Acta Horticulturae Sinica ›› 2023, Vol. 50 ›› Issue (9): 1997-2014.doi: 10.16420/j.issn.0513-353x.2022-0569
• Reviews • Previous Articles Next Articles
WEI Jianming1, LI Yunzhou1,*(), LIANG Yan2,*(
)
Received:
2023-05-11
Revised:
2023-07-04
Online:
2023-09-25
Published:
2023-09-26
Contact:
LI Yunzhou, LIANG Yan
WEI Jianming, LI Yunzhou, LIANG Yan. Advances in Research on Improving Tomato Disease Resistance and Stress Resistance by Grafting Technology[J]. Acta Horticulturae Sinica, 2023, 50(9): 1997-2014.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2022-0569
胁迫类型 Type of coercion | 砧木Rootstock | 番茄接穗 Scion | 抗性 Resistance | 参考文献 Reference | |
---|---|---|---|---|---|
茄子 Eggplant | 番茄 Tomato | ||||
病毒 Virus | 刺茄 Solanum integrifolium | S. melongena Molfettese (Sm-Mo), S. lycopersicum Manduria (Sl-Ma),UC82 (Sl-UC),Manduria (Sl-Ma),Faino (Sl-Fa),Pullrex (Sl-Pu) | S. lycopersicum,UC82 (Sl-UC) Manduria (Sl-Ma),Messapico (Sl-Me),Faino (Sl-Fa),Pullrex(Sl-Pu) | 增强TSWV耐受性,增加产量, 促进根系发育Enhanced TSWV tolerance;Increase production;Promote root development | Spano et al., |
Sl-UC,Ma | Sl-UC,Sl-Ma | 增强CMV耐受性 Increased tolerance to CMV | Spano et al., | ||
Sl-UC,Ma | Sl-UC,Sl-Ma | 增强PVY耐受性 Increased PVY tolerance | Spano et al., | ||
GZ-R | GZ-R | 增强YLCV耐受性 Increased TYLCV tolerance | 韦建明 等, | ||
细菌 Bacteria | EG203、EG209、 托鲁巴姆 Solanum torvum | 夏威夷7996、BF兴津101 Hawaii 7996,BF-Okitsu 101 | 合作903、渝红6号Cooperation 903,Yuhong 6 | 有效防止土传性病害,提高产量 Effectively prevent soil-borne diseases and increase yield | 熊书萍 等, |
砧木1号、桂砧1号 Rootstock 1, Gui Anvil 1 | 珍红 Zhen Red 大明星 Big Star | 有效抑制青枯病,获得高产优质番茄 Effectively inhibit bacterial wilt and obtain high yield and quality | 黄天云 等, | ||
抗青1号 Kangqing 1 | 抗青1号 Kangqing 1 | 西粉三号 West Powder 3 | 降低青枯病发病率Reduce the incidence of bacterial wilt | 黄益鸿和雷东阳, | |
Tomachiva | Beske,UC82-B | 增强对青枯病的耐受性;增加坐果率和果实大小Enhanced tolerance to bacterial wilt;Increase fruit setting rate and fruit size | Ganiyu et al., | ||
VI041809A VI041943 VI041945 VI041979A VI041984 | Victoria,TStarE | 提高产量;抑制青枯病 Increase production;Control bacterial wilt | Manickam et al., | ||
茄砧11号 Nightshade Anvil 11 | 多美瑞 Duomeirui | 能够防治青枯病 Control bacterial wilt | 谭海文 等, | ||
真菌 Fungus | LS-89,BF兴津101 BF-Okitsu 101 | L-402 | 增强番茄叶霉病抗性和体内酶活性Enhance tomato leaf mildew resistance and enzyme activity in vivo | 何莉莉 等, | |
GZ-R | GZ-R | 增强灰霉病和白粉病的抗性 Enhances resistance to gray mold and powdery mildew | 韦建明 等, | ||
线虫 Nematodes | Beaufort | 多毛番茄 S. habrochaites | 抗根结线虫The resistance of root knot nematode increased | López-Pérez et al., | |
Big Power | Rivard et al., | ||||
Brigeor | Cortada et al., | ||||
Multifort | 抗根结线虫和提高产量Both root knot nematode resistance and yield were increased | Frey et al., | |||
Multifort | 抗根结线虫The resistance of root knot nematode increased | Barrett et al., | |||
托鲁巴姆 Solanum torvum | 果砧一号 Guozhen 1 | 樱粉8 S. lycopersicom Yingfen 8 | 提高产量和抗根结线虫Both root knot nematode resistance and yield were increased | Zhang et al., |
Table 1 Grafting enhances tomato tolerance to biotic stress
胁迫类型 Type of coercion | 砧木Rootstock | 番茄接穗 Scion | 抗性 Resistance | 参考文献 Reference | |
---|---|---|---|---|---|
茄子 Eggplant | 番茄 Tomato | ||||
病毒 Virus | 刺茄 Solanum integrifolium | S. melongena Molfettese (Sm-Mo), S. lycopersicum Manduria (Sl-Ma),UC82 (Sl-UC),Manduria (Sl-Ma),Faino (Sl-Fa),Pullrex (Sl-Pu) | S. lycopersicum,UC82 (Sl-UC) Manduria (Sl-Ma),Messapico (Sl-Me),Faino (Sl-Fa),Pullrex(Sl-Pu) | 增强TSWV耐受性,增加产量, 促进根系发育Enhanced TSWV tolerance;Increase production;Promote root development | Spano et al., |
Sl-UC,Ma | Sl-UC,Sl-Ma | 增强CMV耐受性 Increased tolerance to CMV | Spano et al., | ||
Sl-UC,Ma | Sl-UC,Sl-Ma | 增强PVY耐受性 Increased PVY tolerance | Spano et al., | ||
GZ-R | GZ-R | 增强YLCV耐受性 Increased TYLCV tolerance | 韦建明 等, | ||
细菌 Bacteria | EG203、EG209、 托鲁巴姆 Solanum torvum | 夏威夷7996、BF兴津101 Hawaii 7996,BF-Okitsu 101 | 合作903、渝红6号Cooperation 903,Yuhong 6 | 有效防止土传性病害,提高产量 Effectively prevent soil-borne diseases and increase yield | 熊书萍 等, |
砧木1号、桂砧1号 Rootstock 1, Gui Anvil 1 | 珍红 Zhen Red 大明星 Big Star | 有效抑制青枯病,获得高产优质番茄 Effectively inhibit bacterial wilt and obtain high yield and quality | 黄天云 等, | ||
抗青1号 Kangqing 1 | 抗青1号 Kangqing 1 | 西粉三号 West Powder 3 | 降低青枯病发病率Reduce the incidence of bacterial wilt | 黄益鸿和雷东阳, | |
Tomachiva | Beske,UC82-B | 增强对青枯病的耐受性;增加坐果率和果实大小Enhanced tolerance to bacterial wilt;Increase fruit setting rate and fruit size | Ganiyu et al., | ||
VI041809A VI041943 VI041945 VI041979A VI041984 | Victoria,TStarE | 提高产量;抑制青枯病 Increase production;Control bacterial wilt | Manickam et al., | ||
茄砧11号 Nightshade Anvil 11 | 多美瑞 Duomeirui | 能够防治青枯病 Control bacterial wilt | 谭海文 等, | ||
真菌 Fungus | LS-89,BF兴津101 BF-Okitsu 101 | L-402 | 增强番茄叶霉病抗性和体内酶活性Enhance tomato leaf mildew resistance and enzyme activity in vivo | 何莉莉 等, | |
GZ-R | GZ-R | 增强灰霉病和白粉病的抗性 Enhances resistance to gray mold and powdery mildew | 韦建明 等, | ||
线虫 Nematodes | Beaufort | 多毛番茄 S. habrochaites | 抗根结线虫The resistance of root knot nematode increased | López-Pérez et al., | |
Big Power | Rivard et al., | ||||
Brigeor | Cortada et al., | ||||
Multifort | 抗根结线虫和提高产量Both root knot nematode resistance and yield were increased | Frey et al., | |||
Multifort | 抗根结线虫The resistance of root knot nematode increased | Barrett et al., | |||
托鲁巴姆 Solanum torvum | 果砧一号 Guozhen 1 | 樱粉8 S. lycopersicom Yingfen 8 | 提高产量和抗根结线虫Both root knot nematode resistance and yield were increased | Zhang et al., |
胁迫类型 Type of coercion | 砧木Rootstock | 番茄接穗 S. lycopersicum scion | 抗性 Resistance | 参考文献 Reference | ||
---|---|---|---|---|---|---|
茄子 Solanum melongena | 番茄 Tomato | |||||
水水涝 Flooding | Arka,Neelkanth,Mattu,Gulla,BPLH1,Arka Keshav | Arka Rakshak | 提高光合和耐水涝能力Improved photosynthesis and waterlogging tolerance | Liao & Lin, | ||
IC-354557,IC- 111056,IC- 374873,CHBR-2 | Arka Rakshak Arka Samrat | 叶绿素和叶绿素荧光产率降幅减小 The decrease in chlorophyll and chlorophyll fluorescence was reduced | Bahadur et al., | |||
砧木606 Rootstock 606 | 金鹏1号 Jinpeng 1 | 叶绿素含量降幅、叶片离子外渗率减小;抗氧化酶活性提高、活性氧含量降低The decrease of chlorophyll content and the ion exosmosis rate of leaves were reduced. The activity of antioxidant enzymes increased and the content of reactive oxygen species decreased | 张志焕, | |||
干旱 Drought | Beaufort | M82 | 总类胡萝卜素和脯氨酸增加含量,叶绿素减少,生物量增加 The contents of total carotenoid and proline increased,chlorophyll decreased and biomass increased | Altunlu & Gul, | ||
Zarina | Josefina | 果实多胺(特别是精胺)含量增加,抗氧化能力提高,抗旱性增强 The contents of polyamines (especially spermine) in fruit were increased,the antioxidant capacity was improved and the drought resistance was enhanced | Sánchez-Rodríguez et al., | |||
Faridah | Unifort | 改善的果实品质(如维生素C、总可溶性盐和总糖水平提高)Improved fruit quality (e.g. increased levels of vitamin C,total soluble salt and total sugar) | Ibrahim et al., | |||
Jjak Kkung | BHN 602 | 地上部生长降低和光合能力增强 Aboveground growth decreased and photosynthetic capacity increased | Nilsen et al., | |||
Unifort | Farida | 水分利用率和产量增加Increased water utilization and yield | Alharbi et al., | |||
Beaufort,Maxifort | Amelia | 改善光合能力和叶片气孔导度 Improve photosynthetic capacity and stomatal conductance of leaves | Chaudhari et al., | |||
GZ-01 | 红果番茄 Red fruit tomato | 通过ABA途径改善光合能力和叶片气孔导度 Improve photosynthetic capacity and leaf stomatal conductance through ABA pathway | 韦建明 等, 韦建明 等, | |||
热激 Thermal shock | RX-335 | Tmknvf2 | PAL活动增加;PPO和GPX活动减少;减少干质量;总酚和邻二酚的增加 PAL activity increased; PPO and GPX activities decreased;Reduce dry weight; Increase of total phenol and o-diphenol | Rivero et al., | ||
低温Low temperature | LA1778 | T5 | 叶片气孔导度与蒸腾速率降低 Leaf stomatal conductance and transpiration rate decreased | Bloom et al., | ||
亚适温Boptimal- temperature | Breeding Line LA1777 | Moneymaker | 根冠比提高;叶片总碳含量增加Root shoot ratio increased;The total carbon content of leaves increased | Venema et al., | ||
热胁迫 Heat stress | Black Beauty | Summerset | UC 82-B | 叶面积增大,叶片鲜质量和干质量增加;叶绿素荧光值提高;花粉增加The fresh weight and dry weight of leaves increased with the increase of leaf area. Chlorophyll fluorescence value increased;Pollen increase | Abdelmageed & Gruda, | |
低温 Low temperature | 060112 R | 060911 S | 植株耐低温性提高;电解质渗透率降低;可溶性糖、脯 氨酸含量提高 The low temperature tolerance of plants was improved. Electrolyte permeability decreased;The content of soluble sugar and proline increased | 韩敏 等, | ||
盐 Salinity | Maxifort,Arnold,Armstrong | Cuore di Bue | 果实Na+含量提高 The content of Na+ in fruit was increased | Di Gioia et al., | ||
Pera | Jaguar | 耐盐性增强Increased salt tolerance | Estan et al., | |||
Fanny | AR-9704 | 光合能力提高,耐盐性增强 The photosynthetic capacity was improved and the salt tolerance was enhanced | Fernández-García et al., | |||
浙砧1号 Zhezhen 1 | 合作903 Hezuo 903 | 光合作用和耐盐性提高 Photosynthesis and salt tolerance were improved | He et al., | |||
T0-T8 | 佳西娜74-112 Jiaxina 74-112 | 植株耐盐性提高、果实品质改善 Plant salt tolerance and fruit quality were improved | 刘德兴 等, | |||
Fosberg | Boludo F1 | 提高植株耐盐性Improve plant salt tolerance | Albacete et al., |
Table 2 Enhanced tolerance to abiotic stress in tomato by different grafting combinations
胁迫类型 Type of coercion | 砧木Rootstock | 番茄接穗 S. lycopersicum scion | 抗性 Resistance | 参考文献 Reference | ||
---|---|---|---|---|---|---|
茄子 Solanum melongena | 番茄 Tomato | |||||
水水涝 Flooding | Arka,Neelkanth,Mattu,Gulla,BPLH1,Arka Keshav | Arka Rakshak | 提高光合和耐水涝能力Improved photosynthesis and waterlogging tolerance | Liao & Lin, | ||
IC-354557,IC- 111056,IC- 374873,CHBR-2 | Arka Rakshak Arka Samrat | 叶绿素和叶绿素荧光产率降幅减小 The decrease in chlorophyll and chlorophyll fluorescence was reduced | Bahadur et al., | |||
砧木606 Rootstock 606 | 金鹏1号 Jinpeng 1 | 叶绿素含量降幅、叶片离子外渗率减小;抗氧化酶活性提高、活性氧含量降低The decrease of chlorophyll content and the ion exosmosis rate of leaves were reduced. The activity of antioxidant enzymes increased and the content of reactive oxygen species decreased | 张志焕, | |||
干旱 Drought | Beaufort | M82 | 总类胡萝卜素和脯氨酸增加含量,叶绿素减少,生物量增加 The contents of total carotenoid and proline increased,chlorophyll decreased and biomass increased | Altunlu & Gul, | ||
Zarina | Josefina | 果实多胺(特别是精胺)含量增加,抗氧化能力提高,抗旱性增强 The contents of polyamines (especially spermine) in fruit were increased,the antioxidant capacity was improved and the drought resistance was enhanced | Sánchez-Rodríguez et al., | |||
Faridah | Unifort | 改善的果实品质(如维生素C、总可溶性盐和总糖水平提高)Improved fruit quality (e.g. increased levels of vitamin C,total soluble salt and total sugar) | Ibrahim et al., | |||
Jjak Kkung | BHN 602 | 地上部生长降低和光合能力增强 Aboveground growth decreased and photosynthetic capacity increased | Nilsen et al., | |||
Unifort | Farida | 水分利用率和产量增加Increased water utilization and yield | Alharbi et al., | |||
Beaufort,Maxifort | Amelia | 改善光合能力和叶片气孔导度 Improve photosynthetic capacity and stomatal conductance of leaves | Chaudhari et al., | |||
GZ-01 | 红果番茄 Red fruit tomato | 通过ABA途径改善光合能力和叶片气孔导度 Improve photosynthetic capacity and leaf stomatal conductance through ABA pathway | 韦建明 等, 韦建明 等, | |||
热激 Thermal shock | RX-335 | Tmknvf2 | PAL活动增加;PPO和GPX活动减少;减少干质量;总酚和邻二酚的增加 PAL activity increased; PPO and GPX activities decreased;Reduce dry weight; Increase of total phenol and o-diphenol | Rivero et al., | ||
低温Low temperature | LA1778 | T5 | 叶片气孔导度与蒸腾速率降低 Leaf stomatal conductance and transpiration rate decreased | Bloom et al., | ||
亚适温Boptimal- temperature | Breeding Line LA1777 | Moneymaker | 根冠比提高;叶片总碳含量增加Root shoot ratio increased;The total carbon content of leaves increased | Venema et al., | ||
热胁迫 Heat stress | Black Beauty | Summerset | UC 82-B | 叶面积增大,叶片鲜质量和干质量增加;叶绿素荧光值提高;花粉增加The fresh weight and dry weight of leaves increased with the increase of leaf area. Chlorophyll fluorescence value increased;Pollen increase | Abdelmageed & Gruda, | |
低温 Low temperature | 060112 R | 060911 S | 植株耐低温性提高;电解质渗透率降低;可溶性糖、脯 氨酸含量提高 The low temperature tolerance of plants was improved. Electrolyte permeability decreased;The content of soluble sugar and proline increased | 韩敏 等, | ||
盐 Salinity | Maxifort,Arnold,Armstrong | Cuore di Bue | 果实Na+含量提高 The content of Na+ in fruit was increased | Di Gioia et al., | ||
Pera | Jaguar | 耐盐性增强Increased salt tolerance | Estan et al., | |||
Fanny | AR-9704 | 光合能力提高,耐盐性增强 The photosynthetic capacity was improved and the salt tolerance was enhanced | Fernández-García et al., | |||
浙砧1号 Zhezhen 1 | 合作903 Hezuo 903 | 光合作用和耐盐性提高 Photosynthesis and salt tolerance were improved | He et al., | |||
T0-T8 | 佳西娜74-112 Jiaxina 74-112 | 植株耐盐性提高、果实品质改善 Plant salt tolerance and fruit quality were improved | 刘德兴 等, | |||
Fosberg | Boludo F1 | 提高植株耐盐性Improve plant salt tolerance | Albacete et al., |
[1] |
|
[2] |
doi: 10.1111/pce.2009.32.issue-7 URL |
[3] |
doi: 10.3923/ajcs.2014.112.122 URL |
[4] |
|
[5] |
|
[6] |
doi: 10.1104/pp.109.144428 pmid: 19783647 |
[7] |
|
[8] |
doi: 10.21273/HORTSCI.47.5.614 URL |
[9] |
doi: 10.1016/j.scienta.2014.10.043 URL |
[10] |
|
[11] |
|
[12] |
doi: 10.1016/j.tplants.2009.10.001 URL |
[13] |
|
[14] |
doi: 10.1111/j.1469-8137.2012.04307.x pmid: 22985197 |
[15] |
|
[16] |
doi: 10.1017/wet.2017.12 URL |
[17] |
|
[18] |
doi: 10.1038/s41580-021-00425-y |
[19] |
doi: 10.1007/s10658-008-9413-z URL |
[20] |
doi: 10.3390/ijms222312821 URL |
[21] |
doi: 10.21273/HORTSCI.48.7.855 URL |
[22] |
doi: 10.1016/j.hpj.2020.09.002 URL |
[23] |
doi: 10.1111/tpj.v111.2 URL |
[24] |
doi: 10.1007/s11240-014-0685-z URL |
[25] |
|
[26] |
doi: 10.1093/jxb/eri027 pmid: 15557292 |
[27] |
|
范惠冬, 刘燕妮, 郑世金, 侯柏森, 毛芙蓉. 2019. 番茄病毒病的发生与防治. 吉林蔬菜,(3):30. (in Chinese)
|
|
[28] |
|
[29] |
doi: 10.21273/HORTSCI14166-19 URL |
[30] |
doi: 10.1038/nature13291 |
[31] |
pmid: 11137158 |
[32] |
|
[33] |
doi: 10.1007/s13313-020-00702-y |
[34] |
|
[35] |
doi: 10.1126/science.aaz7614 pmid: 32299946 |
[36] |
doi: 10.1105/tpc.108.061317 URL |
[37] |
|
韩敏, 曹逼力, 刘树森, 徐坤 2018. 番茄嫁接苗根穗互作对其耐冷性的影响. 园艺学报, 45 (2):279-288. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2017-0412 URL |
|
[38] |
|
韩敏, 曹逼力, 刘树森, 徐坤. 2019. 低温胁迫下番茄幼苗根穗互作对其抗坏血酸—谷胱甘肽循环的影响. 园艺学报, 46 (1):65-73. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2018-0110 URL |
|
[39] |
doi: 10.3390/horticulturae7040084 URL |
[40] |
|
何莉莉, 侯丽霞, 须晖, 葛晓光, 李天来. 2001. 嫁接番茄抗叶霉病效果与植株体内同工酶的关系. 辽宁农业科学,(1):16-18. (in Chinese)
|
|
[41] |
doi: 10.1016/j.envexpbot.2009.02.007 URL |
[42] |
|
黄天云, 赵兴爱, 蒋雪荣. 2009. 不同砧木嫁接番茄抗青枯病效果比较. 长江蔬菜,(10):55-56. (in Chinese)
|
|
[43] |
|
黄益鸿, 雷东阳. 2013. 不同砧木嫁接番茄抗青枯病效果研究. 江西农业学报, 25 (1):73-75. (in Chinese)
|
|
[44] |
|
[45] |
doi: 10.1016/j.scienta.2021.110559 URL |
[46] |
doi: 10.1038/s41477-021-00865-6 pmid: 33707737 |
[47] |
|
[48] |
pmid: 27803702 |
[49] |
doi: 10.3389/fpls.2016.01335 pmid: 27630659 |
[50] |
pmid: 23431109 |
[51] |
doi: 10.3389/fpls.2017.01130 pmid: 28713405 |
[52] |
doi: 10.1038/s41467-020-19140-x pmid: 33093443 |
[53] |
|
[54] |
|
[55] |
doi: 10.1016/j.plantsci.2019.04.005 URL |
[56] |
doi: 10.1016/j.molp.2020.08.017 pmid: 32889174 |
[57] |
doi: 10.1074/jbc.M111.244129 URL |
[58] |
doi: 10.1007/s00425-022-03863-w pmid: 35348893 |
[59] |
doi: 10.1186/s12870-021-02916-8 |
[60] |
doi: 10.1016/0098-8472(96)01009-X URL |
[61] |
doi: 10.1038/ng.3117 pmid: 25305757 |
[62] |
|
刘德兴, 荆鑫, 焦娟, 魏珉, 隋申利, 赵利华, 李艳玮, 赵娜, 巩彪, 史庆华. 2017. 嫁接对番茄产量、品质及耐盐性影响的综合评价. 园艺学报, 44 (6):1094-1104. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2016-0947 URL |
|
[63] |
|
[64] |
doi: 10.1111/pbi.v18.7 URL |
[65] |
doi: 10.1016/j.cropro.2005.07.001 URL |
[66] |
|
陆晨飞, 高月霞, 黄河, 戴思兰. 2022. 植物类胡萝卜素代谢及调控研究进展. 园艺学报, 49 (12):2559-2578. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2021-0531 URL |
|
[67] |
doi: 10.1093/plphys/kiab366 pmid: 34618059 |
[68] |
doi: 10.1007/s11103-012-9931-0 pmid: 22638904 |
[69] |
|
[70] |
|
马薇薇. 2020. 分析作物土传病害的危害及防治技术. 花卉,(8):263-264. (in Chinese)
|
|
[71] |
|
孟宪敏, 崔青青, 段韫丹, 庄团结, 濮丹, 董春娟, 杨文才, 尚庆茂. 2022. 烯效唑对番茄幼苗嫁接愈合的促进作用及其机理研究. 园艺学报, 49 (6):1275-1289. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2021-0306 URL |
|
[72] |
doi: 10.1038/nrg3605 |
[73] |
doi: 10.1093/jn/nxac066 URL |
[74] |
doi: 10.1007/s12229-016-9173-y URL |
[75] |
|
[76] |
doi: 10.1111/pbi.12429 pmid: 26132723 |
[77] |
doi: 10.17957/IJAB URL |
[78] |
|
聂鑫淼, 栾恒, 冯改利, 王超, 李岩, 魏珉. 2022. 硅营养和嫁接砧木对黄瓜幼苗耐冷性的影响. 园艺学报, 49 (8):1795-1804. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2021-0379 URL |
|
[79] |
|
[80] |
doi: 10.1126/science.abc3710 pmid: 32764072 |
[81] |
doi: 10.1007/BF00022565 URL |
[82] |
doi: 10.1007/BF00281935 pmid: 24414844 |
[83] |
doi: 10.14348/molcells.2016.0083 pmid: 27239814 |
[84] |
|
[85] |
doi: 10.1556/AAlim.34.2005.4.12 URL |
[86] |
|
祁利潘, 李越, 王磊, 冯琰, 王宽, 尹江, 郭华春. 2022. 马铃薯与枸杞嫁接愈合过程的解剖学观察. 园艺学报, 49 (4):868-874. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2021-0198 URL |
|
[87] |
doi: 10.3389/fpls.2019.01554 URL |
[88] |
|
[89] |
doi: 10.1007/s10681-012-0801-2 URL |
[90] |
doi: 10.1038/s41586-021-04247-y |
[91] |
doi: 10.1002/ps.2018.74.issue-9 URL |
[92] |
|
[93] |
|
[94] |
|
[95] |
|
[96] |
|
[97] |
doi: 10.1111/aab.2012.161.issue-3 URL |
[98] |
|
[99] |
doi: 10.1016/j.jplph.2015.10.010 URL |
[100] |
doi: 10.3390/horticulturae7090309 URL |
[101] |
doi: 10.1093/jxb/eraa601 pmid: 33462583 |
[102] |
doi: 10.1093/hr/uhac061 URL |
[103] |
doi: 10.1080/19315260.2014.881454 URL |
[104] |
|
[105] |
doi: 10.1038/s41598-020-59421-5 |
[106] |
doi: 10.1111/aab.2017.171.issue-3 URL |
[107] |
|
[108] |
doi: 10.1111/tpj.2015.83.issue-5 URL |
[109] |
doi: 10.1126/science.1170397 pmid: 19407205 |
[110] |
doi: 10.21273/HORTSCI13311-18 URL |
[111] |
doi: 10.1007/s11033-018-4511-2 pmid: 30465132 |
[112] |
doi: 10.1007/s001220050946 URL |
[113] |
|
谭海文, 管欢, 李刚, 邓飞鹏, 吴永琼, 潘玲华. 2022. 嫁接、杀菌剂和菌肥对番茄青枯病的应用效果评价. 蔬菜,(1):42-45. (in Chinese)
|
|
[114] |
|
[115] |
doi: 10.1111/nph.2019.223.issue-2 URL |
[116] |
doi: 10.1126/science.aal1556 pmid: 28126817 |
[117] |
doi: 10.1111/pce.v45.3 URL |
[118] |
doi: 10.1016/j.scienta.2012.06.018 URL |
[119] |
|
[120] |
doi: 10.1146/annurev-arplant-050718-100005 pmid: 32167791 |
[121] |
doi: 10.1016/j.envexpbot.2007.12.015 URL |
[122] |
doi: 10.1038/s41580-022-00501-x |
[123] |
doi: 10.1038/d41587-021-00026-2 |
[124] |
|
王迪轩, 周铭. 2017. 蔬菜涝害的发生与防治措施. 农村实用技术,(3):40-41.
|
|
[125] |
|
王琪, 岳江, 岑青芙, 张万萍, 李云洲, 须文, 闫见敏. 2021. 不同番茄品种幼苗期耐盐性鉴定. 山地农业学报, 40 (6):20-29. (in Chinese)
|
|
[126] |
doi: 10.3389/fcell.2021.651278 URL |
[127] |
|
[128] |
doi: 10.1016/j.hpj.2020.12.005 URL |
[129] |
|
韦建明, 黄鑫, 肖遥, 方思丽, 任志国, 张大龙, 李云洲. 2023a. 接种TYLCV弱毒株对番茄植株对灰霉病和白粉病耐受性的影响. 核农学报, 37 (10):1976-1986. (in Chinese)
|
|
[130] |
|
韦建明, 黄鑫, 米娜, 张大龙, 李云洲. 2023b. 半野生番茄GZ-01砧木增强嫁接植株耐旱性. 中国蔬菜,(1):42-51. (in Chinese)
|
|
[131] |
|
韦建明, 黄鑫, 张大龙, 李云洲. 2023c. 贵州本土半野生番茄砧木介导ABA生物合成信号通路调控植株耐旱性的机理研究. 核农学报, 37 (4):707-719. (in Chinese)
|
|
[132] |
doi: 10.1016/j.softx.2019.100369 URL |
[133] |
|
韦建明, 黄鑫, 肖遥, 方思丽, 任志国, 张大龙, 李云洲. 2023a. 接种TYLCV弱毒株对番茄植株对灰霉病和白粉病耐受性的影响. 核农学报, 37 (10):1976-1986. (in Chinese)
|
|
[134] |
|
韦建明, 黄鑫, 米娜, 张大龙, 李云洲. 2023b. 半野生番茄GZ-01砧木增强嫁接植株耐旱性. 中国蔬菜,(1):42-51. (in Chinese)
|
|
[135] |
|
韦建明, 黄鑫, 张大龙, 李云洲. 2023c. 贵州本土半野生番茄砧木介导ABA生物合成信号通路调控植株耐旱性的机理研究. 核农学报, 37 (4):0707-0719. (in Chinese)
|
|
[136] |
|
[137] |
doi: 10.1104/pp.17.01836 URL |
[138] |
|
熊书萍, 田时炳, 蔡贵华, 罗章勇, 陈义康, 王永清. 2004. 番茄嫁接栽培技术研究. 西南园艺,(3):1-3. (in Chinese)
|
|
[139] |
doi: 10.1126/science.283.5398.94 pmid: 9872750 |
[140] |
doi: 10.1007/s11816-022-00753-1 |
[141] |
|
[142] |
doi: S0960-9822(19)30769-9 pmid: 31327714 |
[143] |
|
杨再俊, 郑家瑞, 潘鹏程, 潘寅涛, 高彬, 李云洲. 2021. 番茄抗病种质资源分子标记筛选. 山地农业生物学报, 40 (6):30-36. (in Chinese)
|
|
[144] |
doi: 10.1038/s41598-021-88971-5 pmid: 33972562 |
[145] |
doi: 10.1016/j.scitotenv.2018.10.129 URL |
[146] |
doi: 10.1105/tpc.15.01056 pmid: 27268430 |
[147] |
|
张文彪, 罗双霞, 韩微莉, 申书兴, 陈雪平. 2014. 番茄砧木对茄子嫁接苗耐热性的影响. 河南农业科学, 43 (1):113-119. (in Chinese)
|
|
[148] |
|
张晓波, 陶世杰, 王文合, 陶秀娟. 2017. 番茄嫁接砧木果砧一号对根结线虫田间抗性试验,农业科技, 18 (10):1951-1954. (in Chinese)
|
|
[149] |
|
张志焕. 2016. 番茄砧木耐旱性鉴定及其嫁接苗对水分胁迫的响应[硕士论文] 泰安:山东农业大学. (in Chinese)
|
|
[150] |
doi: 10.1038/s41467-019-09462-w pmid: 30948717 |
[151] |
doi: 10.1016/j.hpj.2022.01.001 URL |
[152] |
|
周杰, 师恺, 夏晓剑, 周艳虹, 喻景权. 2022. 中国蔬菜栽培科技60年回顾与展望. 园艺学报, 49 (10):2131-2142. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2022-0858 URL |
|
[153] |
doi: 10.1016/j.plaphy.2020.01.020 URL |
[154] |
doi: 10.1016/j.hpj.2022.01.001 URL |
[155] |
doi: 10.1016/j.cell.2016.08.029 URL |
[156] |
|
[1] | ZHANG Pan, YU Yongxu, CAO Linggai, ZHU Guangbing, WU Wei, GUO Yushuang, YIN Guoying, JIA Meng’ao. Research Progress of m6A Methylation Modification Response to Plant Biotic and Abiotic Stresses [J]. Acta Horticulturae Sinica, 2023, 50(9): 1841-1853. |
[2] | SHEN Xinyan, HOU Xiaolei, SUN Peinan, LIU Minmin, TANG Yaping, LI Ning, LU Yong’en, YE Zhibiao, OUYANG Bo. Drought Tolerance Improvement of Processing Tomato by Molecular Marker Assisted Selection [J]. Acta Horticulturae Sinica, 2023, 50(7): 1429-1443. |
[3] | TANG Haixia, YANG Xuemei, FENG Lijuan, ZHU Feng, ZHOU Jilei, YIN Yanlei. Analysis of Freezing Tolerances and Physiological Differences of Three Pomegranate Cultivars During the Overwintering [J]. Acta Horticulturae Sinica, 2023, 50(7): 1563-1573. |
[4] | SHEN Yuxiao, ZOU Jinyu, LUO Ping, SHANG Wenqian, LI Yonghua, HE Songlin, WANG Zheng, and SHI Liyun, . Genome-wide Identification and Abiotic Stress Response Analysis of PP2C Family Genes in Rosa chinensis‘Old Blush’ [J]. Acta Horticulturae Sinica, 2023, 50(10): 2139-2156. |
[5] | YU Yangjun, WANG Weihong, SU Tongbing, ZHANG Fenglan, ZHANG Deshuang, ZHAO Xiuyun, YU Shuancang, LI Peirong, XIN Xiaoyun, and WANG Jiao. A New Chinese Cabbage Cultivar‘Jingchun CR3’with Clubroot Resistance and Bolting Tolerance [J]. Acta Horticulturae Sinica, 2022, 49(S2): 87-88. |
[6] | TIAN Hongmei, LIU Juan, ZHANG Changkun, TAO Zhen, ZHANG Jian, and WANG Pengcheng, . A New Pumpkin Cultivar‘Wanzhen 6’for Melon Rootstock [J]. Acta Horticulturae Sinica, 2022, 49(S2): 127-128. |
[7] | QU Yanting, XIONG Yan, LIU Zhiyang, HAN Hui, CHEN Fei, LI Li, and ZHANG Xing, . A New Hosta Cultivar‘Nature Green’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 197-198. |
[8] | FAN Jinping, DAI Jingqi, JIANG Yifan, YAN Kaili, ZHANG Jinzhu, YANG Tao, and CHE Daidi. A New Lilium Cultivar‘Ice Pink Queen’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 205-206. |
[9] | XU Xiaoping, CAO Qingying, CAI Roudi, GUAN Qingxu, ZHANG Zihao, CHEN Yukun, XU HAN, LIN Yuling, LAI Zhongxiong. Gene Cloning and Expression Analysis of miR408 and Its Target DlLAC12 in Globular Embryo Development and Abiotic Stress in Dimocarpus longan [J]. Acta Horticulturae Sinica, 2022, 49(9): 1866-1882. |
[10] | JIA Xin, ZENG Zhen, CHEN Yue, FENG Hui, LÜ Yingmin, ZHAO Shiwei. Cloning and Expression Analysis of RcDREB2A Gene in Rosa chinensis‘Old Blush’ [J]. Acta Horticulturae Sinica, 2022, 49(9): 1945-1956. |
[11] | NIE Xinmiao, LUAN Heng, FENG Gaili, WANG Chao, LI Yan, WEI Min. Effects of Silicon Nutrition and Grafting Rootstocks on Chilling Tolerance of Cucumber Seedlings [J]. Acta Horticulturae Sinica, 2022, 49(8): 1795-1804. |
[12] | MA Weifeng, LI Yanmei, MA Zonghuan, CHEN Baihong, MAO Juan. Identification of Apple POD Gene Family and Functional Analysis of MdPOD15 Gene [J]. Acta Horticulturae Sinica, 2022, 49(6): 1181-1199. |
[13] | QI Lipan, LI Yue, WANG Lei, FENG Yan, WANG Kuan, YIN Jiang, GUO Huachun. Anatomical Observation on the Graft Union Between Potato and Wolfberry [J]. Acta Horticulturae Sinica, 2022, 49(4): 868-874. |
[14] | ZHOU Zhiming, YANG Jiabao, ZHANG Cheng, ZENG Linglu, MENG Wanqiu, SUN Li. Genome-wide Identification and Expression Analyses of Long-chain Acyl-CoA Synthetases Under Abiotic Stresses in Helianthus annuus [J]. Acta Horticulturae Sinica, 2022, 49(2): 352-364. |
[15] | YU Lu, NIU Zimian, LI Quan, LIN Lu, WANG Hongning, LI Zhiqiang, LI Hongyan. A New Apple Dwarf Rootstock Cultivar‘Sc5’ [J]. Acta Horticulturae Sinica, 2022, 49(11): 2519-2520. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd