Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (9): 1866-1882.doi: 10.16420/j.issn.0513-353x.2021-0573
• Research Papers • Previous Articles Next Articles
XU Xiaoping1, CAO Qingying1, CAI Roudi1, GUAN Qingxu1, ZHANG Zihao1, CHEN Yukun1, XU HAN1,2, LIN Yuling1, LAI Zhongxiong1,*()
Received:
2021-10-01
Revised:
2022-06-16
Online:
2022-09-25
Published:
2022-10-08
Contact:
LAI Zhongxiong
E-mail:laizx01@163.com
CLC Number:
XU Xiaoping, CAO Qingying, CAI Roudi, GUAN Qingxu, ZHANG Zihao, CHEN Yukun, XU HAN, LIN Yuling, LAI Zhongxiong. Gene Cloning and Expression Analysis of miR408 and Its Target DlLAC12 in Globular Embryo Development and Abiotic Stress in Dimocarpus longan[J]. Acta Horticulturae Sinica, 2022, 49(9): 1866-1882.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-0573
用途 Purpose | 引物名称 Primer name | 引物序列 Primer sequence | 退火温度/℃ Temperature | 延伸时间/s Time |
---|---|---|---|---|
miR408 qPCR | dlo-miR408-3p-qF | ATGCACTGCCTCTTCCCTGGC | 60 | 30 |
dlo-miR408-5p1-qF | ACGGGGAACAGGCAGAGCATG | 60 | 30 | |
miRNA qRT-PCR | Univer-primer | GATCGCCCTTCTACGTCGTAT | 60 | 30 |
pre-miR408 qPCR | pre-miR408-qF | AGAGCAGCAAGAGACAAAGACG | 60 | 30 |
pre-miR408-qR | GAAAGAGGAGAAGAAGGAGCC | 60 | 30 | |
pri-miR408 qPCR | pri-miR408-qF | GGCTTCACCCATGCACTGC | 60 | 30 |
pri-miR408-qR | TCACTCACCCAGTAATCAGTTGC | 60 | 30 | |
靶基因定量Target gene qPCR | DlLAC12-qF | GCTTCTCCTAGCTTCTACATTGTCC | 60 | 30 |
DlLAC12-qR | CAAAGTTGTCAACAAAGCCAG | 60 | 30 | |
内参基因Reference gene/miRNA | DlFSD-qF | GGTCAGATGGTGAAGCCGTAGAG | 60 | 30 |
DlFSD-qR | GTCTATGCCACCGATACAACAAACCC | 60 | ||
dlo-miR156a*-qF | TGCTCACTTCTCCTCTGTCAG | 60 | 30 | |
pri-miR408 5RACE | pri-miR408-5R1 | CAGGGAAGAGGCAGTGCATGG | 56.7 | 30 |
pri-miR408-5R2 | GCATCCATGCTCTGCCTGTTC | 54.8 | 45 | |
pri-miR408 3RACE | pri-miR408-3R1 | ACAGGCAGAGCATGGATGCAACTA | 55 | 45 |
pri-miR408-3R2 | GGCTTCACCCATGCACTGC | 54 | ||
pri-miR408 cDNA | pri-miR408-F | TTGTGGAAGGAAACGTGG | 56 | 45 |
pri-miR408-R | TGAACCTGCATTTCTGTCTACAC | |||
pro-MIR408 | pro-MIR408-F | CGAGTGAGATGAATCCGAAACAAAG | 65 | 90 |
pro-MIR408-R | CGAGTGAGATGAATCCGAAACAAAG | |||
DlLAC12 cDNA | DlLAC12-F | ATGGAGCTTCTCAAAAGCAC | 56 | 120 |
DlLAC12-R | CACCAGATTTGCCTATATGCTAA |
Table 1 Primers used in gene cloning and qRT-PCR
用途 Purpose | 引物名称 Primer name | 引物序列 Primer sequence | 退火温度/℃ Temperature | 延伸时间/s Time |
---|---|---|---|---|
miR408 qPCR | dlo-miR408-3p-qF | ATGCACTGCCTCTTCCCTGGC | 60 | 30 |
dlo-miR408-5p1-qF | ACGGGGAACAGGCAGAGCATG | 60 | 30 | |
miRNA qRT-PCR | Univer-primer | GATCGCCCTTCTACGTCGTAT | 60 | 30 |
pre-miR408 qPCR | pre-miR408-qF | AGAGCAGCAAGAGACAAAGACG | 60 | 30 |
pre-miR408-qR | GAAAGAGGAGAAGAAGGAGCC | 60 | 30 | |
pri-miR408 qPCR | pri-miR408-qF | GGCTTCACCCATGCACTGC | 60 | 30 |
pri-miR408-qR | TCACTCACCCAGTAATCAGTTGC | 60 | 30 | |
靶基因定量Target gene qPCR | DlLAC12-qF | GCTTCTCCTAGCTTCTACATTGTCC | 60 | 30 |
DlLAC12-qR | CAAAGTTGTCAACAAAGCCAG | 60 | 30 | |
内参基因Reference gene/miRNA | DlFSD-qF | GGTCAGATGGTGAAGCCGTAGAG | 60 | 30 |
DlFSD-qR | GTCTATGCCACCGATACAACAAACCC | 60 | ||
dlo-miR156a*-qF | TGCTCACTTCTCCTCTGTCAG | 60 | 30 | |
pri-miR408 5RACE | pri-miR408-5R1 | CAGGGAAGAGGCAGTGCATGG | 56.7 | 30 |
pri-miR408-5R2 | GCATCCATGCTCTGCCTGTTC | 54.8 | 45 | |
pri-miR408 3RACE | pri-miR408-3R1 | ACAGGCAGAGCATGGATGCAACTA | 55 | 45 |
pri-miR408-3R2 | GGCTTCACCCATGCACTGC | 54 | ||
pri-miR408 cDNA | pri-miR408-F | TTGTGGAAGGAAACGTGG | 56 | 45 |
pri-miR408-R | TGAACCTGCATTTCTGTCTACAC | |||
pro-MIR408 | pro-MIR408-F | CGAGTGAGATGAATCCGAAACAAAG | 65 | 90 |
pro-MIR408-R | CGAGTGAGATGAATCCGAAACAAAG | |||
DlLAC12 cDNA | DlLAC12-F | ATGGAGCTTCTCAAAAGCAC | 56 | 120 |
DlLAC12-R | CACCAGATTTGCCTATATGCTAA |
顺式作用元件 Cis-acting element | 位点数 Number of site | 正、负链 Positive and negative chain | 矩阵分数 Matrix fraction | 核心序列 Core sequence | 注释 Annotation | |
---|---|---|---|---|---|---|
ABRE | 1 | + | 9 | GCAACGTGTC | 参与脱落酸反应性 Participates in abscisic acid reactivity | |
ARE | 1 | - | 6 | AAACCA | 厌氧诱导 Anaerocabically | |
Box 4 | 2 | +/- | 6 | ATTAAT | 光响应有关保守DNA模块 Light response related to conserved DNA modules | |
CAT-box | 2 | -/+ | 6 | GCCACT | 分生组织表达相关 Meristem expression | |
CGTCA-motif | 1 | + | 5 | CGTCA | 参与MeJA反应 Participate in MeJA responsing | |
GARE-motif | 1 | - | 7 | TCTGTTG | 赤霉素应答 Gibberellin response | |
GT1-motif | 1 | + | 6 | GGTTAA | 光响应元件 Light response element | |
LTR | 2 | +/- | 6 | CCGAAA | 参与低温反应 Participate in low temperature | |
MYB | 4 | +/-/+/- | 6 | CAACAG、CAACCA、TAACCA | MYB结合位点 MYB binding site | |
MYB-like sequence | 1 | - | 6 | TAACCA | ||
MYC | 1 | - | 6 | CATTTG | MYC结合位点MYC binding site | |
Myb-binding site | 2 | + | 6 | CAACAG | ||
Myc | 1 | - | 7 | TCTCTTA | ||
TATC-box | 2 | - | 7 | TATCCCA | 赤霉素反应Gibberellin response | |
TCCC-motif | 1 | - | 7 | TCTCCCT | 光响应Light response | |
TGACG-motif | 1 | - | 5 | TGACG | 参与MeJA反应Participate in MeJA response |
Table 2 The cis-acting element analysis of pro-MIR408
顺式作用元件 Cis-acting element | 位点数 Number of site | 正、负链 Positive and negative chain | 矩阵分数 Matrix fraction | 核心序列 Core sequence | 注释 Annotation | |
---|---|---|---|---|---|---|
ABRE | 1 | + | 9 | GCAACGTGTC | 参与脱落酸反应性 Participates in abscisic acid reactivity | |
ARE | 1 | - | 6 | AAACCA | 厌氧诱导 Anaerocabically | |
Box 4 | 2 | +/- | 6 | ATTAAT | 光响应有关保守DNA模块 Light response related to conserved DNA modules | |
CAT-box | 2 | -/+ | 6 | GCCACT | 分生组织表达相关 Meristem expression | |
CGTCA-motif | 1 | + | 5 | CGTCA | 参与MeJA反应 Participate in MeJA responsing | |
GARE-motif | 1 | - | 7 | TCTGTTG | 赤霉素应答 Gibberellin response | |
GT1-motif | 1 | + | 6 | GGTTAA | 光响应元件 Light response element | |
LTR | 2 | +/- | 6 | CCGAAA | 参与低温反应 Participate in low temperature | |
MYB | 4 | +/-/+/- | 6 | CAACAG、CAACCA、TAACCA | MYB结合位点 MYB binding site | |
MYB-like sequence | 1 | - | 6 | TAACCA | ||
MYC | 1 | - | 6 | CATTTG | MYC结合位点MYC binding site | |
Myb-binding site | 2 | + | 6 | CAACAG | ||
Myc | 1 | - | 7 | TCTCTTA | ||
TATC-box | 2 | - | 7 | TATCCCA | 赤霉素反应Gibberellin response | |
TCCC-motif | 1 | - | 7 | TCTCCCT | 光响应Light response | |
TGACG-motif | 1 | - | 5 | TGACG | 参与MeJA反应Participate in MeJA response |
Fig. 7 Expression patterns of dlo-miR408 during different concentrations of sucrose,Cu2+ and different temperatures “*”represents significant difference at 0.05 level,“**”represents significant difference at 0.01 level. Every treatment sets up three independent biological replicates.
Fig. 8 Different expression patterns of dlo-miR408 and DlLAC12 during different days of GE induction in longan ** represents a very significant difference at P < 0.01 level. Every treatment sets up three independent biological replicates.
Fig. 9 The different expression analysis of dlo-miR408-3p and DlLAC12 during different concentration of ABA and GA3 * represents significant difference at P < 0.05. ** represents a very significant difference at P < 0.01 level.
[1] | Che Jian-mei, Lai Zhong-xiong, Lai Cheng-chun, Guo Zhi-xiong, Liu Hong-zhou, Huang Zhi-hong. 2005. Changes of endogenous phytohormones during the early somatic. Chinese Journal of Tropical, 26 (2):55-61. (in Chinese) |
车建美, 赖钟雄, 赖呈纯, 郭志雄, 刘鸿洲, 黄志宏. 2005. 荔枝体细胞胚胎发生早期的3种内源激素含量变化. 热带作物学报, 26 (2):55-61. | |
[2] |
Chen C J, Liu Q, Zhang Y C, Qu L H, Chen Y Q, Gautheret D. 2011. Genome-wide discovery and analysis of microRNAs and other small RNAs from rice embryogenic callus. RNA Biology, 8 (3):538-547.
doi: 10.4161/rna.8.3.15199 URL |
[3] | Chen Yao-feng, Wang Li-min, Ding Yun-jiao, Li Chun-lian, Guo Yue-xia, Han De-jun, Ren Hui-li, Guo Dong-wei, Xi Ya-jun. 2004. Effect of copper on dedifferention and high frequency reg enera tion of imm ature embryos in wheat(Triticum aestivum L.). Journal of Northwest Sci Tech University of Agriculture and Forestry, 32 (10):1-4. (in Chinese) |
陈耀锋, 王丽敏, 丁云姣, 李春莲, 郭月霞, 韩德俊, 任慧莉, 郭东伟, 奚亚军. 2004. Cu2+对小麦幼胚脱分化和高频再生特性的影响. 西北农林科技大学学报(自然科学版), 32 (10):1-4. | |
[4] | Guo Xiao-rong, Yang Xin-bing, Wang Huai-qin, Ming Fang-lin, She Xu, Cao Xiao-yan. 2016. Clonging and expression analysisof miR408 precursor sequences from Salvia miltiorrhiza. Plant Science Journal, 34 (3):430-438. (in Chinese) |
郭晓荣, 杨新兵, 王怀琴, 明方琳, 佘旭, 曹晓燕. 2016. 丹参miR408基因前体序列的克隆及表达分析. 植物科学学报, 34 (3):430-438. | |
[5] |
Hajyzadeh M, Turktas M, Khawar K M, Unver T. 2015. miR408 overexpression causes increased drought tolerance in chickpea. Gene, 555 (2):186-193.
doi: 10.1016/j.gene.2014.11.002 pmid: 25445265 |
[6] | Jiang A L, Guo Z L, Pan J W, Zhuang Y, Zuo D Q, Hao C, Gao Z X, Xin P Y, Chu J F, Zhong S W, Li L. 2021. The PIF1-MIR408-plantacyanin repression cascade regulates light-dependent seed germination. Plant Cell, 22:koab060. |
[7] | Kong De-yan. 2010. Cloning and primary functional study of drought tolerance relate miRNAs in rice[M. D. Dissertation]. Wuhan: Huazhong Agriculture University. (in Chinese) |
孔德艳. 2010. 水稻抗旱相关miRNAs的克隆及其功能的初步研究[硕士论文]. 武汉: 华中农业大学. | |
[8] | Lai Zhong-xiong, Chen Chun-ling. 2002. Changes of endogenous phytohormones in the process of somatic embryogenesis in longan (Dimocarpus longan Lour.). Chinese Journal of Tropical Crops, 23 (2):41-46. (in Chinese) |
赖钟雄, 陈春玲. 2002. 龙眼体细胞胚胎发生过程中的内源激素变化. 热带作物学报, 23(2):41-46. | |
[9] | Lai Zhong-xiong, Chen Zhen-guang. 1997. Somatic embryogenesis of high frequency from longan embryogenic calli. Journal of Fujian Agricultural University, 26 (3):271-276. (in Chinese) |
赖钟雄, 陈振光. 1997. 龙眼胚性愈伤组织的高频率体细胞胚胎发生. 福建农业大学学报, 26 (3):271-276. | |
[10] | Lai Zhong-xiong, Pan Zhen-liang, Chen Zhen-guang. 1997. Establishment and maintenance of longan embryogenic cell lines. Journal of Fujian Agricultural University, 26 (2):160-167. (in Chinese) |
赖钟雄, 潘振良, 陈振光. 1997. 龙眼胚性细胞系的建立与保持. 福建农业大学学报, 26 (2):160-167. | |
[11] | Lauressergues D, Couzigou J M, Clemente H S, Martinez Y, Dunand C, Bécard G, Combier J P. 2015. Primary transcripts of microRNAs encode,regulatory peptides. Nature, 7545 (520):90-93. |
[12] | Li Li-chao, Sun Hua-yu, Yang Yi-hong, Zhao Han-sheng, Wang Si-ning, Gao Zhi-min. 2017. Cloning and expression analysis of miR398 and miR408 in Phyllostachysedulis. Journal of Tropical and Subtropical Botany, 25 (3):241-249. (in Chinese) |
李利超, 孙化雨, 杨意宏, 赵韩生, 王思宁, 高志民. 2017. 毛竹 miR398和miR408的克隆及其表达分析. 热带亚热带植物学报, 25 (3):241-249. | |
[13] |
Lin Y L, Lai Z X. 2010 Reference gene selection for qPCR analysis during somatic embryogenesis in longan tree. Plant Science, 178 (4):359-365.
doi: 10.1016/j.plantsci.2010.02.005 URL |
[14] | Lin Y L, Lin L X, Lai R L, Liu W H, Chen Y K, Zhang Z H, Xu XuHan, Lai Z X. 2015a. MicroRNA390-directed TAS3 cleavage leads to the production of tasiRNA-ARF3/ 4 during somatic embryogenesis in Dimocarpus longan Lour. Frontiers in Plant Science, 6:1119. |
[15] |
Lin Y L, Lai Z X. 2013. Evaluation of suitable reference genes for normalization of microRNA expression by real-time reverse transcription PCR analysis during longan somatic embryogenesis. Plant Physiology and Biochemistry, 66:20-25.
doi: 10.1016/j.plaphy.2013.02.002 pmid: 23454294 |
[16] | Lin Y L, Tian Q L, Lin L X, Lai R L, Yang M M, Zhang D M, Chen Y K, Zhang Z H, Lai Z X. 2015b. Endogenous target mimics down-regulate miR160 mediation of ARF10,-16,and -17 cleavage during somatic embryogenesis in Dimocarpus longan Lour. Frontiers in Plant Science, 5 (6):956. |
[17] | Lin Yu-ling. 2011. Studies on cloning,Expression and regulation of SOD gene family during somatic embryogenesis in Dimocarpus longan Lour. [Ph. D. Dissertation]. Fuzhou:Fujian Agriculture and Forestry University. (in Chinese) |
林玉玲. 2011. 龙眼体胚发生过程中SOD基因家族的克隆及表达调控研究[博士论文]. 福州: 福建农林大学. | |
[18] | Liu Hua-ying. 2003. Studies on the characters in cytohistology and physiology and bioehemistry of somatic embryogenesis in Citrus. [Ph. D. Dissertation]. Changsha:Hunan Agriculture University. (in Chinese) |
刘华英. 2003. 柑橘体细胞胚发生的细胞学及生理生化特性研究[博士论文]. 长沙: 湖南农业大学. | |
[19] | Liu Wei-hua, Ni Shan-shan, Lin Zheng-chun, Lin Yu-ling, Lai Zhong-xiong. 2017. Evolution and molecular characteristics of the miR408 family in plants. Chin J Appl Environ Biol, 23 (6):1042-1051. (in Chinese) |
刘炜婳, 倪珊珊, 林争春, 林玉玲, 赖钟雄. 2017. 植物miR408家族的进化与分子特性. 应用与环境生物学报, 23 (6):1042-1051. | |
[20] | Liu Yan-ying. 2020. Study on the response mechanism of miR408 to low temperature stress in banana tissue culture seedings[M. D. Dissertation]. Fuzhou: Fujian Agriculture University. (in Chinese) |
刘彦英. 2020. miR408在香蕉组培苗中低温胁迫下响应机制的研究[硕士论文]. 福州: 福建农林大学. | |
[21] | Liu Yanying, Ni Shanshan, Xiang Leilei, Chen Yukun, Lai Zhongxiong. 2020. Genome-wide identification of the laccase gene family and its expression analysis under low temperature stress in Musa accuminata. Acta Horticulturae Sinica, 47 (5):837-852. (in Chinese) |
刘彦英, 倪珊珊, 项蕾蕾, 陈裕坤, 赖钟雄. 2020. 香蕉漆酶基因家族鉴定及低温胁迫下的表达分析. 园艺学报, 47 (5):837-852. | |
[22] | Ma C, Burd S, Lers A. 2015. miR408 is involved in abiotic stress responses in Arabidopsis. Plant Journal, 84:169-187. |
[23] | Ma Sheng-yun. 2012. Expression pattern and function of miR408 in seed development of rice(Oryza sativa)[M. D. Dissertation]. Hangzhou: Zhejiang University. (in Chinese) |
马圣运. 2012. Os-miR408的表达模式及其在水稻种子发育中的功能[硕士论文]. 杭州: 浙江大学. | |
[24] | Maunoury N, Vaucheret H. 2011. AGO1 and AGO 2 act redundantly in miR408-mediated plantacyanin regulation. PLoS ONE, 12 (6):e28729. |
[25] |
Peng D L, Chen X G, Yin Y P, Lu K L, Yang W B, Tang Y H, Wang Z L. 2014. Lodging resistance of winter wheat(Triticum aestivum L.):Lignin accumulation and its related enzymes activitiesdue to the application of paclobutrazol or gibberellin acid. Field Crops Research, 157:1-7.
doi: 10.1016/j.fcr.2013.11.015 URL |
[26] |
Ren L G, Tang G L. 2012. Identification of sucrose-responsive microRNAs reveals sucrose-regulated copper accumulations in an SPL7-dependent and independent manner in Arabidopsis thaliana. Plant Science, 187:59-68.
doi: 10.1016/j.plantsci.2012.01.014 URL |
[27] |
Song Z Q, Zhang L F, Wang Y L, Li H X, Zhao H J, Zhang H Y. 2018. Constitutive expression of miR408 improves biomass and seed yield in Arabidopsis. Frontiers in Plant Science, 8:2114.
doi: 10.3389/fpls.2017.02114 URL |
[28] |
Soulanki M, Sinha A, Shuklal I. 2019. The miR408 expression in scutellum derived somatic embryos of Oryza sativa L. ssp. indica varieties:media and regenerating embryos. Plant Cell,Tissue and Organ Culture, 138:53-66.
doi: 10.1007/s11240-019-01602-w URL |
[29] |
Sun M Z, Yang J K, Cai X X, Shen Y, Cui N, Zhu Y M, Jia B W, Sun X L. 2018. The opposite roles of OsmiR408 in cold and drought stress responses in Oryza sativa. Mol Breeding, 38:120.
doi: 10.1007/s11032-018-0877-z URL |
[30] |
Sunkar R, Zhu J K. 2004. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 16:2001-2019.
doi: 10.1105/tpc.104.022830 URL |
[31] | Townsley B T, Sinha N R, Kang J L. 2013. KNOX1 genes regulate lignin deposition and composition in monocots and dicots. Frontiers in plant Science, 121 (4):1-11. |
[32] |
Trindade I, Capita C, Dalmay T, Fevereiro M P,dos Santos D M. 2010. miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta, 231:705-716.
doi: 10.1007/s00425-009-1078-0 pmid: 20012085 |
[33] | Xu X P, Chen X H, Chen Y, Zhang Q L, Su L Y, Chen X, Chen Y K, Zhang Z H, Lin Y L, Lai Z X. 2020. Genome-wide identification of miRNAs and their targets during early somatic embryogenesis in Dimocarpus longan Lour. Scientific Report, 1 (10):4626. |
[34] |
Yadav S K, Kumar V V S, Verma K, Yadav P, Saroha A, Wankhede D P, Chaudhary B, Chinnusamy V. 2020. Genome-wide identification and characterization of ABA receptor PYL gene family in rice. BMC Genomics, 21:676.
doi: 10.1186/s12864-020-07083-y URL |
[35] | Yang X F, Zhao X L, Dai Z Y, Ma F L, Miao X X, Shi Z Y. 2021. OsmiR396/growth regulating factor modulate rice grain size through direct regulation of embryo-specific miR408. Plant Physiology,1-15. |
[36] |
Zhang H Y, Li L. 2013. SQUAMOSA promoter binding protein-like7 regulated microRNA408 is required for vegetative development in Arabidopsis. Plant Journal, 74:98-109.
doi: 10.1111/tpj.12107 URL |
[37] | Zhang H Y, Zhao X, Li J G, Cai H Q, Deng X W, Li L. 2014. MicroRNA408 is critical for the HY5-SPL7 gene network that mediates the coordinated response to light and copperPlant Cell, 26:4933-4953. |
[38] | Zhang J H, Zhang S G, Han S Y, Li X X, Tong Z K, Qi L W. 2013. Deciphering small noncoding RNAs during the transition from dormant embryo to germinated embryo in larches(Larix leptolepis). PLoS ONE, 8 (12):81452. |
[39] |
Zhang J P, Yu Y, Feng Y Z, Zhou Y F, Zhang F, Yang Y W, Lei M Q, Zhang Y C, Chen Y Q. 2017. MiR408 regulates grain yield and photosynthesis via a phytocyanin protein. Plant Physiology, 175:1175-1185.
doi: 10.1104/pp.17.01169 URL |
[40] | Zhang Jin-ping, Li Quan-feng, Zhang Yu-chan, Yu Yang, Feng Yan-zhao, Chen Yue-qin. 2019. The application of miR408 gene and UCL in cultivating high-yield rice. China:CN105112422B. 2019-11-08. (in Chinese) |
张金平, 李权峰, 张玉婵, 于洋, 冯彦钊, 陈月琴. 2019. 基因miR408和UCL在培育高产水稻中的应用. 中国:CN105112422B. 2019-11-08. | |
[41] |
Zhao X Y, Hong P, Wu J Y, Chen X B, Ye X G, Pan Y Y, Wang J, Zhang X S. 2016. The tae-miR408-mediated control of TaTOC1 genes transcription is required for the regulation of heading time in wheat. Plant Physiology, 170:1578-1594.
doi: 10.1104/pp.15.01216 URL |
[1] | DENG Chaojun, XU Qizhi, JIANG Jimou, HU Wenshun, ZHENG Shaoquan, CHEN Xiuping, JIANG Fan, XU Jiahui, SU Wenbing, ZHANG Yaling, and HUANG Jingfeng. A New Longan Cultivar‘Chunxiang’with Rich Aroma [J]. Acta Horticulturae Sinica, 2022, 49(S2): 75-76. |
[2] | DENG Chaojun, CHEN Xiuping, XU Qizhi, JIANG Jimou, ZHENG Shaoquan, HU Wenshun, JIANG Fan, XU Jiahui, SU Wenbing, ZHANG Yaling, and HUANG Jingfeng. A New Longan Cultivar‘Fuxiang’with Rich Aroma [J]. Acta Horticulturae Sinica, 2022, 49(S2): 77-78. |
[3] | JIA Xin, ZENG Zhen, CHEN Yue, FENG Hui, LÜ Yingmin, ZHAO Shiwei. Cloning and Expression Analysis of RcDREB2A Gene in Rosa chinensis‘Old Blush’ [J]. Acta Horticulturae Sinica, 2022, 49(9): 1945-1956. |
[4] | MA Weifeng, LI Yanmei, MA Zonghuan, CHEN Baihong, MAO Juan. Identification of Apple POD Gene Family and Functional Analysis of MdPOD15 Gene [J]. Acta Horticulturae Sinica, 2022, 49(6): 1181-1199. |
[5] | XIAO Xuechen, LIU Mengyu, JIANG Mengqi, CHEN Yan, XUE Xiaodong, ZHOU Chengzhe, WU Xingjian, WU Junnan, GUO Yinsheng, YEH Kaiwen, LAI Zhongxiong, LIN Yuling. Whole-genome Identification and Expression Analysis of SNAT,ASMT and COMT Families of Melatonin Synthesis Pathway in Dimocarpus longan [J]. Acta Horticulturae Sinica, 2022, 49(5): 1031-1046. |
[6] | LIU Mengyu, JIANG Mengqi, CHEN Yan, ZHANG Shuting, XUE Xiaodong, XIAO Xuechen, LAI Zhongxiong, LIN Yuling. Genome-wide Identification and Expression Analysis of GDSL Esterase/Lipase Genes in Dimocarpus longan [J]. Acta Horticulturae Sinica, 2022, 49(3): 597-612. |
[7] | ZHOU Zhiming, YANG Jiabao, ZHANG Cheng, ZENG Linglu, MENG Wanqiu, SUN Li. Genome-wide Identification and Expression Analyses of Long-chain Acyl-CoA Synthetases Under Abiotic Stresses in Helianthus annuus [J]. Acta Horticulturae Sinica, 2022, 49(2): 352-364. |
[8] | SHEN Xu, CHEN Xiaohui, ZHANG Jing, CHEN Rongzhu, XU Xiaoping, LI Xiaofei, JIANG Mengqi, LIU Pudong, NI Shanshan, LIN Yuling, LAI Zhongxiong. Evolutionary Dynamics Investigation and the Expression Analysis of Chromatin Remodeling Factor Snf2 Gene Family During Early Somatic Embryogenesis in Dimocarpus longan [J]. Acta Horticulturae Sinica, 2022, 49(1): 41-61. |
[9] | XIE Siyi, ZHOU Chengzhe, ZHU Chen, ZHAN Dongmei, CHEN Lan, WU Zuchun, LAI Zhongxiong, GUO Yuqiong. Genome-wide Identification and Expression Analysis of CsTIFY Transcription Factor Family Under Abiotic Stress and Hormone Treatments in Camellia sinensis [J]. Acta Horticulturae Sinica, 2022, 49(1): 100-116. |
[10] | LIANG Zhile, WANG Kuanhong, YANG Jing, ZHU Biao, ZHU Zhujun. The Importance of Glucosinolates on Plant Response to Abiotic Stress in Brassicaceae Family [J]. Acta Horticulturae Sinica, 2022, 49(1): 200-220. |
[11] | ZHANG Chunyu, XU Xiaoqiong, XU Xiaoping, ZHAO Pengcheng, SHEN Xu, Munir Nigarish, ZHANG Zihao, LIN Yuling, Chen Zhenguang, LAI Zhongxiong. Genome-wide Identification of the SKP1-like Family and Analysis of Their Expression During Early Somatic Embryogenesis in Longan [J]. Acta Horticulturae Sinica, 2021, 48(9): 1665-1679. |
[12] | YANG Weihai, ZENG Lizhen, XIAO Qiusheng, SHI Shengyou. Changes of Fruit Abscission and Carbohydrate,ABA and Related Genes Expression in the Pericarp and Fruit Abscission Zone of Longan Under Starvation Stress [J]. Acta Horticulturae Sinica, 2021, 48(8): 1457-1469. |
[13] | YANG Tianchen, CHEN Xiaotong, LÜ Ke, ZHANG Di. Expression Pattern and Regulation Mechanism of ApSK3 Dehydrin (Agapanthus praecox)Response to Abiotic Stress and Hormone Signals [J]. Acta Horticulturae Sinica, 2021, 48(8): 1565-1578. |
[14] | MA Junjie, SONG Lina, LI Le, MA Xiaochun, JIN Lei, XU Weirong. VaCBL6 from Vitis amurensis Involved in Abiotic Stress Response and ABA-mediated Pathway [J]. Acta Horticulturae Sinica, 2021, 48(6): 1079-1093. |
[15] | SU Liyao, WANG Peiyu, JIANG Mengqi, HUANG Shuqi, XUE Xiaodong, LIU Mengyu, XIAO Xuechen, LAI Chunwang, ZHANG Zihao, CHEN Yukun, LAI Zhongxiong, LIN Yuling. The Activity Verification of pri-miR319a Encode Regulatory Peptide of Dimocarpus longan [J]. Acta Horticulturae Sinica, 2021, 48(5): 908-920. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd