3 and BnGhd7 genes in Brassica napus and their relationship with rapeseed yield-related traits. Acta Agronomica Sinica, 44 (2):297-305. (in Chinese)
doi: 10.3724/SP.J.1006.2018.00297 URL |
薛志飞, 王夏, 李付鹏, 马朝芝. 2018. 甘蓝型油菜BnGS3和BnGhd7的同源克隆及其与油菜产量相关性状的关系. 作物学报, 44 (2):297-305. | |
[34] | Yue Peng-tao. 2020. Auxin activated MdARF 5 induces the expression of ethylene biosynthetic genes to initiate apple fruit ripening[Ph. D. Dissertation]. Shenyang:Shenyang Agricultural University. (in Chinese) |
岳鹏涛. 2020. 生长素通过MdARF5诱导苹果(Malus domestica)果实乙烯合成及果实成熟的机理研究[博士论文]. 沈阳: 沈阳农业大学. | |
[35] | Zhang Jun,Qiu Shuang,He Jia-qi,Zhou Yu-ming,Wu Chang-le,Yuan Hong-miao,Liu Jia-yi,Yin Yi-jun,Shi Tong-rui,Zhai Ying. 2020. Construction of soybean GmGolS gene plant expression vector and tobacco genetic transformation. Journal of Qiqihar University (Natural Science Edition), 36 (6):22-25. (in Chinese) |
张军, 邱爽, 何佳琦, 周雨明, 邬长乐, 袁洪淼, 刘嘉仪, 尹伊珺, 史同瑞, 翟莹. 2020. 大豆GmGolS基因植物表达载体构建及烟草遗传转化. 齐齐哈尔大学学报(自然科学版), 36 (6):22-25. | |
[36] |
Zhao C S, Craig J C, Petzold H E, Dickerman A W, Beers E P. 2005. The xylem and phloem transcriptomes from secondary tissues of the Arabidopsis root-hypocotyl. Plant Physiology, 138 (2):803-818.
doi: 10.1104/pp.105.060202 URL |
[37] |
Zhao Z, Andersen S U, Ljung K, Dolezal K, Miotk A, Schultheiss S J, Lohmann J U. 2010. Hormonal control of the shoot stem-cell niche. Nature, 465 (7301):1089-1092.
doi: 10.1038/nature09126 URL |
[38] |
Zhou Xi-meng, Fu Chun, Ma Chang-le, Wang Xing-jun, Zhao Chuan-zhi. 2021. Research progress of molecular regulation of branching of crops. Biotechnology Bulletin, 37 (3):107-114. (in Chinese)
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0906 |
周希萌, 付春, 马长乐, 王兴军, 赵传志. 2021. 作物分枝的分子调控研究进展. 生物技术通报, 37 (3):107-114.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0906 |
|
[39] | Zhu Gui-yuan. 2017. Molecular mechanisms study on the development of apical bud and vascular tissue regulated by PtSHRs gene[M. D. Dissertation]. Tianjin:Tianjin University. (in Chinese) |
祝桂媛. 2017. 杨树PtSHRs基因调控顶芽和维管组织发育的分子机制研究[硕士论文]. 天津: 天津大学. |
[1] | 于婷婷, 李 欢, 宁源生, 宋建飞, 彭璐琳, 贾竣淇, 张玮玮, 杨洪强. 苹果GRAS全基因组鉴定及其对生长素的响应分析[J]. 园艺学报, 2023, 50(2): 397-409. |
[2] | 郑清波, 鲍泽洋, 蓝青青, 周钰雯, 周雨菲, 郑彩霞, 李 旭, . 童性与生长素对不定根发生的影响研究进展[J]. 园艺学报, 2023, 50(2): 441-450. |
[3] | 李植良, 黎振兴, 李涛, 孙保娟, 李颖, 徐小万, 王恒明, 衡周, 宫超. 茄子新品种‘新丰3号’[J]. 园艺学报, 2023, 50(1): 227-228. |
[4] | 蔡鹏, 房超, 李跃建, 刘独臣, 刘小俊, 梁根云. 茄子新品种‘天骄’[J]. 园艺学报, 2023, 50(1): 229-230. |
[5] | 谈 杰, 黄树苹, 陈 霞, 张洪源, 李 烨, 王本启, 陈 浩, 吴雪霞, 张 敏, . 茄子新品种‘鄂茄五号’[J]. 园艺学报, 2022, 49(S2): 99-100. |
[6] | 黄树苹, 谈 杰, 陈 霞, 张洪源, 李 烨, 王本启, 陈 浩, 吴雪霞, 张 敏, . 茄子新品种‘鄂茄六号’[J]. 园艺学报, 2022, 49(S2): 101-102. |
[7] | 杨 洋, 田时炳, 王永清, 蒋长春, 邹 敏, 陶 涛, 周珊珊, 王之劲, 包忠宪, 唐晓华. 茄子新品种‘渝茄5号’[J]. 园艺学报, 2022, 49(S1): 77-78. |
[8] | 林元秘, 朱文姣, 陈敏, 薛春梅, 晋芳宇, 朱羽平, 蒋欣玥, 叶凌峰, 倪姝南伶, 杨清. miR396b负调控茄子对黄萎病的防御反应[J]. 园艺学报, 2022, 49(8): 1713-1722. |
[9] | 王丹, 王谧, 刘军, 周晓慧, 刘松瑜, 杨艳, 庄勇. 茄子U6启动子克隆及CRISPR/Cas9介导的基因编辑体系建立[J]. 园艺学报, 2022, 49(4): 791-800. |
[10] | 乔军, 刘婧, 李素文, 王利英. 基于极端混合池全基因组重测序的茄子萼下果色基因预测[J]. 园艺学报, 2022, 49(3): 613-621. |
[11] | 林珲, 薛珠政, 黄建都, 陈继兵, 温庆放. 茄子新品种‘福茄8号’[J]. 园艺学报, 2022, 49(2): 463-464. |
[12] | 乔军, 王利英, 刘婧, 李素文. 基于转录组测序的茄子萼下果色光敏相关基因表达分析[J]. 园艺学报, 2022, 49(11): 2347-2356. |
[13] | 李植良, 黎振兴, 李涛, 孙保娟, 李颖, 徐小万, 王恒明, 衡周, 宫超. 茄子新品种'新丰2号'[J]. 园艺学报, 2022, 49(10): 2289-2290. |
[14] | 贾 利, 江海坤, 王 艳, 严从生, 王明霞, 董言香, 方 凌, 张其安, 俞飞飞, 葛治欢. 白茄新品种‘皖茄048’[J]. 园艺学报, 2021, 48(S2): 2837-2838. |
[15] | 杨丽媛, 王倩, 王许会, 徐通达, 马军. 草莓生长素合成关键酶FveTAA1保守氨基酸位点T111的生物学功能研究[J]. 园艺学报, 2021, 48(9): 1695-1705. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司