园艺学报 ›› 2021, Vol. 48 ›› Issue (4): 613-631.doi: 10.16420/j.issn.0513-353x.2020-0473
• 综述 • 下一篇
收稿日期:
2020-07-05
出版日期:
2021-04-25
发布日期:
2021-04-29
通讯作者:
刘玉凤
E-mail:yufengliu@syau.edu.cn
基金资助:
GU Jiamao, WANG Chenyang, WANG Feng, QI Mingfang, LIU Yufeng(), LI Tianlai
Received:
2020-07-05
Online:
2021-04-25
Published:
2021-04-29
Contact:
LIU Yufeng
E-mail:yufengliu@syau.edu.cn
摘要:
钙调素结合转录因子CAMTA(calmodulin-binding transcription activators)是一种广泛存在于植物体中并且可以与钙调素(calmodulin,CaM)结合的转录因子家族,因其对多种信号有响应所以又叫SR(signal-responsive genes)。该家族在植物生长发育及对逆境的响应中发挥着重要作用。就CAMTA/SR的发现、结构及在生长发育和逆境下的作用进行总结,以期为今后CAMTA/SR的研究提供参考。
中图分类号:
谷家茂, 王晨扬, 王峰, 齐明芳, 刘玉凤, 李天来. CAMTA/SR在植物生长发育及其逆境响应中的作用[J]. 园艺学报, 2021, 48(4): 613-631.
GU Jiamao, WANG Chenyang, WANG Feng, QI Mingfang, LIU Yufeng, LI Tianlai. Roles of CAMTA/SR in Plant Growth and Development and Stress Response[J]. Acta Horticulturae Sinica, 2021, 48(4): 613-631.
物种 Species | 数量 Number | 参考文献 Reference |
---|---|---|
拟南芥Arabidopsis thaliana | 6 | Bouché et al., |
水稻Oryza sativa | 7 | Choi et al., |
番茄Solanum lycopersicum | 7 | Yang et al., |
葡萄Vitis vinifera | 10 | Shangguan et al., |
玉米Zea mays | 9 | Yue et al., |
大豆Glycine max | 15 | Wang et al., |
蒺藜苜蓿Medicago truncatula | 7 | Yang et al., |
大白菜Brassica campestrisssp. chinensis Makino | 8 | Hu et al., |
油菜Brassica napus L. | 18 | Rahman et al., |
毛白杨Populus trichocarpa | 7 | Wei et al., |
亚洲棉Gossypium arboreum | 6 | Pant et al., |
雷蒙德氏棉Gossypium raimondii | ||
陆地棉Gossypium hirsutum | ||
普通烟草Nicotiana tabacum | 13 | Kalar et al., |
绒毛烟草Nicotiana tomentosiformis | ||
美花烟草Nicotiana sylvestris | ||
本氏烟草Nicotiana benthamiana | ||
柑橘Citrus sinensis,Citrus clementina | 9 | Zhang et al., |
香蕉Musa acuminata | 5 | Meer et al., |
菜豆Phaseolus vulgarisL. 亚麻Linum usitatissimum 木薯Manihot esculentaCrantz | 8 9 6 | Büyük et al., Ali et al., Chang et al., |
表1 鉴定到CAMTA/SR的物种以及数量
Table 1 Species and number of CAMTA/SR identified
物种 Species | 数量 Number | 参考文献 Reference |
---|---|---|
拟南芥Arabidopsis thaliana | 6 | Bouché et al., |
水稻Oryza sativa | 7 | Choi et al., |
番茄Solanum lycopersicum | 7 | Yang et al., |
葡萄Vitis vinifera | 10 | Shangguan et al., |
玉米Zea mays | 9 | Yue et al., |
大豆Glycine max | 15 | Wang et al., |
蒺藜苜蓿Medicago truncatula | 7 | Yang et al., |
大白菜Brassica campestrisssp. chinensis Makino | 8 | Hu et al., |
油菜Brassica napus L. | 18 | Rahman et al., |
毛白杨Populus trichocarpa | 7 | Wei et al., |
亚洲棉Gossypium arboreum | 6 | Pant et al., |
雷蒙德氏棉Gossypium raimondii | ||
陆地棉Gossypium hirsutum | ||
普通烟草Nicotiana tabacum | 13 | Kalar et al., |
绒毛烟草Nicotiana tomentosiformis | ||
美花烟草Nicotiana sylvestris | ||
本氏烟草Nicotiana benthamiana | ||
柑橘Citrus sinensis,Citrus clementina | 9 | Zhang et al., |
香蕉Musa acuminata | 5 | Meer et al., |
菜豆Phaseolus vulgarisL. 亚麻Linum usitatissimum 木薯Manihot esculentaCrantz | 8 9 6 | Büyük et al., Ali et al., Chang et al., |
[1] |
Ali E, Raza M A, Cai M, Hussain N, Shahzad A N, Hussain M, Ali M, Bukhari S A H, Sun P. 2020. Calmodulin-binding transcription activator (CAMTA)genes family:genome-wide survey and phylogenetic analysis in flax (Linum usitatissimum). PLoS ONE, 15 (7):e0236454.
doi: 10.1371/journal.pone.0236454 URL |
[2] |
Aloni R, Aloni E, Langhans M, Ullrich C I. 2006. Role of auxin in regulating Arabidopsis flower development. Planta, 223 (2):315-328.
URL pmid: 16208486 |
[3] |
An C, Mou Z L. 2011. Salicylic acid and its function in plant immunity. Journal of Integrative Plant Biology, 53 (6):412-428.
doi: 10.1111/jipb.2011.53.issue-6 URL |
[4] |
Aravind L, Koonin E V. 1999. Gleaning non-trivial structural,functional and evolutionary information about proteins by iterative database searches. Journal of Molecular Biology, 287 (5):1023-1040.
doi: 10.1006/jmbi.1999.2653 URL |
[5] |
Bähler M, Rhoads A. 2002. Calmodulin signaling via the IQ motif. FEBS Letters, 513 (1):107-113.
doi: 10.1016/S0014-5793(01)03239-2 URL |
[6] |
Barbazuk W B, Fu Y, McGinnis K M. 2008. Genome-wide analyses of alternative splicing in plants:opportunities and challenges. Genome Research, 18 (9):1381-1392.
doi: 10.1101/gr.053678.106 URL |
[7] | Beckers G J, Spoel S H. 2006. Fine-tuning plant defence signalling:salicylate versus jasmonate. Plant Biology(Stuttgart,Germany), 8 (1):1-10. |
[8] | Benn G, Bjornson M, Ke H Y, De Souza A, Balmond E I, Shaw J T, Dehesh K. 2016. Plastidial metabolite MEcPP induces a transcriptionally centered stress-response hub via the transcription factor CAMTA3. Proceedings of the National Academy of Sciences of the United States of America, 113 (31):8855-8860. |
[9] |
Benn G, Wang C Q, Hicks D R, Stein J, Guthrie C, Dehesh K. 2014. A key general stress response motif is regulated non-uniformly by CAMTA transcription factors. The Plant Journal, 80 (1):82-92.
doi: 10.1111/tpj.2014.80.issue-1 URL |
[10] |
Bernsdorff F, Doring A C, Gruner K, Schuck S, Brautigam A, Zeier J. 2016. Pipecolic acid orchestrates plant systemic acquired resistance and defense priming via salicylic acid-dependent and -independent pathways. The Plant Cell, 28 (1):102-129.
doi: 10.1105/tpc.15.00496 URL |
[11] |
Bjornson M, Benn G, Song X S, Comai L, Franz A K, Dandekar A M, Drakakaki G, Dehesh K. 2014. Distinct roles for mitogen-activated protein kinase signaling and CALMODULIN-BINDING TRANSCRIPTIONAL ACTIVATOR3 in regulating the peak time and amplitude of the plant general stress response. Plant Physiology, 166 (2):988-996.
doi: 10.1104/pp.114.245944 URL pmid: 25157030 |
[12] |
Boller T, Felix G. 2009. A renaissance of elicitors:perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology, 60:379-406.
doi: 10.1146/annurev.arplant.57.032905.105346 URL |
[13] | Bonardi V, Tang S J, Stallmann A, Roberts M, Cherkis K, Dangl J L. 2011. Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors. Proceedings of the National Academy of Sciences of the United States of America, 108 (39):16463-16468. |
[14] |
Bouché N, Scharlat A, Snedden W, Bouchez D, Fromm H. 2002. A novel family of calmodulin-binding transcription activators in multicellular organisms. The Journal of Biological Chemistry, 277 (24):21851-21861.
doi: 10.1074/jbc.M200268200 URL |
[15] |
Büyük I, Ilhan E, Sener D, Ozsoy A U, Aras S. 2019. Genome-wide identification of CAMTA gene family members in Phaseolus vulgaris L. and their expression profiling during salt stress. Molecular Biology Reports, 46 (3):2721-2732.
doi: 10.1007/s11033-019-04716-8 URL |
[16] |
Century K S, Shapiro A D, Repetti P P, Dahlbeck D, Holub E, Staskawicz B J. 1997. NDR1,a pathogen-induced component required for Arabidopsis disease resistance. Science, 278 (5345):1963-1965.
doi: 10.1126/science.278.5345.1963 URL |
[17] | Chang Y L, Bai Y J, Wei Y X, Shi H T. 2020. CAMTA3 negatively regulates disease resistance through modulating immune response and extensive transcriptional reprogramming in cassava. Tree Physiology,tpaa093. |
[18] | Chang Yan-li, Wei Yun-xie. 2020. Cloning and prokaryotic expression of MeCAMTA gene in cassava. Molecular Plant Breeding, 18 (3):744-750. |
昌燕李, 韦运谢. 2020. 木薯 MeCAMTA基因的克隆与原核表达. 分子植物育种, 18 (3):744-750. | |
[19] | Chen Y C, Holmes E C, Rajniak J, Kim J G, Tang S, Fischer C R, Mudgett M B, Sattely E S. 2018. N-hydroxy-pipecolic acid is a mobile metabolite that induces systemic disease resistance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 115 (21):E4920-E4929. |
[20] |
Chen Y T, Mao W W, Liu T, Feng Q Q, Li L, Li B B. 2020. Genome editing as a versatile tool to improve horticultural crop qualities. Horticultural Plant Journal, 6 (6):372-384.
doi: 10.1016/j.hpj.2020.11.004 URL |
[21] |
Chinnusamy V, Zhu J H, Zhu J K. 2007. Cold stress regulation of gene expression in plants. Trends in Plant Science, 12 (10):444-451.
doi: 10.1016/j.tplants.2007.07.002 URL |
[22] |
Chisholm S T, Coaker G, Day B, Staskawicz B J. 2006. Host-microbe interactions:shaping the evolution of the plant immune response. Cell, 124 (4):803-814.
pmid: 16497589 |
[23] | Choe S, Dilkes B P, Fujioka S, Takatsuto S, Sakurai A, Feldmann K A. 1998. The DWF4 gene of Arabidopsis encodes a cytochrome P 450 that mediates multiple 22α-hydroxylation steps in brassinosteroid biosynthesis. The Plant Cell, 10 (2):231-243. |
[24] |
Choi M S, Kim M C, Yoo J H, Moon B C, Koo S C, Park B O, Lee J H, Koo Y D, Han H J, Lee S Y, Chung W S, Lim C O, Cho M J. 2005. Isolation of a calmodulin-binding transcription factor from rice (Oryza sativa L.). Journal of Biology Chemistry, 280 (49):40820-40831.
doi: 10.1074/jbc.M504616200 URL |
[25] | Chu Gui-hua. 2015. Cloning and functional research of tomato SR/CAMTA family gene SlSR4[M. D. Dissertation]. Chongqing:Chongqing University. (in Chiniese). |
褚桂花. 2015. 番茄SR/CAMTA转录因子家族基因 SlSR4的克隆与功能研究[硕士论文]. 重庆:重庆大学. | |
[26] |
Chung H Y, Fujioka S, Choe S, Lee S, Lee Y H, Baek N I, Chung I S. 2010. Simultaneous suppression of three genes related to brassinosteroid (BR) biosynthesis altered campesterol and BR contents,and led to a dwarf phenotype in Arabidopsis thaliana. Plant Cell Reports, 29 (4):397-402.
doi: 10.1007/s00299-010-0830-z URL pmid: 20169349 |
[27] |
da Costa e Silva O. 1994. CG-1,a parsley light-induced DNA-binding protein. Plant Molecular Biology, 25 (5):921-924.
doi: 10.1007/BF00028887 URL |
[28] |
Dangl J L, Horvath D M, Staskawicz B J. 2013. Pivoting the plant immune system from dissection to deployment. Science, 341 (6147):746-751.
doi: 10.1126/science.1236011 URL |
[29] |
Dodd A N, Kudla J, Sanders D. 2010. The language of calcium signaling. Annual Review of Plant Biology, 61 (1):593-620.
doi: 10.1146/annurev-arplant-070109-104628 URL |
[30] |
Doherty C J, Van Buskirk H A, Myers S J, Thomashow M F. 2009. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. The Plant Cell, 21 (3):972-984.
doi: 10.1105/tpc.108.063958 URL |
[31] |
Du L Q, Ali G S, Simons K A, Hou J, Yang T, Reddy A S, Poovaiah B W. 2009. Ca2+/calmodulin regulates salicylic-acid-mediated plant immunity. Nature, 457 (7233):1154-1158.
doi: 10.1038/nature07612 URL |
[32] | Falk A, Feys B J, Frost L N, Jones J D, Daniels M J, Parker J E. 1999. EDS1,an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proceedings of the National Academy of Sciences of the United States of America, 96 (6):3292-3297. |
[33] |
Filichkin S, Priest H D, Megraw M, Mockler T C. 2015. Alternative splicing in plants:directing traffic at the crossroads of adaptation and environmental stress. Current Opinion in Plant Biology, 24:125-135.
doi: 10.1016/j.pbi.2015.02.008 pmid: 25835141 |
[34] | Finkler A, Kaplan B, Fromm H. 2007. Ca2+-responsive cis-elements in plants. Plant Signaling & Behavior,(1):17-19. |
[35] |
Galon Y, Aloni R, Nachmias D, Snir O, Feldmesser E, Scrase-Field S, Boyce J M, Bouche N, Knight M R, Fromm H. 2010. Calmodulin-binding transcription activator 1 mediates auxin signaling and responds to stresses in Arabidopsis. Planta, 232 (1):165-178.
doi: 10.1007/s00425-010-1153-6 URL pmid: 20383645 |
[36] |
Galon Y, Nave R, Boyce J M, Nachmias D, Knight M R, Fromm H. 2008. Calmodulin-binding transcription activator(CAMTA) 3 mediates biotic defense responses in Arabidopsis. FEBS Letters, 582 (6):943-948.
doi: 10.1016/j.febslet.2008.02.037 URL |
[37] |
Glazebrook J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43:205-227.
pmid: 16078883 |
[38] |
Grant M, Lamb C. 2006. Systemic immunity. Current Opinion in Plant Biology, 9 (4):414-420.
doi: 10.1016/j.pbi.2006.05.013 URL |
[39] | He J X, Gendron J M, Yang Y, Li J, Wang Z Y. 2002. The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1,a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 99 (15):10185-10190. |
[40] |
Hobo T, Asada M, Kowyama Y, Hattori T. 1999. ACGT-containing abscisic acid response element(ABRE)and coupling element 3(CE3)are functionally equivalent. The Plant Journal, 19 (6):679-689.
doi: 10.1046/j.1365-313x.1999.00565.x URL |
[41] |
Howe G A, Jander G. 2008. Plant immunity to insect herbivores. Annual Review of Plant Biology, 59:41-66.
doi: 10.1146/annurev.arplant.59.032607.092825 URL |
[42] | Hu R, Wang Z, Wu P, Tang J, Hou X L. 2015. Identification and abiotic stress analysis of calmodulin-binding transcription activator/signal responsive genes in non-heading Chinese cabbage( Brassica campestris ssp. chinensis Makino). Plant Omics Journal, 8 (2):141-147. |
[43] | Hu Rong. 2015. Characterization and functional analysis of BcCAMTA transcription factor family in non-heading Chinese cabbage[M. D. Dissertation]. Nanjing:Nanjing Agricultural University. (in Chinese) |
胡荣. 2015. 不结球白菜BcCAMTA转录因子家族鉴定和功能分析[硕士论文]. 南京:南京农业大学. | |
[44] |
Huang W J, Wang Y R, Li X, Zhang Y L. 2020. Biosynthesis and regulation of salicylic acid and N-hydroxypipecolic acid in plant immunity. Molecular Plant, 13 (1):31-41.
doi: 10.1016/j.molp.2019.12.008 URL |
[45] | Huo Zhi-hui. 2015. Study on cloning of MsCAMTA1 gene and alfalfa transformation[M. D. Dissertation]. Harbin:Harbin Normal University. (in Chinese) |
霍智慧. 2015. 紫花苜蓿 MsCAMTA1基因的克隆及遗传转化研究[硕士论文]. 哈尔滨:哈尔滨师范大学. | |
[46] |
Ikura M, Osawa M, Ames J B. 2002. The role of calcium-binding proteins in the control of transcription:structure to function. Bioessays, 24 (7):625-636.
doi: 10.1002/(ISSN)1521-1878 URL |
[47] |
Jacob F, Kracher B, Mine A, Seyfferth C, Blanvillain-Baufume S, Parker J E, Tsuda K, Schulze-Lefert P, Maekawa T. 2018. A dominant-interfering camta 3 mutation compromises primary transcriptional outputs mediated by both cell surface and intracellular immune receptors in Arabidopsis thaliana. The New Phytologist, 217 (4):1667-1680.
doi: 10.1111/nph.14943 URL |
[48] |
Jing B B, Xu S H, Xu M, Li Y, Li S X, Ding J M, Zhang Y L. 2011. Brush and spray:a high-throughput systemic acquired resistance assay suitable for large-scale genetic screening. Plant Physiology, 157 (3):973-980.
doi: 10.1104/pp.111.182089 URL |
[49] | Jing Bei-bei. 2012. Brush and Spray:A high throughput systemic acquired resistance assay suitable for large-scale genetic screening[Ph. D. Dissertation]. Beijing:China Agricultural University. (in Chinese) |
荆贝贝. 2012. 一种高通量的拟南芥系统获得性抗性检测方法的建立和应用[博士论文]. 北京:中国农业大学. | |
[50] |
Jones A M, MacLean D, Studholme D J, Serna-Sanz A, Andreasson E, Rathjen J P, Peck S C. 2009. Phosphoproteomic analysis of nuclei-enriched fractions from Arabidopsis thaliana. Journal of Proteomics, 72 (3):439-451.
doi: 10.1016/j.jprot.2009.02.004 URL |
[51] |
Jones J D, Dangl J L. 2006. The plant immune system. Nature, 444 (7117):323-329.
doi: 10.1038/nature05286 URL |
[52] | Jones J D, Vance R E, Dangl J L. 2016. Intracellular innate immune surveillance devices in plants and animals. Science, 354:6316:. |
[53] |
Kakar K U, Nawaz Z, Cui Z, Cao P, Jin J, Shu Q, Ren X. 2018. Evolutionary and expression analysis of CAMTA gene family in Nicotiana tabacum yielded insights into their origin,expansion and stress responses. Scientific Reports, 8 (1):10322.
doi: 10.1038/s41598-018-28148-9 URL |
[54] |
Kaplan B, Davydov O, Knight H, Galon Y, Knight M R, Fluhr R, Fromm H. 2006. Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis. The Plant Cell, 18 (10):2733-2748.
doi: 10.1105/tpc.106.042713 URL |
[55] |
Kidokoro S, Yoneda K, Takasaki H, Takahashi F, Shinozaki K, Yamaguchi-Shinozaki K. 2017. Different cold-signaling pathways function in the responses to rapid and gradual decreases in temperature. The Plant Cell, 29 (4):760-774.
doi: 10.1105/tpc.16.00669 pmid: 28351986 |
[56] |
Kim S M, Suh J P, Lee C K, Lee J H, Kim Y G, Jena K K. 2014. QTL mapping and development of candidate gene-derived DNA markers associated with seedling cold tolerance in rice( Oryza sativa L.). Molecular Genetics and Genomics, 289 (3):333-343.
doi: 10.1007/s00438-014-0813-9 URL |
[57] |
Kim Y S, An C F, Park S, Gilmour S J, Wang L, Renna L, Brandizzi F, Grumet R, Thomashow M F. 2017. CAMTA-mediated regulation of salicylic acid immunity pathway genes in Arabidopsis exposed to low temperature and pathogen infection. The Plant Cell, 29 (10):2465-2477.
doi: 10.1105/tpc.16.00865 URL |
[58] |
Kim Y, Gilmour S J, Chao L M, Park S, Thomashow M F. 2020. Arabidopsis CAMTA transcription factors regulate pipecolic acid biosynthesis and priming of immunity genes. Molecular Plant, 13 (1):157-168.
doi: 10.1016/j.molp.2019.11.001 URL |
[59] | Kim Y, Park S, Gilmour S J, Thomashow M F. 2013. Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. The Plant Jounal, 75 (3):364-376. |
[60] |
Kimura S, Higashino Y, Kitao Y, Masuda T, Urade R. 2015. Expression and characterization of protein disulfide isomerase family proteins in bread wheat. BMC Plant Biology, 15:73.
doi: 10.1186/s12870-015-0460-2 URL |
[61] |
Klee H J, Giovannoni J J. 2011. Genetics and control of tomato fruit ripening and quality attributes. Annual Review of Genetics, 45:41-59.
doi: 10.1146/annurev-genet-110410-132507 URL |
[62] |
Koo S C, Choi M S, Chun H J, Shin D B, Park B S, Kim Y H, Park H M, Seo H S, Song J T, Kang K Y, Yun D J, Chung W S, Cho M J, Kim M C. 2009. The calmodulin-binding transcription factor OsCBT suppresses defense responses to pathogens in rice. Molecular and Cells, 27 (5):563-570.
doi: 10.1007/s10059-009-0081-4 URL |
[63] |
Kültz D. 2005. Molecular and evolutionary basis of the cellular stress response. Annual Review of Physiology, 67:225-257.
doi: 10.1146/annurev.physiol.67.040403.103635 URL |
[64] | Laluk K, Prasad K V, Savchenko T, Celesnik H, Dehesh K, Levy M, Mitchell-Olds T, Reddy A S. 2012. The calmodulin-binding transcription factor SIGNAL RESPONSIVE 1 is a novel regulator of glucosinolate metabolism and herbivory tolerance in Arabidopsis. Plant & Cell Physiology, 53 (12):2008-2015. |
[65] |
Lecourieux D, Ranjeva R, Pugin A. 2006. Calcium in plant defence-signalling pathways. The New Phytologist, 171 (2):249-269.
doi: 10.1111/nph.2006.171.issue-2 URL |
[66] |
Lee H G, Seo P J. 2015. The MYB96-HHP module integrates cold and abscisic acid signaling to activate the CBF-COR pathway in Arabidopsis. The Plant Journal, 82 (6):962-977.
doi: 10.1111/tpj.2015.82.issue-6 URL |
[67] |
Levy M, Wang Q, Kaspi R, Parrella M P, Abel S. 2005. Arabidopsis IQD1,a novel calmodulin-binding nuclear protein,stimulates glucosinolate accumulation and plant defense. The Plant Journal, 43 (1):79-96.
doi: 10.1111/tpj.2005.43.issue-1 URL |
[68] |
Li H, Ye K Y, Shi Y T, Cheng J K, Zhang X Y, Yang S H. 2017. BZR1 Positively regulates freezing tolerance via CBF-Dependent and CBF-independent pathways in Arabidopsis. Molecular Plant, 10 (4):545-559.
doi: 10.1016/j.molp.2017.01.004 URL |
[69] | Li Hui-zi. 2019. Roles and mechanisms of SlGLRs- and SlCaMs-regulated cold tolerance in tomato[Ph. D. Dissertation]. Hangzhou:Zhejiang University. (in Chinese) |
李卉梓. 2019. SlGLRs和SlCaMs在调控番茄低温抗性中的机制研究[博士论文]. 杭州:浙江大学. | |
[70] |
Li J S, Yang H B, Peer W A, Richter G, Blakeslee J, Bandyopadhyay A, Titapiwantakun B, Undurraga S, Khodakovskaya M, Richards E L, Krizek B, Murphy A S, Gilroy S, Gaxiola R. 2005. Arabidopsis H+-PPase AVP 1 regulates auxin-mediated organ development. Science, 310 (5745):121-125.
doi: 10.1126/science.1115711 URL |
[71] |
Li X H, Huang L, Zhang Y F, Ouyang Z G, Hong Y B, Zhang H J, Li D Y, Song F M. 2014. Tomato SR/CAMTA transcription factors SlSR1 and SlSR3L negatively regulate disease resistance response and SlSR1L positively modulates drought stress tolerance. BMC Plant Biology, 14:286.
doi: 10.1186/s12870-014-0286-3 URL |
[72] | Li Xiao-hui. 2014. Functional analysis of mitogen-acitvatd protein kinase kinases,calmodulin-binding transcription activators,NADPH oxidases and S-adenosyl homocysteine hydrolases in tomato biotic and abiotic stress responses[Ph. D. Dissertation]. Hangzhou:Zhejiang University. (in Chinese) |
李小辉. 2014. 分裂源激活蛋白二激酶、钙调蛋白结合转录因子、NADPH氧化酶和腺苷同型半胱氨酸水解酶在番茄抗病抗逆反应中的功能研究[博士论文]. 杭州:浙江大学. | |
[73] | Liu Dan-dan. 2016. Effects of low temperature on pollen development and associated gene expression in Chinese cabbage[M. D. Dissertation]. Hangzhou:Zhejiang University. (in Chinese) |
刘丹丹. 2016. 低温处理对菜心花粉发育及相关基因表达的影响[硕士论文]. 杭州:浙江大学. | |
[74] | Liu J, Hua W, Hu Z Y, Yang H L, Zhang L, Li R J, Deng L B, Sun X C, Wang X F, Wang H Z. 2015. Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proceedings of the National Academy of Sciences of the United States of America, 112 (37):E5123-E5132. |
[75] |
Liu J Y, Gilmour S J, Thomashow M F, Van Nocker S. 2002. Cold signalling associated with vernalization in Arabidopsis thaliana does not involve CBF 1 or abscisic acid. Physiologia Plant, 114 (1):125-134.
doi: 10.1034/j.1399-3054.2002.1140117.x URL |
[76] |
Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. 1998. Two transcription factors,DREB1 and DREB2,with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression,respectively,in Arabidopsis. The Plant Cell, 10 (8):1391-1406.
doi: 10.1105/tpc.10.8.1391 URL |
[77] | Liu Wei, Teng Teng, Zhao Yichen, Zhao Degang. 2020. Cloning and expression analysis of EuCML5 gene in Eucommia ulmoides. Acta Horticulturae Sinica, 47 (3):590-600. (in Chinese) |
刘伟, 滕腾, 赵懿琛, 赵德刚. 2020. 杜仲类钙调蛋白基因 EuCML5的克隆及表达分析. 园艺学报, 47 (3):590-600. | |
[78] |
Llop-Tous I, Dominguez-Puigjaner E, Vendrell M. 2002. Characterization of a strawberry cDNA clone homologous to calcium-dependent protein kinases that is expressed during fruit ripening and affected by low temperature. Journal of Experimental Botany, 53 (378):2283-2285.
doi: 10.1093/jxb/erf103 URL |
[79] | Lolle S, Greeff C, Petersen K, Roux M, Jensen M K, Bressendorff S, Rodriguez E, Somark K, Mundy J, Petersen M. 2017. Matching NLR immune receptors to autoimmunity in camta3 mutants using antimorphic NLR alleles. Cell Host & Microbe, 21 (4):518-529. |
[80] |
López-Maury L, Marguerat S, Bahler J. 2008. Tuning gene expression to changing environments:from rapid responses to evolutionary adaptation. Nature Reviews Genetics, 9 (8):583-593.
doi: 10.1038/nrg2398 URL |
[81] |
Lü D W, Li X, Zhang M, Gu A Q, Zhen S M, Wang C, Li X H, Yan Y M. 2014. Large-scale phosphoproteome analysis in seedling leaves of Brachypodium distachyon L. BMC Genomics, 15 (1):375.
doi: 10.1186/1471-2164-15-375 URL |
[82] | Lü Shuang-shuang. 2009. Study on regulation and mechanism of calcium on ethylene-induced muskmelon softening[Ph. D. Dissertation]. Shenyang:Shenyang Agricultural University. (in Chinese) |
吕双双. 2009. 钙调控乙烯诱导网纹甜瓜果实软化效果及其作用机制研究[博士论文]. 沈阳:沈阳农业大学. | |
[83] |
Malamy J, Carr J P, Klessig D F, Raskin I. 1990. Salicylic acid:a likely endogenous signal in the resistance response of tobacco to viral infection. Science, 250 (4983):1002-1004.
doi: 10.1126/science.250.4983.1002 URL |
[84] |
Medina J, Catala R, Salinas J. 2011. The CBFs:three Arabidopsis transcription factors to cold acclimate. Plant Science, 180 (1):3-11.
doi: 10.1016/j.plantsci.2010.06.019 URL |
[85] |
Meer L, Mumtaz S, Labbo A M, Khan M J, Sadiq I. 2019. Genome-wide identification and expression analysis of calmodulin-binding transcription activator genes in banana under drought stress. Scientia Horticulturae, 244:10-14.
doi: 10.1016/j.scienta.2018.09.022 URL |
[86] |
Miao Y, Zentgraf U. 2007. The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. The Plant Cell, 19 (3):819-830.
doi: 10.1105/tpc.106.042705 URL |
[87] |
Mishina T E, Zeier J. 2007. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. The Plant Journal, 50 (3):500-513.
doi: 10.1111/j.1365-313X.2007.03067.x URL |
[88] | Mitsuda N, Isono T, Sato M H. 2003. Arabidopsis CAMTA family proteins enhance V-PPase expression in pollen. Plant & Cell Physiology, 44 (10):975-981. |
[89] |
Miura K, Furumoto T. 2013. Cold signaling and cold response in plants. International Journal of Molecular Sciences, 14 (3):5312-5337.
doi: 10.3390/ijms14035312 URL |
[90] |
Miura K, Okamoto H, Okuma E, Shiba H, Kamada H, Hasegawa P M, Murata Y. 2013. SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. The Plant Journal, 73 (1):91-104.
doi: 10.1111/tpj.12014 URL |
[91] |
Moumeni A, Satoh K, Kondoh H, Asano T, Hosaka A, Venuprasad R, Serraj R, Kumar A, Leung H, Kikuchi S. 2011. Comparative analysis of root transcriptome profiles of two pairs of drought-tolerant and susceptible rice near-isogenic lines under different drought stress. BMC Plant Biology, 11:174.
doi: 10.1186/1471-2229-11-174 pmid: 22136218 |
[92] |
Müller C W, Rey F A, Sodeoka M, Verdine G L, Harrison S C. 1995. Structure of the NF-kB p50 homodimer bound to DNA. Nature, 373 (6512):311-317.
pmid: 7830764 |
[93] |
Návarová H, Bernsdorff F, Doring A C, Zeier J. 2012. Pipecolic acid,an endogenous mediator of defense amplification and priming,is a critical regulator of inducible plant immunity. Plant Cell, 24 (12):5123-5141.
doi: 10.1105/tpc.112.103564 URL |
[94] |
Nie H Z, Zhao C Z, Wu G H, Wu Y Y, Chen Y F, Tang D Z. 2012. SR1,a calmodulin-binding transcription factor,modulates plant defense and ethylene-induced senescence by directly regulating NDR1 and EIN3. Plant Physiology, 158 (4):1847-1859.
doi: 10.1104/pp.111.192310 URL |
[95] | Niu Xiao-nan. 2015. Study on the function of TaCAMTA4 in the process of interaction between wheat and Puccinia triticina and de novo transcriptome analysis of TaCAMTA4 regulated genes[M. D. Dissertation]. Baoding:Hebei Agricultural University. (in Chinese) |
牛笑南. 2015. TaCAMTA4在小麦与叶锈菌互作过程中的功能研究及其调控基因的转录组分析[硕士论文]. 保定:河北农业大学. | |
[96] |
Noman M, Jameel A, Qiang W D, Ahmad N, Liu W C, Wang F W, Li H Y. 2019. Overexpression of GmCAMTA12 enhanced drought tolerance in Arabidopsis and soybean. International Journal of Molecular Sciences, 20 (19):4849.
doi: 10.3390/ijms20194849 URL |
[97] |
Pandey N, Ranjan A, Pant P, Tripathi R K, Ateek F, Pandey H P, Patre U V, Sawant S V. 2013. CAMTA 1 regulates drought responses in Arabidopsis thaliana. BMC Genomics, 14:216.
doi: 10.1186/1471-2164-14-216 pmid: 23547968 |
[98] |
Pant P, Iqbal Z, Pandey B K, Sawant S V. 2018. Genome-wide comparative and evolutionary analysis of Calmodulin-binding Transcription Activator (CAMTA)family in Gossypium species. Scientific Reports, 8 (1):5573.
doi: 10.1038/s41598-018-23846-w URL |
[99] |
Park C Y, Lee J H, Yoo J H, Moon B C, Choi M S, Kang Y H, Lee S M, Kim H S, Kang K Y, Chung W S, Lim C O, Cho M J. 2005. WRKY group IId transcription factors interact with calmodulin. FEBS Letters, 579 (6):1545-1550.
doi: 10.1016/j.febslet.2005.01.057 URL |
[100] |
Poovaiah B W, Du L Q, Wang H Z, Yang T B. 2013. Recent advances in calcium/calmodulin-mediated signaling with an emphasis on plant-microbe interactions. Plant Physiology, 163 (2):531-542.
doi: 10.1104/pp.113.220780 URL pmid: 24014576 |
[101] | Popescu S C, Popescu G V, Bachan S, Zhang Z M, Seay M, Gerstein M, Snyder M, Dinesh-Kumar S P. 2007. Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proceedings of the National Academy of Sciences of the United States of America, 104 (11):4730-4735. |
[102] |
Prasad K, Abdel-Hameed A A E, Xing D H, Reddy A S N. 2016. Global gene expression analysis using RNA-seq uncovered a new role for SR1/CAMTA 3 transcription factor in salt stress. Scientific Reports, 6:27021.
doi: 10.1038/srep27021 URL |
[103] |
Qiu Y J, Xi J, Du L Q, Suttle J C, Poovaiah B W. 2012. Coupling calcium/calmodulin-mediated signaling and herbivore-induced plant response through calmodulin-binding transcription factor AtSR1/CAMTA3. Plant Molecular Biology, 79 (1-2):89-99.
doi: 10.1007/s11103-012-9900-7 URL |
[104] | Rahman H, Xu Y P, Zhang X R, Cai X Z. 2016a. Brassica napus genome possesses extraordinary high number of CAMTA genes and CAMTA3 contributes to PAMP triggered immunity and resistance to Sclerotinia sclerotiorum. Frontiers in Plant Science, 7:581. |
[105] | Rahman H, Yang J, Xu Y P, Munyampundu J P, Cai X Z. 2016b. Phylogeny of plant CAMTAs and role of AtCAMTAs in nonhost resistance to Xanthomonas oryzae pv. oryzae. Frontiers in Plant Science, 7:177. |
[106] |
Rhoads A R, Friedberg F. 1997. Sequence motifs for calmodulin recognition. FASEB Journal, 11 (5):331-340.
pmid: 9141499 |
[107] |
Riechmann J L, Ratcliffe O J. 2000. A genomic perspective on plant transcription factors. Current Opinion in Plant Biology, 3 (5):423-434.
doi: 10.1016/S1369-5266(00)00107-2 URL |
[108] |
Rubtsov A M, Lopina O D. 2000. Ankyrins. FEBS Letters, 482 (1-2):1-5.
doi: 10.1016/S0014-5793(00)01924-4 URL |
[109] |
Ryu H, Cho H, Kim K, Hwang I. 2010. Phosphorylation dependent nucleocytoplasmic shuttling of BES 1 is a key regulatory event in brassinosteroid signaling. Molecules and Cells, 29 (3):283-290.
doi: 10.1007/s10059-010-0035-x URL |
[110] |
Scott I M, Clarke S M, Wood J E, Mur L A. 2004. Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant Physiology, 135 (2):1040-1049.
doi: 10.1104/pp.104.041293 URL |
[111] |
Sedgwick S G, Smerdon S J. 1999. The ankyrin repeat:a diversity of interactions on a common structural framework. Trends in Biochemical Sciences, 24 (8):311-316.
pmid: 10431175 |
[112] |
Seymour G B, Manning K, Eriksson E M, Popovich A H, King G J. 2002. Genetic identification and genomic organization of factors affecting fruit texture. Journal of Experimental Botany, 53 (377):2065-2071.
doi: 10.1093/jxb/erf087 URL |
[113] |
Shangguan L F, Wang X M, Leng X P, Liu D, Ren G H, Tao R, Zhang C Q, Fang J G. 2014. Identification and bioinformatic analysis of signal responsive/calmodulin-binding transcription activators gene models in Vitis vinifera. Molecular Biology Reports, 41 (5):2937-2949.
doi: 10.1007/s11033-014-3150-5 URL pmid: 24458826 |
[114] |
Shkolnik D, Finkler A, Pasmanik-Chor M, Fromm H. 2019. CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR 6:a key regulator of Na+ homeostasis during germination. Plant Physiology, 180 (2):1101-1118.
doi: 10.1104/pp.19.00119 pmid: 30894419 |
[115] |
Sun T J, Huang J H, Xu Y, Verma V, Jing B B, Sun Y L, Ruiz Orduna A, Tian H N, Huang X C, Xia S T, Schafer L, Jetter R, Zhang Y L, Li X. 2020. Redundant CAMTA transcription factors negatively regulate the biosynthesis of salicylic acid and N-hydroxypipecolic acid by modulating the expression of SARD1 and CBP60g. Molecular Plant, 13 (1):144-156.
doi: 10.1016/j.molp.2019.10.016 URL |
[116] |
Sun X C, Hu C X, Tan Q L, Liu J S, Liu H E. 2009. Effects of molybdenum on expression of cold-responsive genes in abscisic acid (ABA)-dependent and ABA-independent pathways in winter wheat under low-temperature stress. Annals of Botany, 104 (2):345-356.
doi: 10.1093/aob/mcp133 URL |
[117] |
Sun Y, Fan X Y, Cao D M, Tang W, He K, Zhu J Y, He J X, Bai M Y, Zhu S, Oh E, Patil S, Kim T W, Ji H, Wong W H, Rhee S Y, Wang Z Y. 2010. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Developmental Cell, 19 (5):765-777.
doi: 10.1016/j.devcel.2010.10.010 URL pmid: 21074725 |
[118] |
Tang D Z, Ade J, Frye C A, Innes R W. 2005. Regulation of plant defense responses in Arabidopsis by EDR2,a PH and START domain-containing protein. The Plant Journal, 44 (2):245-257.
doi: 10.1111/j.1365-313X.2005.02523.x URL |
[119] |
Thaler J S, Humphrey P T, Whiteman N K. 2012. Evolution of jasmonate and salicylate signal crosstalk. Trends in Plant Science, 17 (5):260-270.
doi: 10.1016/j.tplants.2012.02.010 URL |
[120] | Thomashow M F. 1999. PLANT COLD ACCLIMATION:freezing tolerance genes and regulatory mechanisms. Annual Review of Plant Physiology & Plant Molecular Biology, 50:571-599. |
[121] |
Thomashow M F. 2010. Molecular basis of plant cold acclimation:insights gained from studying the CBF cold response pathway. Plant Physiology, 154 (2):571-577.
doi: 10.1104/pp.110.161794 pmid: 20921187 |
[122] |
Tokizawa M, Kobayashi Y, Saito T, Kobayashi M, Iuchi S, Nomoto M, Tada Y, Yamamoto Y Y, Koyama H. 2015. SENSITIVE TO PROTON RHIZOTOXICITY1,CALMODULIN BINDING TRANSCRIPTION ACTIVATOR2,and other transcription factors are involved in ALUMINUM-ACTIVATED MALATE TRANSPORTER1 expression. Plant Physiology, 167 (3):991-1003.
doi: 10.1104/pp.114.256552 URL |
[123] |
Vlot A C, Dempsey D A, Klessig D F. 2009. Salicylic acid,a multifaceted hormone to combat disease. Annual Review of Phytopathology, 47:177-206.
doi: 10.1146/annurev.phyto.050908.135202 URL |
[124] | Walley J W, Coughlan S, Hudson M E, Covington M F, Kaspi R, Banu G, Harmer S L, Dehesh K. 2007. Mechanical stress induces biotic and abiotic stress responses via a novel cis-element. PLoS Genetics, 3 (10):1800-1812. |
[125] |
Wang C M, Shang J X, Chen Q X, Oses-Prieto J A, Bai M Y, Yang Y, Yuan M, Zhang Y L, Mu C C, Deng Z, Wei C Q, Burlingame A L, Wang Z Y, Sun Y. 2013. Identification of BZR1-interacting proteins as potential components of the brassinosteroid signaling pathway in Arabidopsis through tandem affinity purification. Molecular & Cell Proteomics, 12 (12):3653-3665.
doi: 10.1074/mcp.M113.029256 URL |
[126] |
Wang G P, Zeng H, Hu X, Zhu Y, Chen Y, Shen C, Wang H, Poovaiah B W, Du L. 2014. Identification and expression analyses of calmodulin-binding transcription activator genes in soybean. Plant and Soil, 386 (1-2):205-221.
doi: 10.1007/s11104-014-2162-1 URL |
[127] | Wang Guo-ping. 2015. Identification and expression analysis of soybean CAMTAs under stresses and functional study of Arabidopsis CAMTA3/SR1 in drought stress response[M. D. Dissertation]. Hangzhou:Hangzhou Normal University. (in Chinese) |
王国平. 2015. 大豆CAMTA基因家族的鉴定及其对逆境的响应与拟南芥CAMTA3/SR1参与干旱反应的研究[硕士论文]. 杭州:杭州师范大学. | |
[128] |
Wang H B, Zhang Z Q, Xu L Y, Huang X M, Pang X Q. 2012. The effect of delay between heat treatment and cold storage on alleviation of chilling injury in banana fruit. Journal of the Science of Food and Agriculture, 92 (13):2624-2629.
doi: 10.1002/jsfa.v92.13 URL |
[129] | Wang Hai-bo, Li Lu, Su Xin-guo, Zhang Zhao-qi, Pang Xue-qun. 2018. Role of MaCaM and MaCAMTA3 genes in heat treatment-induced chilling tolerance of banana fruit. Jiangsu Agricultural Sciences, 46 (5):40-42. (in Chinese) |
王海波, 李璐, 苏新国, 张昭其, 庞学群. 2018. MaCaM和 MaCAMTA3基因在热处理诱导香蕉抗冷性中的作用. 江苏农业科学, 46 (5):40-42. | |
[130] | Wang Junwei, Huang Ke, Huang Yingjuan, Mao Shuxiang, Bai Aimei, Liu Mingyue, Wu Qiuyun. 2019. The research progress of transcription factors regulating glucosinolates biosynthesis in cruciferous vegetables. Acta Horticulturae Sinica, 46 (9):1752-1764. (in Chinese) |
王军伟, 黄科, 黄英娟, 毛舒香, 柏艾梅, 刘明月, 吴秋云. 2019. 十字花科蔬菜硫代葡萄糖苷合成相关转录因子调控研究进展. 园艺学报, 46 (9):1752-1764. | |
[131] | Wang Qing-qing. 2013. Role of Brassica napus CAMTA 1 protein in response to cold stress[M. D. Dissertation]. Wuhan:Huazhong Normal University. (in Chinese) |
王晴晴. 2013. 油菜CAMTA1参与冷胁迫应答的功能研究[硕士论文]. 武汉:华中师范大学. | |
[132] | Wang Wen-ya. 2004. The regulation mechanism of calcium on ethylene biosynthesis and signal transduction and its effect on fruit softing in tomato[Ph. D. Dissertation]. Beijing:China Agricultural University. (in Chinese) |
王文雅. 2004. 钙对番茄乙烯生物合成和信号转导的调控机理及果实软化的影响[博士论文]. 北京:中国农业大学. | |
[133] | Wang Yue-lin. 2013. Cloning and expression of a calmodulin interacting protein TaCAMTA4 gene in the interaction process between wheat and Puccinia triticina[M. D. Dissertation]. Baoding:Hebei Agricultural University. (in Chinese) |
王悦琳. 2013. 小麦与叶锈菌互作过程中CaM靶蛋白 TaCAMTA4基因的克隆及表达分析[硕士论文]. 保定:河北农业大学. | |
[134] |
Wei M, Xu X M, Li C H. 2017. Identification and expression of CAMTA genes in Populus trichocarpa under biotic and abiotic stress. Scientific Reports, 7 (1):17910.
doi: 10.1038/s41598-017-18219-8 URL |
[135] |
Xiao Y M, Savchenko T, Baidoo E E, Chehab W E, Hayden D M, Tolstikov V, Corwin J A, Kliebenstein D J, Keasling J D, Dehesh K. 2012. Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress-response genes. Cell, 149 (7):1525-1535.
doi: 10.1016/j.cell.2012.04.038 URL |
[136] | Xie R J, Pan X T, Zhang J, Ma Y Y, He S L, Zheng Y Q, Ma Y T. 2018. Effect of salt-stress on gene expression in citrus roots revealed by RNA-seq. Functional & Integrative Genomics, 18 (2):155-173. |
[137] | Xing Miaomiao, Liu Xing, Kong Congcong, Yang Limei, Zhuang Mu, Zhang Yangyong, Wang Yong, Fang Zhiyuan, Lü Honghao. 2019. Whole-genome identification and evolutionary analysis of cabbage NLR family genes and their expression profiles in response to various disease stress. Acta Horticulturae Sinica, 46 (4):723-737. (in Chinese) |
邢苗苗, 刘星, 孔枞枞, 杨丽梅, 庄木, 张扬勇, 王勇, 方智远, 吕红豪. 2019. 甘蓝NLR家族全基因组鉴定、进化分析及在不同病害胁迫下的表达分析. 园艺学报, 46 (4):723-737. | |
[138] | Xu Ya-jing. 2019. Functions and molecular mechanisms of CAMTA3 in regulating plant resistance to Sclerotinia sclerotiorum and Xanthomonas oryzae pv. oryzae[M. D. Dissertation]. Hangzhou:Zhejiang University. (in Chinese) |
徐雅静. 2019. CAMTA3对植物抗核盘菌及水稻白叶枯病菌的调控功能及机制分析[硕士论文]. 杭州:浙江大学. | |
[139] |
Yamasaki K, Kigawa T, Seki M, Shinozaki K, Yokoyama S. 2013. DNA-binding domains of plant-specific transcription factors:structure,function,and evolution. Trends in Plant Science, 18 (5):267-276.
doi: 10.1016/j.tplants.2012.09.001 URL |
[140] |
Yang T B, Peng H, Whitaker B D, Conway W S. 2012. Characterization of a calcium/calmodulin-regulated SR/CAMTA gene family during tomato fruit development and ripening. BMC Plant Biology, 12:19.
doi: 10.1186/1471-2229-12-19 URL |
[141] |
Yang T B, Poovaiah B W. 2000. An early ethylene up-regulated gene encoding a calmodulin-binding protein involved in plant senescence and death. The Journal of Biological Chemistry, 275 (49):38467-38473.
doi: 10.1074/jbc.M003566200 URL |
[142] |
Yang T B, Poovaiah B W. 2002. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. The Journal of Biological Chemistry, 277 (47):45049-45058.
doi: 10.1074/jbc.M207941200 URL |
[143] | Yang Y J, Sun T, Xu L Q, Pi E, Wang S, Wang H Z, Shen C J. 2015. Genome-wide identification of CAMTA gene family members in Medicago truncatula and their expression during root nodule symbiosis and hormone treatments. Frontiers in Plant Science, 6:459. |
[144] |
Yu X F, Li L, Zola J, Aluru M, Ye H X, Foudree A, Guo H Q, Anderson S, Aluru S, Liu P, Rodermel S, Yin Y H. 2011. A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. The Plant Journal, 65 (4):634-646.
doi: 10.1111/tpj.2011.65.issue-4 URL |
[145] |
Yuan P G, Du L Q, Poovaiah B W. 2018. Ca2+/Calmodulin-Dependent AtSR1/CAMTA 3 plays critical roles in balancing plant growth and immunity. International Journal of Molecular Sciences, 19 (6):1764.
doi: 10.3390/ijms19061764 URL |
[146] | Yue R Q, Lu C X, Sun T, Peng T T, Han X H, Qi J S, Yan S F, Tie S G. 2015. Identification and expression profiling analysis of calmodulin-binding transcription activator genes in maize( Zea mays L.)under abiotic and biotic stresses. Frontiers in Plant Science, 6:576. |
[147] | Zeng Hou-qing, Wang Guo-ping, Wang Hui-zhong, Lin Jin-xing, Du Li-qun. 2015. Functions of calmodlin-binding transcription activators(CAMTAs)in plants. Plant Physiology Journal, 51 (5):633-641. (in Chinese) |
曾后清, 王国平, 王慧中, 林金星, 杜立群. 2015. 植物钙调素结合转录因子CAMTA/SR功能的研究进展. 植物生理学报, 51 (5):633-641. | |
[148] | Zhang J, Pan X T, Ge T, Yi S L, Lv Q, Zheng Y Q, Ma Y Y, Liu X G, Xie R J. 2018. Genome-wide identification of citrus CAMTA genes and their expression analysis under stress and hormone treatments. The Journal of Horticultural Science and Biotechnology, 943:331-340. |
[149] | Zhang Jing. 2019. Identification and functional analysis of citrus CAMTA genes[M. D. Dissertation]. Chongqing:Southwest University. (in Chinese) |
张静. 2019. 柑橘CAMTA基因家族的鉴定与功能的初步研究[硕士论文]. 重庆:西南大学. | |
[150] |
Zhang L, Du L Q, Shen C J, Yang Y J, Poovaiah B W. 2014. Regulation of plant immunity through ubiquitin-mediated modulation of Ca2+- calmodulin-AtSR1/CAMTA3 signaling. The Plant Journal, 78 (2):269-281.
doi: 10.1111/tpj.12473 pmid: 24528504 |
[151] | Zhang Z B, Wu Y L, Gao M H, Zhang J, Kong Q, Liu Y Y, Ba H P, Zhou J M, Zhang Y L. 2012. Disruption of PAMP-induced MAP kinase cascade by a Pseudomonas syringae effector activates plant immunity mediated by the NB-LRR protein SUMM2. Cell Host & Microbe, 11 (3):253-263. |
[152] |
Zhou N, Tootle T L, Tsui F, Klessig D F, Glazebrook J. 1998. PAD4 functions upstream from salicylic acid to control defense responses in Arabidopsis. The Plant Cell, 10 (6):1021-1030.
doi: 10.1105/tpc.10.6.1021 URL |
[1] | 王钰, 张雪, 张学颖, 张思雨, 闻婷婷, 王迎君, 甘彩霞, 庞文星. 抗毒素Camalexin对大白菜抗根肿病的作用研究[J]. 园艺学报, 2022, 49(8): 1689-1698. |
[2] | 张倩雯, 杨希航, 李峰, 邓颖天. miRNA调控园艺作物生长发育研究进展[J]. 园艺学报, 2022, 49(5): 1145-1161. |
[3] | 周杰, 师恺, 夏晓剑, 周艳虹, 喻景权. 中国蔬菜栽培科技60年回顾与展望[J]. 园艺学报, 2022, 49(10): 2131-2142. |
[4] | 唐明佳, 徐进, 林锐, 宋珈凝, 喻景权, 周艳虹. 番茄响应光温逆境的生理分子机制研究进展[J]. 园艺学报, 2022, 49(10): 2174-2188. |
[5] | 杨丽媛, 王倩, 王许会, 徐通达, 马军. 草莓生长素合成关键酶FveTAA1保守氨基酸位点T111的生物学功能研究[J]. 园艺学报, 2021, 48(9): 1695-1705. |
[6] | 张庆雯, 王兆昊, 祁静静, 谢宇, 雷天刚, 何永睿, 陈善春, 姚利晓. 植物胼胝质合成酶研究进展[J]. 园艺学报, 2021, 48(4): 661-675. |
[7] | 王鹏杰,曹红利,陈 丹,陈 笛,陈桂信,杨江帆,叶乃兴*. 茶树脂肪酸去饱和酶家族基因的克隆与表达分析[J]. 园艺学报, 2020, 47(6): 1141-1152. |
[8] | 姚利晓,何永睿,陈善春*. microRNA 参与柑橘生长发育和抗逆的研究进展[J]. 园艺学报, 2020, 47(5): 995-1008. |
[9] | 徐志璇,任仲海*. 番茄AP2/ERF超家族重鉴定及过表达SlERF.D.3株系表型分析[J]. 园艺学报, 2020, 47(4): 653-664. |
[10] | 乔永刚,曹亚萍,贾孟君,王勇飞,贺嘉欣,张鑫瑞,王文斌,宋 芸*. 连翘异型花柱植株花芽生长发育与传粉习性研究[J]. 园艺学报, 2020, 47(4): 699-707. |
[11] | 徐 昇, 张 鑫, 刘德才, 顾婷婷. 森林草莓6mA甲基转移酶基因鉴定及功能分析[J]. 园艺学报, 2020, 47(11): 2194-2206. |
[12] | 崔佳维1,雷炳富1,刘厚诚2,*. 光合有效辐射日总量(DLI)对植物生长发育的影响[J]. 园艺学报, 2019, 46(9): 1670-1680. |
[13] | 李茂福1,杨 媛1,2,王 华1,刘佳棽1,金万梅1,*. 赤霉素对露地栽培月季‘卡罗拉’生长发育的影响[J]. 园艺学报, 2019, 46(4): 749-760. |
[14] | 张 旭,陈丽琛,任仲海*. 番茄过表达SlMYB102对种子萌发及生长的影响[J]. 园艺学报, 2018, 45(8): 1523-1534. |
[15] | 李 睿,李浩浩,安建平,由春香,王小非*,郝玉金*. 苹果多肽激素及其编码基因MdCEP1 调控拟南芥根系发育[J]. 园艺学报, 2017, 44(7): 1225-1234. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司