Acta Horticulturae Sinica ›› 2023, Vol. 50 ›› Issue (6): 1284-1294.doi: 10.16420/j.issn.0513-353x.2022-0330
• Genetic & Breeding·Germplasm Resources·Molecular Biology • Previous Articles Next Articles
DU Yanxia, WANG Yiguang, XIAO Zheng, DONG Bin, FANG Qiu, ZHONG Shiwei, YANG Liyuan, ZHAO Hongbo()
Received:
2022-07-13
Revised:
2023-02-06
Online:
2023-06-25
Published:
2023-06-27
Contact:
* (E-mail:CLC Number:
DU Yanxia, WANG Yiguang, XIAO Zheng, DONG Bin, FANG Qiu, ZHONG Shiwei, YANG Liyuan, ZHAO Hongbo. Ectopic Overexpression of OfNCED3 Regulates the Synthesis of Carotenoids and Chlorophylls in Transgenic Tobacco Leaves[J]. Acta Horticulturae Sinica, 2023, 50(6): 1284-1294.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2022-0330
基因 Gene | 正向引物(5′-3′) Forward primer | 反向引物(5′-3′) Reverse primer |
---|---|---|
OfNCED3 | TTCAAAGCCGCAATGGAATTTTATT | GATAGATTCTGGGATTTTCCCTGTC |
OfACT | CCCAAGGCAAACAGAGAAAAAAT | ACCCCATCACCAGAATCAAGAA |
Nt26S-RNA | GAAGAAGGTCCCAAGGGTTC | TCTCCCTTTAACACCAACGG |
Table 1 Specific primers for real-time quantitative PCR
基因 Gene | 正向引物(5′-3′) Forward primer | 反向引物(5′-3′) Reverse primer |
---|---|---|
OfNCED3 | TTCAAAGCCGCAATGGAATTTTATT | GATAGATTCTGGGATTTTCCCTGTC |
OfACT | CCCAAGGCAAACAGAGAAAAAAT | ACCCCATCACCAGAATCAAGAA |
Nt26S-RNA | GAAGAAGGTCCCAAGGGTTC | TCTCCCTTTAACACCAACGG |
Fig. 1 Multiple alignment of amino acid sequences of OfNCED3 and NCEDs in other plants Of:Osmanthus fragrans;Sl:Solanum lycopersicum;At:Arabidopsis thaliana;Nt:Nicotiana tabacum;Cs:Citrus sinensis. The NCED motifs of MEAHPKXDP and HDFAITK are boxed. Four conserved histidines required for activity are marked by ▼.
Fig. 3 Expression level of OfNCED3 gene in flower opening process of Osmanthus fragrans‘Yanhong Gui’and‘Yu Linglong’ S1:Bead stage;S2:Apical shell stage;S3:Boll stem stage;S4:Initial flowering stage. ** indicate statistically significant difference (P < 0.01); *** indicate extremely significant difference (P < 0.001).
Fig. 5 Effects of overexpression of OfNCED3 gene on chlorophyll(A), carotenoid(B)and ABA(C)content in tobacco leaves Different lowercase letters indicate significant differences(P < 0.05). The same below.
基因 gene | WT | OE-1 | OE-2 | 基因 gene | WT | OE-1 | OE-2 | 基因 gene | WT | OE-1 | OE-2 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NtPSY | 1 | 2.12 | 2.70 | NtLCYB2 | 1 | 2.55 | 1.41 | NtCCD4-b | 1 | 15.21 | 5.65 | ||
NtPDS | 1 | 4.06 | 3.51 | NtVDE | 1 | 1.66 | 2.04 | NtCCD4-c | 1 | 5.83 | 5.98 | ||
NtZDS | 1 | 4.20 | 3.27 | NtNXC | 1 | 0.92 | 2.42 | NtNCED3-a | 1 | 3.91 | 11.29 | ||
NtCRTISO | 1 | 5.00 | 5.55 | NtCCD1-a | 1 | 0.65 | 7.16 | NtNCED3-b | 1 | 26.54 | 21.82 | ||
NtLCYE | 1 | 5.79 | 3.31 | NtCCD1-b | 1 | 1.17 | 0.52 | NtNCED5 | 1 | 3.03 | 2.16 | ||
NtLCYB1 | 1 | 1.02 | 2.02 | NtCCD4-a | 1 | 2.49 | 4.95 |
Table 2 Up-regulation of relative expression levels of carotenoid biosynthetic genes in leaves of the control and transgenic lines
基因 gene | WT | OE-1 | OE-2 | 基因 gene | WT | OE-1 | OE-2 | 基因 gene | WT | OE-1 | OE-2 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NtPSY | 1 | 2.12 | 2.70 | NtLCYB2 | 1 | 2.55 | 1.41 | NtCCD4-b | 1 | 15.21 | 5.65 | ||
NtPDS | 1 | 4.06 | 3.51 | NtVDE | 1 | 1.66 | 2.04 | NtCCD4-c | 1 | 5.83 | 5.98 | ||
NtZDS | 1 | 4.20 | 3.27 | NtNXC | 1 | 0.92 | 2.42 | NtNCED3-a | 1 | 3.91 | 11.29 | ||
NtCRTISO | 1 | 5.00 | 5.55 | NtCCD1-a | 1 | 0.65 | 7.16 | NtNCED3-b | 1 | 26.54 | 21.82 | ||
NtLCYE | 1 | 5.79 | 3.31 | NtCCD1-b | 1 | 1.17 | 0.52 | NtNCED5 | 1 | 3.03 | 2.16 | ||
NtLCYB1 | 1 | 1.02 | 2.02 | NtCCD4-a | 1 | 2.49 | 4.95 |
[1] |
Ahrazem O, Rubio-Moraga A, Trapero A, Gómez-Gómez L. 2012. Developmental and stress regulation of gene expression for a 9-cis-epoxycarotenoid dioxygenase,CstNCED,isolated from Crocus sativus stigmas. Journal of Experimental Botany, 63 (2):681-694.
doi: 10.1093/jxb/err293 URL |
[2] |
Burbidge A, Grieve T M, Jackson A, Thompson A, McCarty D R, Taylor I B. 1999. Characterization of the ABA‐deficient tomato mutant notabilis and its relationship with maize Vp14. The Plant Journal, 17 (4):427-431.
doi: 10.1046/j.1365-313X.1999.00386.x URL |
[3] | Chen Yuan-ping, Yang Wen-yu. 2005. Determination of GA3,IAA,ABA and ZT in dormant buds of Allium ovalifolium by HPLC. Journal of Sichuan Agricultural University, 23 (4):498-500. (in Chinese) |
陈远平, 杨文钰. 2005. 卵叶韭休眠芽中GA3、IAA、ABA和ZT的高效液相色谱法测定. 四川农业大学学报, 23 (4):498-500. | |
[4] |
Frank H A, Brudvig G W. 2004. Redox functions of carotenoids in photosynthesis. Biochemistry, 43 (27):8607-8615.
pmid: 15236568 |
[5] | Fu C C, Han Y C, Fan Z Q, Chen J Y, Chen W X, Lu W J, Kuang J F. 2016. The papaya transcription factor CpNAC 1 modulates carotenoid biosynthesis through activating phytoene desaturase genes CpPDS2/4 during fruit ripening. Journal of Agricultural & Food Chemistry, 64 (27):5454-5463. |
[6] | Fu Jian-xin, Zhang Chao, Wang Yi-guang, Zhao Hong-bo. 2016. Reference gene selection for quantitative real-time polymerase chain reaction(qRT-PCR) normalization in the gene expression of sweet osmanthus tissues. Journal of Zhejiang A & F University, 33 (5):727-733. (in Chinese) |
付建新, 张超, 王艺光, 赵宏波. 2016. 桂花组织基因表达中荧光定量PCR内参基因的筛选. 浙江农林大学学报, 33 (5):727-733. | |
[7] |
Gao S, Gao J, Zhu X Y, Song Y, Li Z P, Ren G D, Zhou X, Kuai B. 2016. ABF2,ABF3,and ABF 4 promote ABA-mediated chlorophyll degradation and leaf senescence by transcriptional activation of chlorophyll catabolic genes and senescence-associated genes in Arabidopsis. Molecular Plant, 9 (9):1272-1285.
doi: 10.1016/j.molp.2016.06.006 URL |
[8] | Han Y J, Wang X H, Chen W C, Dong M F, Yuan W J, Liu X, Shang F. 2013. Differential expression of carotenoid-related genes determines diversified carotenoid coloration in flower petal of Osmanthus fragrans. Tree Genetics & Genomes, 10 (2):329-338. |
[9] |
Hermanns A S, Zhou X S, Xu Q, Tadmor Y, Li L. 2020. Carotenoid pigment accumulation in horticultural plants. Horticultural Plant Journal, 6 (6):343-360.
doi: 10.1016/j.hpj.2020.10.002 URL |
[10] | Hou Dan. 2014. Analysis of floral scent and pigment cons tituents and thereflectance to temperature fluctuation in Osmanthus fragrans[M. D. Dissertation]. Hangzhou: Zhejiang A & F University. (in Chinese) |
侯丹. 2014. 桂花主要品种花香和花色及其对温度变化的响应[硕士论文]. 杭州: 浙江农林大学. | |
[11] |
Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K. 2001. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase,a key enzyme in abscisic acid biosynthesis in Arabidopsis. The Plant Journal:for Cell and Molecular Biology, 27 (4):325-333.
doi: 10.1046/j.1365-313x.2001.01096.x URL |
[12] |
Jia L D, Wang J S, Wang R, Duan M Z, Qiao C L, Chen X, Ma G Q, Zhou X T, Zhu M C, Jing F Y. 2021. Comparative transcriptomic and metabolomic analyses of carotenoid biosynthesis reveal the basis of white petal color in Brassica napus. Planta, 253 (1):1-14.
doi: 10.1007/s00425-020-03501-3 |
[13] |
Lu S W, Zhang Y, Zhu K J, Yang W, Ye J L, Chai L J, Xu Q, Deng X X. 2018. The citrus transcription factor CsMADS 6 modulates carotenoid metabolism by directly regulating carotenogenic genes. Plant Physiology, 176 (4):2657-2676.
doi: 10.1104/pp.17.01830 URL |
[14] |
Lu S W, Ye J L, Zhu K J, Zhang Y, Zhang M W, Xu Q, Deng X X. 2021. A fruit ripening-associated transcription factor CsMADS 5 positively regulates carotenoid biosynthesis in citrus. Journal of Experimental Botany, 72 (8):3028-3043.
doi: 10.1093/jxb/erab045 URL |
[15] |
Moran R. 1982. Formulae for determination of chlorophyllous pigments extracted with N,N-dimethylformamide. Plant Physiology, 69 (6):1376-1381.
doi: 10.1104/pp.69.6.1376 pmid: 16662407 |
[16] |
Nambara E, Marion-Poll A. 2005. Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol, 56 (1):165-185.
doi: 10.1146/arplant.2005.56.issue-1 URL |
[17] |
Ning G G, Xiao X, Lv H R, Li X, Zuo Y, Bao M Z. 2012. Shortening tobacco life cycle accelerates functional gene identification in genomic research. Plant Biology, 14 (6):934-943.
doi: 10.1111/j.1438-8677.2012.00571.x pmid: 23107371 |
[18] |
Schwartz S H, Tan B C, Gage D A, Zeevaart J A D, McCarty D R. 1997. Specific oxidative cleavage of carotenoids by VP 14 of maize. Science, 276 (5320):1872-1874.
doi: 10.1126/science.276.5320.1872 pmid: 9188535 |
[19] |
Shi Y M, Guo J G, Zhang W, Jin L F, Liu P P, Chen X, Li F, Wei P, Li Z F, Li W Z. 2015. Cloning of the lycopene β-cyclase gene in Nicotiana tabacum and its overexpression confers salt and drought tolerance. International Journal of Molecular Sciences, 16 (12):30438-30457.
doi: 10.3390/ijms161226243 URL |
[20] |
Simpson K, Fuentes P, Quiroz-Iturra L F, Flores-Ortiz C, Contreras R, Handford M, Stange C. 2018. Unraveling the induction of phytoene synthase 2 expression by salt stress and abscisic acid in Daucus carota. Journal of Experimental Botany, 69 (16):4113-4126.
doi: 10.1093/jxb/ery207 pmid: 29860511 |
[21] |
Sun L, Yuan B, Zhang M, Wang L, Cui M M, Wang Q, Leng P. 2012. Fruit-specific RNAi mediated suppression of SlNCED1 increases both lycopene and β-carotene contents in tomato fruit. Journal of Experimental Botany, 63 (8):3097-3108.
doi: 10.1093/jxb/ers026 URL |
[22] |
Sun T H, Yuan H, Cao H B, Yazdani M, Tadmor Y, Li L. 2018. Carotenoid metabolism in plants: the role of plastids. Molecular Plant, 11 (1):58-74.
doi: S1674-2052(17)30273-3 pmid: 28958604 |
[23] | Wang Hua, Pan Qi, Ju Meng, Wang Zi-yu, Wang Wang-wei, Wang Rui-sheng, Zhu Li-wu. 2019. Cloning and expression of PbpNCED3 gene from 'Huangguan' pear. Journal of South China Agricultural University, 40 (3):82-88. (in Chinese) |
王华, 潘祺, 鞠萌, 汪紫萸, 汪王微, 王瑞生, 朱立武. 2019. 黄冠梨PbpNCED3基因的克隆与表达. 华南农业大学学报, 40 (3):82-88. | |
[24] | Wang Xiao-qing, Zhang Chao, Wang Yan-jie, Dong Li. 2012. lsolation and expression of 9-cis epoxycarotenoid dioxygenase gene in tree peony. Acta Horticulturae Sinica, 39 (10):2033-2044. (in Chinese) |
王晓庆, 张超, 王彦杰, 董丽. 2012. 牡丹NCED基因的克隆和表达分析. 园艺学报, 39 (10):2033-2044. | |
[25] |
Wang Y G, Zhang C, Dong B, Fu J X, Hu S Q, Zhao H B. 2018. Carotenoid accumulation and its contribution to flower coloration of Osmanthus fragrans. Frontiers in Plant Science, 9:1499-1515.
doi: 10.3389/fpls.2018.01499 URL |
[26] | Xiang Qi-bai, Liu Yu-lian. 2008. An illustrated monograph of the Sweet Osmanthus variety in China. Hangzhou: Zhejiang Science & Technology Press:86-88. (in Chinese) |
向其柏, 刘玉莲. 2008. 中国桂花品种图志. 杭州: 浙江科学技术出版社:86-88. | |
[27] |
Yang M M, Zhu S B, Jiao B Z, Duan M, Meng Q W, Ma N, Lv W. 2020. SlSGRL,a tomato SGR-like protein,promotes chlorophyll degradation downstream of the ABA signaling pathway. Plant Physiology and Biochemistry, 157:316-327.
doi: 10.1016/j.plaphy.2020.10.028 URL |
[28] |
Yuan H, Zhang J X, Nageswaran D, Li L. 2015. Carotenoid metabolism and regulation in horticultural crops. Horticulture Research, 2 (1):15036-15046.
doi: 10.1038/hortres.2015.36 |
[29] | Zeng Xiang-ling. 2016. Research of TPS and CCD function analysis and their influence on petal color and scent in Osmanthus fragrans[Ph. D. Dissertation]. Wuhan: Huazhong Agricultural University. (in Chinese) |
曾祥玲. 2016. 桂花TPS和CCD功能分析及其对花瓣色香形成的影响研究[博士论文]. 武汉: 华中农业大学. | |
[30] | Zhang Chao, Luo Yun, Wang Yi-guang, Fu Jian-xin, Zhao Hong-bo. 2016. Cloning and expression analysis of 15-cis-ζ-carotene lsomerase gene(Z-ISO)in Osmanthus fragrans. Journal of Agricultural Biotechnology, 24 (10):1512-1521. (in Chinese) |
张超, 罗云, 王艺光, 付建新, 赵宏波. 2016. 桂花15-顺式-ζ-胡萝卜素异构酶基因(Z-ISO)的克隆及表达分析. 农业生物技术学报, 24 (10):1512-1521. | |
[31] | Zhang C, Wang Y G, Fu J X, Bao Z Y, Zhao H B. 2016a. Transcriptomic analysis and carotenogenic gene expression related to petal coloration in Osmanthus fragrans‘Yanhong Gui’. Trees-Structure and Function, 30 (4):1-17. |
[32] |
Zhang X S, Pei J J, Zhao L G, Tang F, Feng X Y, Xie J C. 2016b. Overexpression and characterization of CCD4 from Osmanthus fragrans and β-ionone biosynthesis from β-carotene in vitro. Journal of Molecular Catalysis B:Enzymatic, 134:105-114.
doi: 10.1016/j.molcatb.2016.10.003 URL |
[33] |
Zhou Q Q, Li Q C, Li P, Zhang S T, Liu C, Jin J J, Cao P J, Yang Y X. 2019. Carotenoid cleavage dioxygenases: identification, expression, and evolutionary analysis of this gene family in tobacco. International Journal of Molecular Sciences, 20 (22):5796-5819.
doi: 10.3390/ijms20225796 URL |
[34] |
Zhu K J, Sun Q, Chen H Y, Mei X H, Lu S W, Ye J L, Chai L J, Xu Q, Deng X X. 2021. Ethylene activation of carotenoid biosynthesis by a novel transcription factor CsERF061. Journal of Experimental Botany, 72 (8):3137-3154.
doi: 10.1093/jxb/erab047 pmid: 33543285 |
[1] | XIAO Xiang, ZHOU Chujiang, JIN Shuwan, SHI Liyu, YANG Zhenfeng, CAO Shifeng, CHEN Wei. Mechanism of PpMADS2 and PpMADS3 Synergistically Regulating Carotenoids Accumulation in Peach Fruit [J]. Acta Horticulturae Sinica, 2023, 50(6): 1173-1186. |
[2] | LI Shupei, ZHANG Ying, SHU Jinshuai, CHEN Yuhui, YANG Jinkun, CHEN Lulu, LIU Fuzhong. The Characteristics and Chloroplast Ultrastructure of Yellow Leaf Mutant chl234 in Eggplant [J]. Acta Horticulturae Sinica, 2023, 50(5): 1000-1008. |
[3] | RAO Zhixiong, AN Yuyan, CAO Rongxiang, TANG Quan, WANG Liangju. Studies on Mechanisms of ALA Alleviating ABA Inhibiting Root Growth of Strawberry [J]. Acta Horticulturae Sinica, 2023, 50(3): 461-474. |
[4] | YUAN Xin, XU Yunhe, ZHANG Yupei, SHAN Nan, CHEN Chuying, WAN Chunpeng, KAI Wenbin, ZHAI Xiawan, CHEN Jinyin, GAN Zengyu. Studies on AcAREB1 Regulating the Expression of AcGH3.1 During Postharvest Ripening of Kiwifruit [J]. Acta Horticulturae Sinica, 2023, 50(1): 53-64. |
[5] | SUN Simiao, WANG Kun, GAO Yuan, WANG Dajiang, and LI Lianwen. A New Ornamental Crabapple Cultivar‘Zichen’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 267-268. |
[6] | TAN Shanshan, QIU Liang, DUAN Aoqi, SHU Sheng, ZENG Xiaoping, ZHU Weimin, JIA Min, YAN Jun, LIU Yanhua, LIU Hui, XIONG Aisheng. Effects of Different Concentrations of Sodium Hypochlorite on Seeds Germination and Seedlings Quality of Celery [J]. Acta Horticulturae Sinica, 2022, 49(9): 1907-1921. |
[7] | ZHANG Lugang, LU Qianqian, HE Qiong, XUE Yihua, MA Xiaomin, MA Shuai, NIE Shanshan, YANG Wenjing. Creation of Novel Germplasm of Purple-orange Heading Chinese Cabbage [J]. Acta Horticulturae Sinica, 2022, 49(7): 1582-1588. |
[8] | HE Jingjuan, FAN Yanping. Progress in Composition and Metabolic Regulation of Carotenoids Related to Floral Color [J]. Acta Horticulturae Sinica, 2022, 49(5): 1162-1172. |
[9] | LI Dongze, LUO Fangliang, FENG Yuanyuan, ZHANG Lu, HU Shaoqing, CUI Qi. A New Osmanthus fragrans Cultivar‘Luocai 16’ [J]. Acta Horticulturae Sinica, 2022, 49(5): 1179-1180. |
[10] | CHEN Sijia, WANG Huan, LI Ruirui, WANG Zhuoyi, LUO Jing, WANG Caiyun. Characterization of CmMYC2 in Formation of Green Color in Ray Florets of Chrysanthemum [J]. Acta Horticulturae Sinica, 2022, 49(11): 2377-2387. |
[11] | LI Yueya, HE Dong, CHEN Jiancun, LI Bo, BAI Meng, LUO Le, Zhang Qixiang. Identification and Analysis of the Type of Leaf Variegation of Primulina pungentisepala [J]. Acta Horticulturae Sinica, 2022, 49(11): 2388-2394. |
[12] | ZHU Linlin, ZHOU Wanfei, NING Xuan, ZHU Jun, XI Wan, ZENG Xumei, XIONG Kangshun, WANG Caiyun, LUO Jing, ZHENG Riru. Analysis of Free Aromatic Components of Different Osmanthus fragrans Cultivars [J]. Acta Horticulturae Sinica, 2022, 49(11): 2395-2406. |
[13] | XIE Siyi, ZHOU Chengzhe, ZHU Chen, ZHAN Dongmei, CHEN Lan, WU Zuchun, LAI Zhongxiong, GUO Yuqiong. Genome-wide Identification and Expression Analysis of CsTIFY Transcription Factor Family Under Abiotic Stress and Hormone Treatments in Camellia sinensis [J]. Acta Horticulturae Sinica, 2022, 49(1): 100-116. |
[14] | A New Chaenomeles Crabapple Cultivar‘Caiyu’. A New Chaenomeles Crabapple Cultivar‘Caiyu’ [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2975-2976. |
[15] | ZHOU Jinchuan, GUAN Qide, GUAN Xueying, ZHAO Yuhan, ZHANG Haijuan, and WANG Xiangbo. A New Chaenomeles Crabapple Cultivar‘Zui Xishi’ [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2977-2978. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd