园艺学报 ›› 2021, Vol. 48 ›› Issue (4): 661-675.doi: 10.16420/j.issn.0513-353x.2020-0379
张庆雯, 王兆昊, 祁静静, 谢宇, 雷天刚, 何永睿, 陈善春(), 姚利晓()
收稿日期:
2020-11-02
出版日期:
2021-04-25
发布日期:
2021-04-29
通讯作者:
陈善春,姚利晓
E-mail:chenshanchun@cric.cn;yaolixiao@cric.cn
基金资助:
ZHANG Qingwen, WANG Zhaohao, QI Jingjing, XIE Yu, LEI Tiangang, He Yongrui, CHEN Shanchun(), YAO Lixiao()
Received:
2020-11-02
Online:
2021-04-25
Published:
2021-04-29
Contact:
CHEN Shanchun,YAO Lixiao
E-mail:chenshanchun@cric.cn;yaolixiao@cric.cn
摘要:
胼胝质是一种β-1,3-葡萄糖聚合物,植物在生长发育和受到生物、非生物胁迫过程中均会有胼胝质沉积。胼胝质合成酶又称β-1,3-葡聚糖合成酶类似物,通常以多亚基复合物形式控制胼胝质的合成。本文中对胼胝质合成酶的分离鉴定过程进行了梳理,对胼胝质合成酶复合物的亚基及其作用进行了描述,重点总结了转录因子、植物生长调节剂等对胼胝质合成酶基因表达的调控作用,并对胼胝质合成酶在花粉发育和韧皮部运输过程中的作用,对机械损伤、磷酸盐、金属离子等非生物胁迫,以及虫害、细菌和真菌等生物胁迫的应答反应进行了归纳;最后对胼胝质合成酶的研究方向提出展望,以期为解析胼胝质合成酶的调控机制提供参考,也为植物(特别是园艺植物)抗性基因的挖掘提供借鉴。
中图分类号:
张庆雯, 王兆昊, 祁静静, 谢宇, 雷天刚, 何永睿, 陈善春, 姚利晓. 植物胼胝质合成酶研究进展[J]. 园艺学报, 2021, 48(4): 661-675.
ZHANG Qingwen, WANG Zhaohao, QI Jingjing, XIE Yu, LEI Tiangang, He Yongrui, CHEN Shanchun, YAO Lixiao. The Advances of Callose Synthase in Plant[J]. Acta Horticulturae Sinica, 2021, 48(4): 661-675.
物种 Species | 数量 Number | 开放阅读框/bp Open reading frame | 内含子数 Intron number | 外显子数 Exon number | 编码氨基酸数 Amino acid number | 相对分子 质量/kD Relative molecular weight | 文献 Reference |
---|---|---|---|---|---|---|---|
拟南芥 A rabidopsis thaliana | 12 | 5 307 ~ 5 853 | 1 ~ 49 | 2 ~ 50 | 1 768 ~ 1950 | 205.00 ~ 226.00 | Hong et al. |
甜橙Citrus sinensis | 9/12 | 1 509 ~ 7 602 | 0 ~ 109 | 1 ~ 110 | 502 ~ 2533 | 186.53 ~ 581.38 | Granato et al. |
油菜 Brassica napus | 32 | 1 812 ~ 6 915 | 0 ~ 54 | 1 ~ 55 | 603 ~ 2304 | 69.10 ~ 266.81 | Liu et al. |
葡萄Vitis vinifera | 8 | 3 867 ~ 6 159 | 9 ~ 48 | 10 ~ 49 | 1 288 ~ 2052 | 149.96 ~ 237.77 | Yu et al. |
小立碗藓 Physcomitrella patens | 12 | 5 268 ~ 5 901 | 1 755 ~ 1966 | Schuette et al. | |||
大麦 Hordeum vulgare | 7 | 627 ~ 5 748 | 208 ~ 1915 | 23.50 ~ 218.00 | Li et al. | ||
辣椒Capsicum annuum | 9 | 5 265 ~ 6 393 | 2 ~ 51 | 3 ~ 52 | 1 754 ~ 2130 | Sun et al. |
表1 植物胼胝质合成酶基因和蛋白特征
Table 1 Gene and protein characteristics of plant callose synthase
物种 Species | 数量 Number | 开放阅读框/bp Open reading frame | 内含子数 Intron number | 外显子数 Exon number | 编码氨基酸数 Amino acid number | 相对分子 质量/kD Relative molecular weight | 文献 Reference |
---|---|---|---|---|---|---|---|
拟南芥 A rabidopsis thaliana | 12 | 5 307 ~ 5 853 | 1 ~ 49 | 2 ~ 50 | 1 768 ~ 1950 | 205.00 ~ 226.00 | Hong et al. |
甜橙Citrus sinensis | 9/12 | 1 509 ~ 7 602 | 0 ~ 109 | 1 ~ 110 | 502 ~ 2533 | 186.53 ~ 581.38 | Granato et al. |
油菜 Brassica napus | 32 | 1 812 ~ 6 915 | 0 ~ 54 | 1 ~ 55 | 603 ~ 2304 | 69.10 ~ 266.81 | Liu et al. |
葡萄Vitis vinifera | 8 | 3 867 ~ 6 159 | 9 ~ 48 | 10 ~ 49 | 1 288 ~ 2052 | 149.96 ~ 237.77 | Yu et al. |
小立碗藓 Physcomitrella patens | 12 | 5 268 ~ 5 901 | 1 755 ~ 1966 | Schuette et al. | |||
大麦 Hordeum vulgare | 7 | 627 ~ 5 748 | 208 ~ 1915 | 23.50 ~ 218.00 | Li et al. | ||
辣椒Capsicum annuum | 9 | 5 265 ~ 6 393 | 2 ~ 51 | 3 ~ 52 | 1 754 ~ 2130 | Sun et al. |
图1 胼胝质合成酶复合物模型(Verma & Hong, 2002) SuSy:蔗糖合成酶;UGT:UDP-葡萄糖转移酶;Rop1:Rho样蛋白;ANN:膜联蛋白。
Fig. 1 Hypothetical model of the callose synthase complex(Verma & Hong, 2002) SuSy:Sucrose synthase;UGT:UDP-glucose transferase;Rop1:Rho-like protein;ANN:Annexin.
图2 调控胼胝质合成酶(CalS)的信号通路 黄色为转录因子,绿色为植物生长调节剂,粉色为胼胝质合成酶。ARF7:生长素响应因子7;ARF17:生长素响应因子17;AFBs:生长素信号F-box蛋白;BPH14:褐飞虱抗性基因14;BAK1:BRI1-相关受体激酶1;BIK1:葡萄孢菌诱导的激酶1;CDPK:钙依赖蛋白激酶;CML41:钙调素类似蛋白41;COI1:冠状肽不敏感蛋白1;EDS1:易感性增强蛋白1;FLS2:鞭毛蛋白检测蛋白2;ICS1:分支酸合成酶1;I3CA:吲哚-3-羧酸;NCED3:9-顺式环氧类胡萝卜素双加氧酶3;NPR1:发病相关基因不表达子1;OCP3:阳离子型过氧化物酶3;PAD4:植物抗毒素不足蛋白4;PKL:染色质重塑因子;PR2:病程相关蛋白2;RBOH:呼吸爆发氧化酶同源物;SVL:短营养期类似蛋白;TTP:CCCH锌指蛋白(Tristetraproline);TIR1:运输抑制剂响应蛋白1。
Fig. 2 Signal pathways to regulate callosesynthase(CalS) Yellow is the transcription factor,green is the plant growth regulator,pink is callosesynthase. ARF7:Auxin response factor 7;ARF17:Auxin response factor 17;AFBs:Auxin signaling F-Box protein;BPH14:Brown planthopper resistance 14;BAK1:Lrr-rk brassinosteroid receptor 1-associated kinase 1;BIK1:Botrytis-induced kinase 1;CDPK:Calcium-dependent protein kinases;CML41:Calmodulin-like 41;COI1:Coronatine-insensitive protein 1;EDS1:Enhanced disease susceptibility 1;FLS2:Flagellin sensing 2;ICS1:Isochorismate synthase 1;I3CA:Indole-3-caboxylic acid;NCED3:9′-cis-epoxycarotenoid dioxygenase;NPR1:Nonexpressor of pathogenesis-related genes 1;OCP3:Cationic peroxidase 3;PAD4:Phytoalexin deficient 4;PKL:Pickle;PR2:Pathogenesis-related protein 2;RBOH:Respiratory burst oxidase homologue;SVL:Short vegetative phase-like;TTP:Tristetraproline;TIR1:Transport inhibitor response 1.
[1] |
Ahmad S, Veyrat N, Gordon-Weeks R, Zhang Y, Martin J, Smart L, Glauser G, Erb M, Flors V, Frey M, Ton J. 2011. Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize. Plant Physiology, 157:317-327.
doi: 10.1104/pp.111.180224 URL |
[2] |
Amsbury S, Kirk P, Benitez-Alfonso Y. 2018. Emerging models on the regulation of intercellular transport by plasmodesmata-associated callose. Journal of Experimental Botany, 69:105-115.
doi: 10.1093/jxb/erx337 URL |
[3] |
Barratt D H, Kölling K, Graf A, Pike M, Calder G, Findlay K, Zeeman S C, Smith A M. 2011. Callose synthase GSL7 is necessary for normal phloem transport and inflorescence growth in Arabidopsis. Plant Physiology, 155:328-341.
doi: 10.1104/pp.110.166330 URL pmid: 21098675 |
[4] |
Blümke A, Somerville S C, Voigt C A. 2013. Transient expression of the Arabidopsis thaliana callose synthase PMR4 increases penetration resistance to powdery mildew in barley. Advances in Bioscience and Biotechnology, 04:810-813.
doi: 10.4236/abb.2013.48106 URL |
[5] |
Blümke A, Voigt C A. 2014. Secreted fungal effector lipase releases free fatty acids to inhibit innate immunity-related callose formation during wheat head infection. Plant Physiology, 165:346-358.
doi: 10.1104/pp.114.236737 URL pmid: 24686113 |
[6] | Chen X Y, Kim J Y. 2009. Callose synthesis in higher plants. Plant Signaling & Behavior, 4:489-492. |
[7] |
Chen X Y, Liu L, Lee E K, Han X, Rim Y, Chu H, Kim S W, Sack F, Kim J Y. 2009. The Arabidopsis callose synthase gene GSL8 is required for cytokinesis and cell patterning. Plant Physiology, 150:105.
doi: 10.1104/pp.108.133918 URL |
[8] |
Cui W, Lee J Y. 2016. Arabidopsis callose synthases CalS1/ 8 regulate plasmodesmal permeability during stress. Nature Plants, 2:16034.
doi: 10.1038/nplants.2016.34 URL |
[9] |
Cui X J, Shin H, Song C, Laosinchai W, Amano Y, Brown R M. 2001. A putative plant homolog of the yeast beta-1,3-glucan synthase subunit FKS1 from cotton(Gossypium hirsutum L.)fibers. Planta, 213:223-230.
URL pmid: 11469587 |
[10] |
Das P K, Biswas R, Anjum N, Das A K, Maiti M K. 2018. Rice matrix metalloproteinase OsMMP 1 plays pleiotropic roles in plant development and symplastic-apoplastic transport by modulating cellulose and callose depositions. Scientific Reports, 8:2783.
doi: 10.1038/s41598-018-20070-4 URL |
[11] |
D′Ambrosio J M, Couto D, Fabro G, Scuffi D, Lamattina L, Munnik T, Andersson M X, Álvarez M E, Zipfel C, Laxalt A M. 2017. Phospholipase C2 affects MAMP-triggered immunity by modulating ROS production. Plant Physiology, 175:970-981.
doi: 10.1104/pp.17.00173 URL |
[12] | Delmer D P, Solomon M, Read S M. 1991. Direct photolabeling with [P]UDP-Glucose for identification of a subunit of cotton fiber callose synthase. Plant Physiology, 95:556-563. |
[13] |
Dhugga K S, Ray P M. 1994. Purification of 1,3-beta- D-glucan synthase activity from pea tissue. two polypeptides of 55 kDa and 70 kDa copurify with enzyme activity. Eur J Biochem, 220:943-53.
pmid: 8143748 |
[14] |
Dong X, Hong Z, Chatterjee J, Kim S, Verma D P S. 2008. Expression of callose synthase genes and its connection with Npr1 signaling pathway during pathogen infection. Planta, 229:87-98.
doi: 10.1007/s00425-008-0812-3 URL |
[15] |
Dorothea E, Annemarie G C, Jasmin K, Marcel N, Vanessa S, Kevin S, Chithra M, Somerville S C, Voigt C A. 2014. Interaction of the Arabidopsis GTPase RabA4c with its effector PMR4 results in complete penetration resistance to powdery mildew. Plant Cell, 26:3185.
doi: 10.1105/tpc.114.127779 URL |
[16] | Douglas C, Foor F, Marrinan J, Morin N. 1994. The Saccharomyces cerevisiae FKS1(ETG1)gene encodes an integral membrane protein which is asubunit of 1,3-beta-D-glucan synthase. Proceedings of the National Academy of Sciences, 91:12907-11. |
[17] |
Ellinger D, Naumann M, Falter C, Zwikowics C, Jamrow T, Manisseri C, Somerville S C, Voigt C A. 2013. Elevated early callose deposition results in complete penetration resistance to powdery mildew in Arabidopsis. Plant Physiology, 161:1433-1444.
doi: 10.1104/pp.112.211011 URL |
[18] |
Ellinger D, Voigt C A. 2014. Callose biosynthesis in arabidopsis with a focus on pathogen response:what we have learned within the last decade. Annals of Botany, 114:1349-1358.
doi: 10.1093/aob/mcu120 URL |
[19] |
Enns L C, Kanaoka M M, Torii K U, Comai L, Okada K, Cleland R E. 2005. Two callose synthases,GSL1 and GSL5,play an essential and redundant role in plant and pollen development and in fertility. Plant Molecular Biology, 58:333-349.
doi: 10.1007/s11103-005-4526-7 URL |
[20] |
Enrique R, Siciliano F, Favaro M A, Gerhardt N, Roeschlin R, Rigano L, Sendin L, Castagnaro A, Vojnov A, Marano M R. 2011. Novel demonstration of RNAi in citrus reveals importance of citrus callose synthase in defence against Xanthomonas citri subsp. citri. Plant Biotechnology Journal, 9:394-407.
doi: 10.1111/j.1467-7652.2010.00555.x URL pmid: 20809929 |
[21] |
Flors V, Ton J, van Doorn R, Jakab G, García-Agustín P, Mauch-Mani B. 2008. Interplay between JA,SA and ABA signalling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola. Plant Journal, 54:81-92.
doi: 10.1111/j.1365-313X.2007.03397.x URL |
[22] |
Fromm J R, Hajirezaei M R, Becker V K, Lautner S. 2013. Electrical signaling along the phloem and its physiological responses in the maize leaf. Frontiers in Plant Science, 4:239.
doi: 10.3389/fpls.2013.00239 pmid: 23847642 |
[23] |
Gamir J, Pastor V, Sánchez-Bel P, Agut B, Mateu D, García-Andrade J, Flors V. 2018. Starch degradation,abscisic acid and vesicular trafficking are important elements in callose priming by indole-3-carboxylic acid in response to Plectosphaerella cucumerina infection. The Plant Journal, 96:518-531.
doi: 10.1111/tpj.14045 URL |
[24] |
García-Andrade J, Ramírez V, Flors V, Vera P. 2011. Arabidopsis ocp3 mutant reveals a mechanism linking ABA and JA to pathogen-induced callose deposition. The Plant Journal, 67:783-794.
doi: 10.1111/j.1365-313X.2011.04633.x pmid: 21564353 |
[25] |
Gibeaut D M, Carpita N C. 1994. Biosynthesis of plant cell wall polysaccharides. Faseb Journal, 8:904-915.
doi: 10.1096/fsb2.v8.12 URL |
[26] |
Granato L M, Galdeano D M, D’Alessandre N D R, Breton M C, Machado M A. 2019. Callose synthase family genes plays an important role in the Citrus defense response to Candidatus Liberibacter asiaticus. European Journal of Plant Pathology, 155:25-38.
doi: 10.1007/s10658-019-01747-6 URL |
[27] |
Guseman J M, Lee J S, Bogenschutz N L, Peterson K M, Virata R E, Xie B, Kanaoka M M, Hong Z L, Torii K U. 2010. Dysregulation of cell-to-cell connectivity and stomatal patterning by loss-of-function mutation in Arabidopsis CHORUS(GLUCAN SYNTHASE-LIKE 8). Development, 137:1731-1741.
doi: 10.1242/dev.049197 URL |
[28] |
Han X, Hyun T K, Zhang M, Kumar R, Koh E J, Kang B H, Lucas W, Kim J Y. 2014. Auxin-callose-mediated plasmodesmal gating Is essential for tropic auxin gradient formation and signaling. Developmental Cell, 28:132-146.
doi: 10.1016/j.devcel.2013.12.008 URL |
[29] |
Hayashi T, Read S M, Bussell J, Thelen M, Lin F C, Brown R M, Delmer D P. 1987. UDP-Glucose:(1-->3)-beta-glucan synthases from mung bean and cotton:differential effects of Ca and Mg on enzyme properties and on macromolecular structure of the glucan product. Plant Physiology, 83:1054-1062.
doi: 10.1104/pp.83.4.1054 URL |
[30] | Hong Z, Delauney A J, Verma D P. 2001a. A cell plate-specific callose synthase and its interaction with phragmoplastin. Plant Cell, 13:755-768. |
[31] |
Hong Z, Zhang Z, Olson J M, Verma D P. 2001b. A novel UDP-glucose transferase is part of the callose synthase complex and interacts with phragmoplastin at the forming cell plate. Plant Cell, 13:769-79.
doi: 10.1105/tpc.13.4.769 URL |
[32] |
Hu L, Wu Y, Wu D, Rao W, Guo J, Ma Y, Wang Z, Shangguan X, Wang H, Xu C, Huang J, Shi S, Chen R, Du B, Zhu L, He G. 2017. The coiled-coil and nucleotide binding domains of BROWN PLANTHOPPER RESISTANCE14 function in signaling and resistance against planthopper in rice. Plant Cell, 29:3157-3185.
doi: 10.1105/tpc.17.00263 URL |
[33] |
Huang L, Chen X, Yeonggil R, Xiao H, Wonkyong C, Seonwon K, Jaeyean K. 2009. Arabidopsis glucan synthase-like 10 functions in male gametogenesis. Journal of Plant Physiology, 166:344-352.
doi: 10.1016/j.jplph.2008.06.010 URL |
[34] |
Iriti M, Faoro F. 2008. Abscisic acid is involved in chitosan-induced resistance to tobacco necrosis virus(TNV). Plant Physiol Biochem, 46:1106-1111.
doi: 10.1016/j.plaphy.2008.08.002 URL |
[35] |
Ishiguro J, Saitou A, Duran A, Ribas. 1997. cps11,a Schizosaccharomyces pombe gene homolog of Saccharomycescerevisiae FKS genes whose mutation confers hypersensitivity tocyclosporin A and papulacandin B. Journal of Bacteriology, 179:7653-62.
doi: 10.1128/JB.179.24.7653-7662.1997 URL |
[36] |
Jacobs A K, Lipka V, Rachel A, Burton R A, Panstruga R, Strizhov N, Schulze-Lefert P, Fincher G B. 2003. An Arabidopsis callose synthase,GSL5,is required for wound and papillary callose formation. The Plant Cell, 15:2503-2513.
doi: 10.1105/tpc.016097 URL |
[37] |
Kadota Y, Sklenar J, Derbyshire P, Stransfeld L, Asai S, Ntoukakis V, Jones J D, Shirasu K, Menke F, Jones A. 2014. Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Molecular Cell, 54:43-55.
doi: 10.1016/j.molcel.2014.02.021 URL |
[38] | Kakimoto T, Shibaoka H. 1992. Synthesis of polysaccharides in phragmoplasts isolated from tobacco BY-2 cells. Plant & Cell Physiology, 33:353-361. |
[39] |
Kelly R, Register E, Hsu M., Kurtz M, Nielsen J. 1996. Isolation of a gene involved in 1,3- β-glucan synthesis in Aspergillus nidulans and purification of the corresponding protein. Journal of Bacteriology, 178:4381-4391.
doi: 10.1128/JB.178.15.4381-4391.1996 URL |
[40] |
Koh E J, Zhou L, Williams D S, Park J, Ding N, Duan Y P, Kang B H. 2012. Callose deposition in the phloem plasmodesmata and inhibition of phloem transport in citrus leaves infected with“Candidatus Liberibacter asiaticus”. Protoplasma, 249:687-697.
doi: 10.1007/s00709-011-0312-3 URL |
[41] |
Kohler A, Schwindling S, Conrath U. 2002. Benzothiadiazole-induced priming for potentiated responses to pathogen infection,wounding,and infiltration of water into leaves requires the NPR1/NIM1 gene in Arabidopsis. Plant Physiology, 128:1046-56.
doi: 10.1104/pp.010744 URL |
[42] | Leslie M, Rogers S, Heese A. 2016. Increased callose deposition in plants lacking DYNAMIN-RELATED PROTEIN 2B is dependent upon POWDERY MILDEW RESISTANT 4. Plant Signaling & Behavior, 11:e1244594. |
[43] |
Li J, Burton R A, Harvey A J, Hrmova M, Wardak A Z, Stone B A, Fincher G B. 2003. Biochemical evidence linking a putative callose synthase gene with(1→3)-β-D-glucan biosynthesis in barley. Plant Molecular Biology, 53:213-225.
doi: 10.1023/B:PLAN.0000009289.50285.52 URL |
[44] |
Li L, Brown R M. 1993. [beta]-glucan synthesis in the cotton fiber(II.)regulation and kinetic properties of [beta]-glucan synthases. Plant Physiology, 101(4):1143.
doi: 10.1104/pp.101.4.1143 URL |
[45] |
Lin Q, Zhou Z, Luo W, Fang M, Li M, Li H. 2017. Screening of proximal and interacting proteins in rice protoplasts by proximity-dependent biotinylation. Front Plant Sci, 8:749.
doi: 10.3389/fpls.2017.00749 URL |
[46] |
Liu F, Zou Z, Fernando W G D. 2018. Characterization of callose deposition and analysis of the callose synthase gene family of Brassica napus in response to Leptosphaeria maculans. International Journal of Molecular Sciences, 19:3769.
doi: 10.3390/ijms19123769 URL |
[47] |
Liu J, Du H, Ding X, Zhou Y, Xie P, Wu J. 2017. Mechanisms of callose deposition in rice regulated by exogenous abscisic acid and its involvement in rice resistance to Nilaparvata lugens Stål(Hemiptera:Delphacidae). Pest Management Science, 73:2559-2568.
doi: 10.1002/ps.2017.73.issue-12 URL |
[48] |
Loake G, Grant M. 2007. Salicylic acid in plant defence-the players and protagonists. Current Opinion in Plant Biology, 10:466-472.
doi: 10.1016/j.pbi.2007.08.008 URL |
[49] |
Luna E, Pastor V, Robert J, Flors V, Mauch-Mani B, Ton J. 2011. Callose deposition:a multifaceted plant defense response. Molecular Plant-Microbe Interactions, 24:183-193.
doi: 10.1094/MPMI-07-10-0149 URL |
[50] |
Lü B, Sun W, Zhang S, Zhang C, Qian J, Wang X, Gao R, Dong H. 2011. HrpNEa-induced deterrent effect on phloem feeding of the green peach aphid Myzus persicae requires AtGSL5 and AtMYB44 genes in Arabidopsis thaliana. Journal of Biosciences, 36:123-137.
doi: 10.1007/s12038-011-9016-2 URL |
[51] |
Mccormack B A, Ace G, Kerry M E, Smith C, Bolwell G P. 1997. Purification of an elicitor-induced glucan synthase(callose synthase)from suspension cultures of French bean( Phaseolus vulgaris L.):purification and immunolocation of a probable Mr-65 000 subunit of the enzyme. Planta, 203:196-203.
doi: 10.1007/s004250050182 URL |
[52] |
Mio T, Adachi-Shimizu M, Tachibana Y, Tabuchi H, Inoue S, Yabe T, Yamada-Okabe T, Arisawa M, Watanabe T, Yamada-Okabe H. 1997. Cloning of the Candida albicanshomolog of Saccharomyces cerevisiae GSC1/FKS1 and itsinvolvement in β-1,3-glucan synthesis. Journal of Bacteriology, 179:4096-4105.
doi: 10.1128/JB.179.13.4096-4105.1997 URL |
[53] |
Müller J, Toev T, Heisters M, Teller J, Moore K, Hause G, Dinesh D C, Bürstenbinder K, Abel S. 2015. Iron-dependent callose deposition adjusts root meristem maintenance to phosphate availability. Developmental Cell, 33:216-230.
doi: 10.1016/j.devcel.2015.02.007 pmid: 25898169 |
[54] |
Nedukha O M. 2015. Callose:localization,functions,and synthesis in plant cells. Cytology and Genetics, 49:49-57.
doi: 10.3103/S0095452715010090 URL |
[55] |
Neus S, Victoria P, Julia P F, Victor F, Jose P M, Paloma S B. 2020. Role and mechanisms of callose priming in mycorrhiza-induced resistance. Journal of Experimental Botany, 71:2769-2781.
doi: 10.1093/jxb/eraa030 URL |
[56] |
Nishikawa S I, Zinkl G M, Swanson R J, Maruyama D, Preuss D. 2005. Callose( β-1,3 glucan)is essential for Arabidopsis pollen wall patterning,but not tube growth. BMC Plant Biology, 5:22.
doi: 10.1186/1471-2229-5-22 URL |
[57] |
Nishimura M T, Stein M, Hou B H, Vogel J P, Edwards H, Somerville S C. 2003. Loss of a callose synthase results in salicylic acid-dependent disease resistance. Science, 301:969-972.
doi: 10.1126/science.1086716 URL |
[58] |
O'Lexy R, Kasai K, Clark N, Fujiwara T, Sozzani R, Gallagher K L. 2018. Exposure to heavy metal stress triggers changes in plasmodesmatal permeability via deposition and breakdown of callose. Journal of Experimental Botany, 69:3715-3728.
doi: 10.1093/jxb/ery171 URL |
[59] |
Oide S, Bejai S, Staal J, Guan N, Kaliff M, Dixelius C. 2013. A novel role of PR2 in abscisic acid(ABA)mediated,pathogen-induced callose deposition in Arabidopsis thaliana. New Phytologist, 200:1187-1199.
doi: 10.1111/nph.2013.200.issue-4 URL |
[60] |
Ostergaard L, Petersen M, Mattsson O, Mundy J. 2002. An Arabidopsis callose synthase. Plant Molecular Biology, 49:559-566.
doi: 10.1023/A:1015558231400 URL |
[61] | Paulus B, Kristi M, Julie S, Gregory T. 2004. Accumulation of 1,3- β-D-glucans,in response to aluminum and cytosolic calcium in Triticum aestivum. Plant & Cell Physiology, 45:543-549. |
[62] | Peng Yun, Fan Hai fang, Lei Tian gang, He Yong rui, Chen Shan chun, YAO Li xiao. 2019. Expression analysis of callose synthase gene family in citrus. Acta Horticulturae Sinica, 46 (2):330-336. (in Chinese) |
彭蕴, 范海芳, 雷天刚, 何永睿, 陈善春, 姚利晓. 2019. 柑橘胼胝质合成酶基因家族的表达分析. 园艺学报, 46 (2):330-336. | |
[63] |
Pereira M, Felipe M, Brigido M, Soares C, Azevedo M. 2000. Molecular cloning and characterization of a glucan synthase gene from the human pathogenic fungus Para-coccidioides brasiliensis. Yeast, 16:451-462.
pmid: 10705373 |
[64] |
Peterson C A, Rauser W E. 1979. Callose deposition and photoassimilate export in Phaseolus vulgaris exposed to excess cobalt,nickel and zinc. Plant Physiology, 63:1170-1174.
doi: 10.1104/pp.63.6.1170 URL |
[65] |
Pillai S E, Kumar C, Patel H K, Sonti R V. 2018. Overexpression of a cell wall damage induced transcription factor,OsWRKY42,leads to enhanced callose deposition and tolerance to salt stress but does not enhance tolerance to bacterial infection. BMC Plant Biology, 18:177.
doi: 10.1186/s12870-018-1391-5 URL |
[66] | Ren Meng-lian. 2019. Construction of rice OsLPRs Mutant and study of root traits under low-phosphorus stress[M. D. Dissertation]. Yangzhou:Yangzhou University. (in Chinese) |
任蒙莲. 2019. 水稻OsLPRs突变体构建与根系低磷性状研究[硕士论文]. 扬州:扬州大学. | |
[67] |
Repka V, Fischerová I, Šilhárová K. 2004. Methyl jasmonate is a potent elicitor of multiple defense responses in grapevine leaves and cell-suspension cultures. Biologia Plantarum, 48:273-283.
doi: 10.1023/B:BIOP.0000033456.27521.e5 URL |
[68] |
Saatian B, Austin R S, Tian G, Chen C, Vi N, Kohalmi S E, Geelen D, Cui Y. 2018. Analysis of a novel mutant allele of GSL8 reveals its key roles in cytokinesis and symplastic trafficking in Arabidopsis. BMC Plant Biology, 18:295.
doi: 10.1186/s12870-018-1515-y pmid: 30466394 |
[69] |
Samardakiewicz S, Krzesłowska M, Bilski H, Bartosiewicz R, Woźny A. 2012. Is callose a barrier for lead ions entering Lemna minor L. root cells? Protoplasma, 249:347-351.
doi: 10.1007/s00709-011-0285-2 URL pmid: 21590317 |
[70] |
Scalschi L, Sanmartín M, Camañes G, Troncho P, Sánchez-Serrano J J, García-Agustín P, Vicedo B. 2015. Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during the activation of defense responses against Botrytis cinerea. The Plant Journal, 81:304-315.
doi: 10.1111/tpj.2015.81.issue-2 URL |
[71] |
Schneider R, Hanak T, Persson S, Voigt C A. 2016. Cellulose and callose synthesis and organization in focus,what's new? Current Opinion in Plant Biology, 34:9-16.
doi: S1369-5266(16)30111-X pmid: 27479608 |
[72] |
Schober M S, Burton R A, Shirley N J, Jacobs A K, Fincher G B. 2009. Analysis of the(1,3)- β-D-glucan synthase gene family of barley. Phytochemistry, 70:713-720.
doi: 10.1016/j.phytochem.2009.04.002 URL |
[73] |
Schuette S, Wood A M, Geisler-Lee J, Ligrone R, Renzaglia K S. 2009. Novel localization of callose in the spores of Physcomitrella patens and phylogenomics of the callose synthase gene family. Annals of Botany, 103:749-756.
doi: 10.1093/aob/mcn268 pmid: 19155219 |
[74] |
Segonzac C, Zipfel C. 2011. Activation of plant pattern-recognition receptors by bacteria. Current Opinion in Microbiology, 14:54-61.
doi: 10.1016/j.mib.2010.12.005 URL pmid: 21215683 |
[75] |
Shi X, Sun X, Zhang Z, Feng D, Zhang Q, Han L, Wu J, Lu T. 2015. GLUCAN SYNTHASE-LIKE 5(GSL5)plays an essential role in male fertility by regulating callose metabolism during microsporogenesis in rice. Plant and Cell Physiology, 56:497-509.
doi: 10.1093/pcp/pcu193 URL |
[76] |
Shikanai Y, Yoshida R, Hirano T, Enomoto Y, Fujiwara T. 2020. Callose synthesis suppresses cell death induced by low-calcium conditions in leaves. Plant physiology, 182:2199-2212.
doi: 10.1104/pp.19.00784 pmid: 32024698 |
[77] |
Singh R K, Maurya J P, Azeez A, Miskolczi P, Tylewicz S, Stojkovič K, Delhomme N, Busov V, Bhalerao R P. 2018. A genetic network mediating the control of bud break in Hybrid aspen. Nature Communications, 9:4173.
doi: 10.1038/s41467-018-06696-y URL |
[78] | Singh R K, Miskolczi P, Maurya J P, Bhalerao R P. 2019. A tree ortholog of SHORT VEGETATIVE PHASE floral repressor mediates photoperiodic control of bud dormancy. Current Biology,29:128-133 e2. |
[79] |
Slewinski T L, R Frank B, Adam S, Braun D M. 2012. Tie-dyed2encodes a callose synthase that functions in vein development and affects symplastic trafficking within the phloem of maize leaves. Plant Physiology, 160:1540-50.
doi: 10.1104/pp.112.202473 URL pmid: 22932757 |
[80] |
Song L, Wang R, Zhang L, Wang Y, Yao S. 2016. CRR1 encoding callose synthase functions in ovary expansion by affecting vascular cell patterning in rice. Plant Journal, 88:620.
doi: 10.1111/tpj.2016.88.issue-4 URL |
[81] | Stone B A, Clarke A E. 1992. Chemistry and physiology of higher plant 1,3-β-glucans(callose)// Stone B A,Clarke A E Chemistry and biology of(1,3)-β-glucans. Bundoora:La Trobe University Press. |
[82] |
Sun M, Voorrips R E, Steenhuis-Broers G, Van't Westende W, Vosman B. 2018. Reduced phloem uptake of Myzus persicae on an aphid resistant pepper accession. BMC Plant Biology, 18:138.
doi: 10.1186/s12870-018-1340-3 URL |
[83] |
Sun Y, Li L, Macho A P, Han Z, Hu Z, Zipfel C, Zhou J M, Chai J. 2013. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science, 342:624-628.
doi: 10.1126/science.1243825 URL |
[84] |
Thompson J, Douglas C, Li W, Jue C, Pramanik B, Yuan X, Rude T, Toffaletti D, Perfect J, Kurtz M. 1999. A glucan synthase FKS1 homolog in Cryptococcusneoformans is single copy and encodes an essential function. Journal of Bacteriol, 181:444-453.
doi: 10.1128/JB.181.2.444-453.1999 URL |
[85] |
Toller A, Brownfield L, Neu C D, Schulze-Lefert P. 2010. Dual function of Arabidopsis glucan synthase-like genes GSL8 and GSL10 in male gametophyte development and plant growth. Plant Journal, 54:911-923.
doi: 10.1111/j.1365-313X.2008.03462.x URL |
[86] |
Ton J, Mauch-Mani B. 2004. β-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. The Plant Journal:for cell and molecular biology, 38:119-30.
doi: 10.1111/tpj.2004.38.issue-1 URL |
[87] |
Turner A, Bacic A, Harris P J, Read S M. 1998. Membrane fractionation and enrichment of callose synthase from pollen tubes of Nicotiana alata Link et Otto. Planta, 205:380-388.
pmid: 9640664 |
[88] |
Tylewicz S, Petterle A, Marttila S, Miskolczi P, Azeez A, Singh R K, Immanen J, Mähler N, Hvidsten T R, Eklund D M, Bowman J L, Helariutta Y, Bhalerao R P. 2018. Photoperiodic control of seasonal growth is mediated by ABA acting on cell-cell communication. Science, 360:212-215.
doi: 10.1126/science.aan8576 URL |
[89] |
Vatén A, Dettmer J, Wu S, Stierhof Y D, Miyashima S, Yadav S R, Roberts C, Campilho A, Bulone V, Lichtenberger R. 2013. Callose biosynthesis regulates symplastic trafficking during root development. Developmental Cell, 21:1144-1155.
doi: 10.1016/j.devcel.2011.10.006 URL |
[90] |
Verma D P S, Hong Z. 2001. Purification of an elicitor-induced glucan synthase(callose synthase)from suspension cultures of French bean ( Phaseolus vulgaris L.)purification and immunolocation of a probable Mr-65 000 subunit of the enzyme. Plant Molecular Biology, 47:693-701.
doi: 10.1023/A:1013679111111 URL |
[91] |
Verma D P S, Hong Z. 2002. Plant callose synthase complexes. Plant Molecular Biology, 47:693-701.
doi: 10.1023/A:1013679111111 URL |
[92] |
Vogel J, Somerville S. 2000. Isolation and characterization of powdery mildew-resistant Arabidopsis mutants. Proc Natl Acad Sci U S A, 97:1897-902.
pmid: 10677553 |
[93] |
Wang X Q, Wu Z, Wang L Q, Wu M J, Zhang D H, Fang W M, Chen F D, Teng N J. 2019. Cytological and molecular characteristics of pollen abortion in lily with dysplastic tapetum. Horticultural Plant Journal, 5 (6):281-294.
doi: 10.1016/j.hpj.2019.11.002 URL |
[94] | Wu S W, Kumar R, Iswanto A B B, Kim J Y. 2018. Callose balancing at plasmodesmata. Journal of Experimental Botany, 69:5325-5339. |
[95] |
Xie B, Wang X, Hong Z. 2010. Precocious pollen germination in Arabidopsis plants with altered callose deposition during microsporogenesis. Planta, 231:809-823.
doi: 10.1007/s00425-009-1091-3 URL pmid: 20039178 |
[96] | Xie B, Wang X, Zhu M, Zhang Z, Hong Z. 2011. CalS7 encodes a callose synthase responsible for callose deposition in the phloem. Plant Journal for Cell & Molecular Biology, 65:1-14. |
[97] |
Yang Z, Shi Z, Zhang C, Xu X, Zhu J, Zhou Q, Ma L, Niu J, Yang Z. 2015. Overexpression of AtTTP affects ARF17expression and leads to male sterility in Arabidopsis. PLoS ONE, 10:e0117317.
doi: 10.1371/journal.pone.0117317 URL |
[98] |
Yao L, Zhong Y, Wang B, Yan J, Wu T. 2019. BABA application improves soybean resistance to aphid through activation of phenylpropanoid metabolism and callose deposition:BABA improved resistance to soybean aphid. Pest Management Science, 76:384-394.
doi: 10.1002/ps.v76.1 URL |
[99] |
Yu Y, Jiao L, Fu S, Yin L, Zhang Y, Lu J. 2016. Callose synthase family genes involved in the grapevine defense response to downy mildew disease. Phytopathology, 106:56-64.
doi: 10.1094/PHYTO-07-15-0166-R URL |
[100] | Zhang H, Shi W, You J, Bian M, Qin X, Hui Y, Liu Q, Ryan P R, Yang Z. 2015. Transgenic Arabidopsis thaliana plants expressing a β-1,3-glucanase from sweet sorghum( Sorghum bicolor L.)show reduced callose deposition and increased tolerance to aluminium toxicity. Plant Cell & Environment, 38:1178-1188. |
[101] | Zhang Meng-shu, Niu Hong-wei, Hou Chun-yan, Wang Dong-mei. 2016. EDS 1 in plant innate immunity. Chinese Journal of Cell Biology, 38 (11):1398-1404. |
张梦姝, 牛宏伟, 侯春燕, 王冬梅. 2016. 植物免疫中的EDS1. 中国细胞生物学学报, 38 (11):1398-1404. | |
[102] |
Zhang J, Zhou J M. 2010. Plant immunity triggered by microbial molecular signatures. Molecular Plant, 3:783-793.
doi: 10.1093/mp/ssq035 pmid: 20713980 |
[103] | Zhao Si-yang. 2017. Expression of GmPRs( Glycine max pathogenesis-related proteins)in the interactions between soybean and soybean cyst nematode and research of callose deposition[M. D. Dissertation]. Shenyang:Shenyang Agricultural University. (in Chinese) |
赵思阳. 2017. 大豆与胞囊线虫互作中GmPRs的表达及胼胝质沉积研究[硕士论文]. 沈阳:沈阳农业大学. |
[1] | 张倩雯, 杨希航, 李峰, 邓颖天. miRNA调控园艺作物生长发育研究进展[J]. 园艺学报, 2022, 49(5): 1145-1161. |
[2] | 周杰, 师恺, 夏晓剑, 周艳虹, 喻景权. 中国蔬菜栽培科技60年回顾与展望[J]. 园艺学报, 2022, 49(10): 2131-2142. |
[3] | 杨丽媛, 王倩, 王许会, 徐通达, 马军. 草莓生长素合成关键酶FveTAA1保守氨基酸位点T111的生物学功能研究[J]. 园艺学报, 2021, 48(9): 1695-1705. |
[4] | 谯正林, 胡慧贞, 鄢波, 陈龙清. 花香挥发性苯/苯丙素类化合物的生物合成及基因调控研究进展[J]. 园艺学报, 2021, 48(9): 1815-1826. |
[5] | 谷家茂, 王晨扬, 王峰, 齐明芳, 刘玉凤, 李天来. CAMTA/SR在植物生长发育及其逆境响应中的作用[J]. 园艺学报, 2021, 48(4): 613-631. |
[6] | 张庆雯, 祁静静, 谢宇, 谢竹, 彭蕴, 李强, 彭爱红, 邹修平, 何永睿, 陈善春, 姚利晓. 黄龙病菌胁迫下‘锦橙’CsCalS5表达和胼胝质沉积的初步分析[J]. 园艺学报, 2021, 48(2): 276-288. |
[7] | 刘 昕, 陈韵竹, Kim Pyol, Kim Min-Jun, Song Hyondok, 李玉花, 王 宇. 番茄果实颜色形成的分子机制及调控研究进展[J]. 园艺学报, 2020, 47(9): 1689-1704. |
[8] | 姚利晓,何永睿,陈善春*. microRNA 参与柑橘生长发育和抗逆的研究进展[J]. 园艺学报, 2020, 47(5): 995-1008. |
[9] | 徐志璇,任仲海*. 番茄AP2/ERF超家族重鉴定及过表达SlERF.D.3株系表型分析[J]. 园艺学报, 2020, 47(4): 653-664. |
[10] | 乔永刚,曹亚萍,贾孟君,王勇飞,贺嘉欣,张鑫瑞,王文斌,宋 芸*. 连翘异型花柱植株花芽生长发育与传粉习性研究[J]. 园艺学报, 2020, 47(4): 699-707. |
[11] | 崔佳维1,雷炳富1,刘厚诚2,*. 光合有效辐射日总量(DLI)对植物生长发育的影响[J]. 园艺学报, 2019, 46(9): 1670-1680. |
[12] | 李茂福1,杨 媛1,2,王 华1,刘佳棽1,金万梅1,*. 赤霉素对露地栽培月季‘卡罗拉’生长发育的影响[J]. 园艺学报, 2019, 46(4): 749-760. |
[13] | 彭 蕴,范海芳,雷天刚,何永睿,陈善春*,姚利晓*. 柑橘胼胝质合成酶基因家族的表达分析[J]. 园艺学报, 2019, 46(2): 330-336. |
[14] | 张 旭,陈丽琛,任仲海*. 番茄过表达SlMYB102对种子萌发及生长的影响[J]. 园艺学报, 2018, 45(8): 1523-1534. |
[15] | 李 睿,李浩浩,安建平,由春香,王小非*,郝玉金*. 苹果多肽激素及其编码基因MdCEP1 调控拟南芥根系发育[J]. 园艺学报, 2017, 44(7): 1225-1234. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司