Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (12): 2559-2578.doi: 10.16420/j.issn.0513-353x.2021-0531
• Reviews • Previous Articles Next Articles
LU Chenfei, GAO Yuexia, HUANG He, DAI Silan()
Received:
2022-01-05
Revised:
2022-05-09
Online:
2022-12-25
Published:
2023-01-02
Contact:
DAI Silan
E-mail:silandai@sina.com
CLC Number:
LU Chenfei, GAO Yuexia, HUANG He, DAI Silan. Carotenoid Metabolism and Regulation in Plants[J]. Acta Horticulturae Sinica, 2022, 49(12): 2559-2578.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-0531
Fig. 1 Pathways for carotenoid metabolism and the main flux controlling steps(Modified from Sun & Li,2020) DXS:1-Deoxy-D-xylulose 5-phosphate synthase;GGPPS:Geranylgeranyl pyrophosphate synthase;PSY:Phytoene synthase;PDS:Phytoene desaturase;Z-ISO:ζ-Carotene isomerase;ZDS:ζ-Carotene desaturase;CRTISO:Carotene isomerase;LCYB:Lycopene β-cyclase;LCYE:Lycopene ε-cyclase;BCH:β-Carotene hydrolase;CYP97A:Cytochrome P450 carotene β-hydroxylase;CYP97C:Cytochrome P450 carotene ε-hydroxylase;VDE:Violaxanthin de-epoxidase;ZEP:Zeaxanthin epoxidase;NXS:Neoxanthin synthase;CCD:Carotenoid cleavage dioxygenase.
Fig. 2 Transcriptional regulation of carotenoids in photosynthetic and storage organs Green arrows indicate positive regulation,while blunt red arrows indicate negative regulation. Solid lines show direct interactions,while dotted lines show indirect interactions. The red triangles indicate the indirect regulation of all structural genes of the metabolic pathway. (Bino et al.,2005;Davuluri et al.,2005;Welsch et al.,2007;Itkin et al.,2009;Liu et al.,2009;Calvenzani et al.,2010;Chung et al.,2010;Toledo-Ortiz et al.,2010,2014;Karlova et al.,2011;Martel et al.,2011;Lee et al.,2012;Shima et al.,2013;Fujisawa et al.,2014;Liu et al.,2014;Ma et al.,2014;Wang et al,2014;Bou-Torrent et al.,2015;Hao et al.,2015;Endo et al.,2016;Fu et al.,2016,2017;Iorizzo et al.,2016;Llorente et al.,2016;Meng et al.,2016,2019;Sagawa et al.,2016;Zhu et al.,2017,2019,2021;Lu et al.,2018,2021;Zhang et al.,2018;Ampomah-Dwamena et al.,2019;Han et al.,2019;Stanley & Yuan,2019;Xiong et al.,2019;Zhou et al.,2019;Stanley et al.,2020)
不同类型器官 Different types of organs | 信号因子 Signaling factor | 物种 Species | 转录因子 Transcription factor | 调控机制 Regulatory mechanism | 参考文献 Reference |
---|---|---|---|---|---|
光合器官 Photosynthetic organ | 光信号 Light signaling | 拟南芥 Arabidopsis thaliana | AtPIF1 | 直接与AtPSY启动子上的G-box元件结合从而抑制其表达 AtPIF1 repressed the transcription of AtPSY by directly binding to the G-box element | Toledo-Ortiz et al., |
AtPAR1 | 在遮荫条件下,AtPAR1能够与AtPIF1相互作用阻止其结合至AtPSY启动子上,从而促进AtPSY的表达 AtPAR1 interacted with AtPIF1 to prevent it from binding to the AtPSY promoter,thereby promoting the expression of AtPSY | Bou-Torrent et al., | |||
AtHY5 | AtHY5能特异性识别并结合到AtPSY启动子区域的G-box元件促进其表达,在调控植物类胡萝卜素代谢过程中AtHY5与AtPIF1存在拮抗作用 AtHY5 specifically could recognize and bind to the G-box element in the AtPSY promoter to promote its expression | Toledo-Ortiz et al., | |||
温度信号 Temperature signaling | 拟南芥 Arabidopsis thaliana | AtPIF1/ AtHY5 | 低温条件下AtHY5蛋白含量明显增加而AtPIF1蛋白含量明显减少,使得AtPSY的表达量显著增加 The protein content of AtHY5 was significantly increased and the protein content of AtPIF1 was significantly decreased under low temperature condition,resulting in a significant increase in the expression of AtPSY | Toledo-Ortiz et al., | |
发育信号 Developmental cue | 拟南芥 Arabidopsis thaliana | AtRAP2.2 | AtRAP2.2能够特异性地结合到拟南芥AtPSY和AtPDS基因的启动子上调控其表达 AtRAP2.2 specifically bind to the promoters of AtPSY and AtPDS to regulate their expression | Welsch et al., | |
葡萄 Vitis vinifera | VvDRL1 | 在烟草中过表达VvDRL1后NtZEP1和类胡萝卜素裂解基因的表达显著减少,ABA含量下降从而使得叶片延缓衰老 Overexpression of VvDRL1 in tobacco resulted in low expression of NtZEP1 and carotenoid cleavage genes | Zhu et al., | ||
类胡萝卜素存储器官 Carotenoid storage organ | 光信号 Light signaling | 番茄 Solanum lycopersicum | SlDET1/ SlDDB1 | 通过RNAi抑制SlDET1和SlDDB1表达后成熟番茄果实中的类胡萝卜素(β-胡萝卜素、番茄红素)和类黄酮含量显著上升 The contents of carotenoids and flavonoids in tomato were significantly increased after inhibiting the expression of SlDET1 and SlDDB1 by RNAi | Davuluri et al., et al., Calvenzani et al., |
SlBBX20 | SlBBX20通过直接调节SlPSY1的表达从而影响色素生成 SlBBX20 affected carotenoid metabolism by directly regulating the expression of SlPSY1 | Xiong et al., | |||
SlPIF1a | SlPIF1a可直接与SlPSY1基因启动子上的PBE-box结合以抑制其表达 SlPIF1a could directly bind to the PBE-box in the SlPSY1 promoter to inhibit its expression | Llorente et al., | |||
SlPRE2 | SlPRE2的表达受强光照条件抑制,当SlPRE2在番茄中过表达时,叶绿素以及类胡萝卜素合成基因SlPSY1、SlPDS、SlZDS的表达量显著下降 Overexpression of SlPRE2 resulted in low expression levels of chlorophyll and carotenoid metabolic genes SlPSY1,SlPDS and SlZDS | Zhu et al., | |||
木瓜 Carica papaya | CpbHLH1/ CpbHLH2 | CpbHLH1、CpbHLH2分别作为转录抑制子和转录激活子起始下游结构基因CpCYCB和CpLCYB的转录,且两者受到光信号的调控CpbHLH1 and CpbHLH2,as transcriptional repressors and transcriptional activators respectively,initiated the transcription of downstream structural genes CpCYCB and CpLCYB | Zhou et al., | ||
胡萝卜 Daucus carota subsp. carota | DcPEL | QTL定位及GWAS分析显示光形态建成抑制因子PEL与胡萝卜肉质根中的类胡萝卜素积累密切相关 QTL mapping and GWAS analysis revealed that the photomorphogenesis inhibitor PEL was closely related to carotenoid accumulation in carrot | Iorizzo et al., | ||
发育信号 Developmental cue | 番茄 Solanum lycopersicum | RIN/TAGL1/ FUL1/FUL2 | 这些转录因子可相互作用形成不同的蛋白复合体,同时都可直接或间接的激活SlPSY1、SlPSY2、SlZDS、SlZ-ISO、SlCRTISO和SlBCH基因的转录,抑制S1LCYB、SlLCYE和S1CYCB的表达 These transcription factors have both overlapping and individual contributions to the expression of carotenoid metabolic genes,with the total effect being the positive regulation of SlPSY1,SlPSY2,SlZDS,SlZ-ISO,SlCRTISO,and SlBCH,and the negative regulation of SlLCYB,SlLCYE,and SlCYCB | Itkin et al., et al., Shima et al., Yuan, | |
柑橘 Citrus sinensis | CsMADS5/ CsMADS6 | CsMADS5和CsMADS6作为转录激活因子通过直接结合至下游结构基因的启动子上激活其表达从而促进柑橘果实类胡萝卜素的积累 As the positive regulators,CsMADS5 and CsMADS6 promoted the accumulation of carotenoids in citrus by directly binding to the promoters of downstream structural genes | Lu et al., | ||
青瓯柑 Citrus reticulata | CrMYB68 | CrMYB68可直接抑制CrBCH2和CrNCED5的表达CrMYB68 inhibited the expression of CrBCH2 and CrNCED5 directly | Zhu et al., | ||
木瓜 Carica papaya | CpSBP1 | CpSBP1可结合到CpPDS的启动子区域并激活其表达CpSBP1 could bind to the promoter region of CpPDS to activate its expression | Han et al., | ||
猕猴桃 Actinidia deliciosa | AdMYB7 | AdMYB7是直接调节AdLCYB转录的重要调控因子,当AdMYB7在烟草中过表达时,类胡萝卜素、叶绿素总含量明显增加 AdMYB7 was an important regulator that directly regulated the transcription of AdLCYB | Ampomah- Dwamena et al., | ||
苜蓿 Medicago truncatula | MtWP1 | MtWP1可直接调控花青素、类胡萝卜素合成基因如MtLCYB、MtLCYE的表达,通过影响两类色素的积累而决定花瓣呈色 MtWP1 could directly regulate the expression of anthocyanin and carotenoid metabolic genes such as MtLCYB and MtLCYE | Meng et al., | ||
烟草 Nicotiana tabacum | NtMYB305 | NtMYB305与蜜腺中的β-类胡萝卜素积累密切相关NtMYB305 was closely involved in β-carotene accumulation in nectaries | Liu et al., | ||
猴面花 Mimulus lewisii | MlRCP1/ MlRCP2 | 利用RNAi分别抑制MlRCP1和MlRCP2表达后,花瓣中所有与类胡萝卜素合成相关基因的表达量都下调,类胡萝卜素的总含量降低 The expression levels of all carotenoid metabolic genes in petals were down-regulated after inhibiting the expression of MlRCP1 and MlRCP2 by RNAi | Sagawa et al., | ||
激素信号 Phytohormones | 番茄 Solanum lycopersicum | SlAP2a | SlAP2a能够激活类胡萝卜素代谢基因SlPSY1、SlCRTISO、SlBCH和SlPDS1的表达,抑制S1ZEP1和S1CYCB的转录 SlAP2a could activate the expression of carotenoid metabolic genes SlPSY1,SlCRTISO,SlBCH and SlPDS1,and inhibit the transcription of S1ZEP1 and S1CYCB | Chung et al., | |
SIERF6 | 利用RNAi抑制SIERF6的表达,总类胡萝卜素及乙烯含量均显著上升 The content of total carotenoids and ethylene was significantly increased after inhibiting the expression of SIERF6 by RNAi | Lee et al., | |||
SlNAC1/ SlNAC4 | SlNAC1可直接与SlPSY1和乙烯生物合成基因的启动子相结合起抑制转录作用;SlNAC4可促进SlPSY1的表达,利用RNAi抑制SlNAC4的转录后,SlPSY1的表达量显著降低 SlNAC1 could directly bind to the promoters of SlPSY1 and ethylene biosynthesis genes to inhibit their transcription; SlNAC4 could promote the expression of SlPSY1 | Ma et al., | |||
SlARF2A/ SlARF2B | 利用RNAi抑制SlARF2A、SlARF2B的转录后,SlRIN、SlTAGL1、SlFUL1/2等参与果实成熟的发育因子表达量下降,同时类胡萝卜素代谢相关基因的表达也受到影响 The expression levels of developmental genes such as SlRIN,SlTAGL1,SlFUL1/2 and the carotenoid metabolic genes were affected after inhibiting the transcription of SlARF2A and SlARF2B by RNAi | Hao et al., | |||
SlIPT4 | SlIPT4可促进番茄SlZ-ISO和SlZDS的表达从而诱导番茄红素的积累 SlIPT4 promoted the expression of tomato SlZ-ISO and SlZDS to induce lycopene accumulation | Zhang et al., | |||
SlBZR1 | 在番茄中过表达油菜素内酯响应因子SlBZR1,SlPSY1和SlZDS的转录水平上调,类胡萝卜素、可溶性糖和抗坏血酸大量积累 Overexpression of SlBZR1 in tomato resulted in up-regulated transcription of SlPSY1 and SlZDS | Liu et al., | |||
柑橘 Citrus sinensis | CsERF61 | CsERF61的表达受乙烯的诱导,该基因所编码的转录因子可直接结合至CsLCYB2的启动子上激活其表达 CsERF61 can directly bind to the promoter of CsLCYB2 to activate its expression | Zhu et al., | ||
木瓜 Carica papaya | CpNAC1/ CpNAC2 | CpNAC2可与乙烯响应蛋白CpEIN3a相互作用共同促进下游结构基因CpPDS2/4、CpLCYE、CpCHYB的表达 CpNAC2 could interact with ethylene-responsive protein CpEIN3a to promote the expression of downstream structural genes CpPDS2/4,CpLCYE and CpCHYB | Fu et al., | ||
温州蜜柑 Citrus unshiu | CubHLH1 | 在番茄中过表达BR信号通路负调节因子CubHLH1后类胡萝卜素生物合成基因的表达受到抑制,番茄红素含量显著降低 Overexpression of CubHLH1 in tomato inhibited the expression of carotenoid biosynthesis genes | Endo et al., |
Table 1 Transcriptional regulatory mechanisms of carotenoid metabolism in photosynthetic and storage organs
不同类型器官 Different types of organs | 信号因子 Signaling factor | 物种 Species | 转录因子 Transcription factor | 调控机制 Regulatory mechanism | 参考文献 Reference |
---|---|---|---|---|---|
光合器官 Photosynthetic organ | 光信号 Light signaling | 拟南芥 Arabidopsis thaliana | AtPIF1 | 直接与AtPSY启动子上的G-box元件结合从而抑制其表达 AtPIF1 repressed the transcription of AtPSY by directly binding to the G-box element | Toledo-Ortiz et al., |
AtPAR1 | 在遮荫条件下,AtPAR1能够与AtPIF1相互作用阻止其结合至AtPSY启动子上,从而促进AtPSY的表达 AtPAR1 interacted with AtPIF1 to prevent it from binding to the AtPSY promoter,thereby promoting the expression of AtPSY | Bou-Torrent et al., | |||
AtHY5 | AtHY5能特异性识别并结合到AtPSY启动子区域的G-box元件促进其表达,在调控植物类胡萝卜素代谢过程中AtHY5与AtPIF1存在拮抗作用 AtHY5 specifically could recognize and bind to the G-box element in the AtPSY promoter to promote its expression | Toledo-Ortiz et al., | |||
温度信号 Temperature signaling | 拟南芥 Arabidopsis thaliana | AtPIF1/ AtHY5 | 低温条件下AtHY5蛋白含量明显增加而AtPIF1蛋白含量明显减少,使得AtPSY的表达量显著增加 The protein content of AtHY5 was significantly increased and the protein content of AtPIF1 was significantly decreased under low temperature condition,resulting in a significant increase in the expression of AtPSY | Toledo-Ortiz et al., | |
发育信号 Developmental cue | 拟南芥 Arabidopsis thaliana | AtRAP2.2 | AtRAP2.2能够特异性地结合到拟南芥AtPSY和AtPDS基因的启动子上调控其表达 AtRAP2.2 specifically bind to the promoters of AtPSY and AtPDS to regulate their expression | Welsch et al., | |
葡萄 Vitis vinifera | VvDRL1 | 在烟草中过表达VvDRL1后NtZEP1和类胡萝卜素裂解基因的表达显著减少,ABA含量下降从而使得叶片延缓衰老 Overexpression of VvDRL1 in tobacco resulted in low expression of NtZEP1 and carotenoid cleavage genes | Zhu et al., | ||
类胡萝卜素存储器官 Carotenoid storage organ | 光信号 Light signaling | 番茄 Solanum lycopersicum | SlDET1/ SlDDB1 | 通过RNAi抑制SlDET1和SlDDB1表达后成熟番茄果实中的类胡萝卜素(β-胡萝卜素、番茄红素)和类黄酮含量显著上升 The contents of carotenoids and flavonoids in tomato were significantly increased after inhibiting the expression of SlDET1 and SlDDB1 by RNAi | Davuluri et al., et al., Calvenzani et al., |
SlBBX20 | SlBBX20通过直接调节SlPSY1的表达从而影响色素生成 SlBBX20 affected carotenoid metabolism by directly regulating the expression of SlPSY1 | Xiong et al., | |||
SlPIF1a | SlPIF1a可直接与SlPSY1基因启动子上的PBE-box结合以抑制其表达 SlPIF1a could directly bind to the PBE-box in the SlPSY1 promoter to inhibit its expression | Llorente et al., | |||
SlPRE2 | SlPRE2的表达受强光照条件抑制,当SlPRE2在番茄中过表达时,叶绿素以及类胡萝卜素合成基因SlPSY1、SlPDS、SlZDS的表达量显著下降 Overexpression of SlPRE2 resulted in low expression levels of chlorophyll and carotenoid metabolic genes SlPSY1,SlPDS and SlZDS | Zhu et al., | |||
木瓜 Carica papaya | CpbHLH1/ CpbHLH2 | CpbHLH1、CpbHLH2分别作为转录抑制子和转录激活子起始下游结构基因CpCYCB和CpLCYB的转录,且两者受到光信号的调控CpbHLH1 and CpbHLH2,as transcriptional repressors and transcriptional activators respectively,initiated the transcription of downstream structural genes CpCYCB and CpLCYB | Zhou et al., | ||
胡萝卜 Daucus carota subsp. carota | DcPEL | QTL定位及GWAS分析显示光形态建成抑制因子PEL与胡萝卜肉质根中的类胡萝卜素积累密切相关 QTL mapping and GWAS analysis revealed that the photomorphogenesis inhibitor PEL was closely related to carotenoid accumulation in carrot | Iorizzo et al., | ||
发育信号 Developmental cue | 番茄 Solanum lycopersicum | RIN/TAGL1/ FUL1/FUL2 | 这些转录因子可相互作用形成不同的蛋白复合体,同时都可直接或间接的激活SlPSY1、SlPSY2、SlZDS、SlZ-ISO、SlCRTISO和SlBCH基因的转录,抑制S1LCYB、SlLCYE和S1CYCB的表达 These transcription factors have both overlapping and individual contributions to the expression of carotenoid metabolic genes,with the total effect being the positive regulation of SlPSY1,SlPSY2,SlZDS,SlZ-ISO,SlCRTISO,and SlBCH,and the negative regulation of SlLCYB,SlLCYE,and SlCYCB | Itkin et al., et al., Shima et al., Yuan, | |
柑橘 Citrus sinensis | CsMADS5/ CsMADS6 | CsMADS5和CsMADS6作为转录激活因子通过直接结合至下游结构基因的启动子上激活其表达从而促进柑橘果实类胡萝卜素的积累 As the positive regulators,CsMADS5 and CsMADS6 promoted the accumulation of carotenoids in citrus by directly binding to the promoters of downstream structural genes | Lu et al., | ||
青瓯柑 Citrus reticulata | CrMYB68 | CrMYB68可直接抑制CrBCH2和CrNCED5的表达CrMYB68 inhibited the expression of CrBCH2 and CrNCED5 directly | Zhu et al., | ||
木瓜 Carica papaya | CpSBP1 | CpSBP1可结合到CpPDS的启动子区域并激活其表达CpSBP1 could bind to the promoter region of CpPDS to activate its expression | Han et al., | ||
猕猴桃 Actinidia deliciosa | AdMYB7 | AdMYB7是直接调节AdLCYB转录的重要调控因子,当AdMYB7在烟草中过表达时,类胡萝卜素、叶绿素总含量明显增加 AdMYB7 was an important regulator that directly regulated the transcription of AdLCYB | Ampomah- Dwamena et al., | ||
苜蓿 Medicago truncatula | MtWP1 | MtWP1可直接调控花青素、类胡萝卜素合成基因如MtLCYB、MtLCYE的表达,通过影响两类色素的积累而决定花瓣呈色 MtWP1 could directly regulate the expression of anthocyanin and carotenoid metabolic genes such as MtLCYB and MtLCYE | Meng et al., | ||
烟草 Nicotiana tabacum | NtMYB305 | NtMYB305与蜜腺中的β-类胡萝卜素积累密切相关NtMYB305 was closely involved in β-carotene accumulation in nectaries | Liu et al., | ||
猴面花 Mimulus lewisii | MlRCP1/ MlRCP2 | 利用RNAi分别抑制MlRCP1和MlRCP2表达后,花瓣中所有与类胡萝卜素合成相关基因的表达量都下调,类胡萝卜素的总含量降低 The expression levels of all carotenoid metabolic genes in petals were down-regulated after inhibiting the expression of MlRCP1 and MlRCP2 by RNAi | Sagawa et al., | ||
激素信号 Phytohormones | 番茄 Solanum lycopersicum | SlAP2a | SlAP2a能够激活类胡萝卜素代谢基因SlPSY1、SlCRTISO、SlBCH和SlPDS1的表达,抑制S1ZEP1和S1CYCB的转录 SlAP2a could activate the expression of carotenoid metabolic genes SlPSY1,SlCRTISO,SlBCH and SlPDS1,and inhibit the transcription of S1ZEP1 and S1CYCB | Chung et al., | |
SIERF6 | 利用RNAi抑制SIERF6的表达,总类胡萝卜素及乙烯含量均显著上升 The content of total carotenoids and ethylene was significantly increased after inhibiting the expression of SIERF6 by RNAi | Lee et al., | |||
SlNAC1/ SlNAC4 | SlNAC1可直接与SlPSY1和乙烯生物合成基因的启动子相结合起抑制转录作用;SlNAC4可促进SlPSY1的表达,利用RNAi抑制SlNAC4的转录后,SlPSY1的表达量显著降低 SlNAC1 could directly bind to the promoters of SlPSY1 and ethylene biosynthesis genes to inhibit their transcription; SlNAC4 could promote the expression of SlPSY1 | Ma et al., | |||
SlARF2A/ SlARF2B | 利用RNAi抑制SlARF2A、SlARF2B的转录后,SlRIN、SlTAGL1、SlFUL1/2等参与果实成熟的发育因子表达量下降,同时类胡萝卜素代谢相关基因的表达也受到影响 The expression levels of developmental genes such as SlRIN,SlTAGL1,SlFUL1/2 and the carotenoid metabolic genes were affected after inhibiting the transcription of SlARF2A and SlARF2B by RNAi | Hao et al., | |||
SlIPT4 | SlIPT4可促进番茄SlZ-ISO和SlZDS的表达从而诱导番茄红素的积累 SlIPT4 promoted the expression of tomato SlZ-ISO and SlZDS to induce lycopene accumulation | Zhang et al., | |||
SlBZR1 | 在番茄中过表达油菜素内酯响应因子SlBZR1,SlPSY1和SlZDS的转录水平上调,类胡萝卜素、可溶性糖和抗坏血酸大量积累 Overexpression of SlBZR1 in tomato resulted in up-regulated transcription of SlPSY1 and SlZDS | Liu et al., | |||
柑橘 Citrus sinensis | CsERF61 | CsERF61的表达受乙烯的诱导,该基因所编码的转录因子可直接结合至CsLCYB2的启动子上激活其表达 CsERF61 can directly bind to the promoter of CsLCYB2 to activate its expression | Zhu et al., | ||
木瓜 Carica papaya | CpNAC1/ CpNAC2 | CpNAC2可与乙烯响应蛋白CpEIN3a相互作用共同促进下游结构基因CpPDS2/4、CpLCYE、CpCHYB的表达 CpNAC2 could interact with ethylene-responsive protein CpEIN3a to promote the expression of downstream structural genes CpPDS2/4,CpLCYE and CpCHYB | Fu et al., | ||
温州蜜柑 Citrus unshiu | CubHLH1 | 在番茄中过表达BR信号通路负调节因子CubHLH1后类胡萝卜素生物合成基因的表达受到抑制,番茄红素含量显著降低 Overexpression of CubHLH1 in tomato inhibited the expression of carotenoid biosynthesis genes | Endo et al., |
[1] |
Adami M, de Franceschi P, Brandi F, Liverani A, Giovannini D, Rosati C, Dondini L, Tartarini S. 2013. Identifying a carotenoid cleavage dioxygenase(ccd4)gene controlling yellow/white fruit flesh color of peach. Plant Molecular Biology Reporter, 31 (5):1166-1175.
doi: 10.1007/s11105-013-0628-6 URL |
[2] | Ahrazem O, Diretto G, Argandona Picazo J, Fiore A, Rubio-Moraga A, Rial C, Varela R M, Macias F A, Castillo R, Romano E. 2019. The specialized roles in carotenogenesis and apocarotenogenesis of the phytoene synthase gene family in saffron. Frontier in Plant Science, 10:249. |
[3] | Alagoz Y, Nayak P, Dhami N, Cazzonelli C I. 2018. cis-Carotene biosynthesis,evolution and regulation in plants:the emergence of novel signaling metabolites. Archives of Biochemistry & Biophysics, 654:172-184. |
[4] |
Al-Babili S, Bouwmeester H J. 2015. Strigolactones,a novel carotenoid-derived plant hormone. Annual Review of Plant Biology, 66 (1):161-186.
doi: 10.1146/annurev-arplant-043014-114759 URL |
[5] |
Al-Babili S, von Lintig J, Haubruck H, Beyer P. 1996. A novel,soluble form of phytoene desaturase from Narcissus pseudonarcissus chromoplasts is Hsp70-complexed and competent for flavinylation,membrane association and enzymatic activation. The Plant Journal, 9 (5):601-612.
doi: 10.1046/j.1365-313X.1996.9050601.x URL |
[6] |
Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S. 2012. The path from beta-carotene to carlactone,a strigolactone-like plant hormone. Science, 335 (6074):1348-1351.
doi: 10.1126/science.1218094 URL |
[7] |
Álvarez D, Voß B, Maass D, Wüst F, Schaub P, Beyer P, Welsch R. 2016. Carotenogenesis is regulated by 5'UTR-mediated translation of phytoene synthase splice variants. Plant Physiology, 172 (4):2314-2326.
pmid: 27729470 |
[8] |
Ampomah-Dwamena C, Thrimawithana A H, Dejnoprat S, Lewis D, Espley R V, Allan A C. 2019. A kiwifruit(Actinidia deliciosa)R2R3-MYB transcription factor modulates chlorophyll and carotenoid accumulation. The New Phytologist, 221 (1):309-325.
doi: 10.1111/nph.15362 URL |
[9] | Arango J, Beltran J, Nunez J, Chavarriaga P. 2016. Evidence of epigenetic mechanisms affecting carotenoids. Carotenoids in Nature, 79:295-307. |
[10] |
Bai C, Capell T, Berman J, Medina V, Sandmann G, Christou P, Zhu C. 2016. Bottlenecks in carotenoid biosynthesis and accumulation in rice endosperm are influenced by the precursor-product balance. Plant Biotechnology Journal, 14 (1):195-205.
doi: 10.1111/pbi.12373 pmid: 25857664 |
[11] | Beltran J C, Stange C. 2016. Apocarotenoids:a new carotenoid-derived pathway. Carotenoids in Nature, 79:239-272. |
[12] |
Bino R J, Ric de Vos C H, Lieberman M, Hall R D, Bovy A, Jonker H H, Tikunov Y, Lommen A, Moco S, Levin I. 2005. The light-hyperresponsive high pigment-2dg mutation of tomato:alterations in the fruit metabolome. The New Phytologist, 166 (2):427-438.
doi: 10.1111/j.1469-8137.2005.01362.x URL |
[13] |
Bou-Torrent J, Toledo-Ortiz G, Ortiz-Alcaide M, Cifuentes-Esquivel N, Halliday K J, Martinez-Garcia J F, Rodriguez-Concepcion M. 2015. Regulation of carotenoid biosynthesis by shade relies on specific subsets of antagonistic transcription factors and cofactors. Plant Physiology, 169 (3):1584-1594.
doi: 10.1104/pp.15.00552 pmid: 26082398 |
[14] |
Calvenzani V, Martinelli M, Lazzeri V, Giuntini D, Dall’Asta C, Galaverna G, Tonelli C, Ranieri A, Petroni K. 2010. Response of wild-type and high pigment-1 tomato fruit to UV-B depletion:flavonoid profiling and gene expression. Planta, 231 (3):755-765.
doi: 10.1007/s00425-009-1082-4 pmid: 20033231 |
[15] |
Cao H, Luo H, Yuan H, Eissa M A, Thannhauser T W, Welsch R, Hao Y J, Cheng L, Li L. 2019. A neighboring aromatic-aromatic amino acid combination governs activity divergence between tomato phytoene synthases. Plant Physiology, 180 (4):1988-2003.
doi: 10.1104/pp.19.00384 pmid: 31221734 |
[16] |
Cazzonelli C I, Cuttriss A J, Cossetto S B, Pye W, Crisp P, Whelan J, Finnegan E J, Turnbull C, Pogson B J. 2009. Regulation of carotenoid composition and shoot branching in Arabidopsis by a chromatin modifying histone methyltransferase,SDG8. The Plant Cell, 21 (1):39-53.
doi: 10.1105/tpc.108.063131 URL |
[17] |
Cazzonelli C I, Pogson B J. 2010. Source to sink:regulation of carotenoid biosynthesis in plants. Trends in Plant Science, 15 (5):266-274.
doi: 10.1016/j.tplants.2010.02.003 URL |
[18] |
Chayut N, Yuan H, Ohali S, Meir A, Yeselson Y, Portnoy V, Zheng Y, Fei Z, Lewinsohn E, Katzir N. 2015. A bulk segregant transcriptome analysis reveals metabolic and cellular processes associated with orange allelic variation and fruit beta-carotene accumulation in melon fruit. BMC Plant Biology, 15:274.
doi: 10.1186/s12870-015-0661-8 pmid: 26553015 |
[19] |
Chen L, Li W, Li Y, Feng X, Du K, Wang G, Zhao L. 2019. Identified trans-splicing of YELLOW-FRUITED TOMATO 2 encoding the PHYTOENE SYNTHASE 1 protein alters fruit color by map-based cloning,functional complementation and RACE. Plant Molecular Biology, 100 (6):647-658.
doi: 10.1007/s11103-019-00886-y URL |
[20] |
Chenge-Espinosa M, Cordoba E, Romero-Guido C, Toledo-Ortiz G, Leon P. 2018. Shedding light on the methylerythritol phosphate(MEP)- pathway:long hypocotyl 5(HY5)/phytochrome-interacting factors(PIFs)transcription factors modulating key limiting steps. The Plant Journal, 96 (4):828-841.
doi: 10.1111/tpj.14071 pmid: 30144333 |
[21] |
Chiou C Y, Pan H A, Chuang Y N, Yeh K W. 2010. Differential expression of carotenoid-related genes determines diversified carotenoid coloration in floral tissues of Oncidium cultivars. Planta, 232 (4):937-948.
doi: 10.1007/s00425-010-1222-x URL |
[22] |
Chung M Y, Vrebalov J, Alba R, Lee J, McQuinn R, Chung J D, Klein P, Giovannoni J. 2010. A tomato(Solanum lycopersicum)APETALA2/ERF gene,SlAP2a,is a negative regulator of fruit ripening. The Plant Journal, 64 (6):936-947.
doi: 10.1111/j.1365-313X.2010.04384.x URL |
[23] |
D’Andrea L, Simon-Moya M, Llorente B, Llamas E, Marro M, Loza-Alvarez P, Li L, Rodriguez-Concepcion M. 2018. Interference with Clp protease impairs carotenoid accumulation during tomato fruit ripening. Journal of Experimental Botany, 69 (7):1557-1568.
doi: 10.1093/jxb/erx491 pmid: 29385595 |
[24] |
Davuluri G R, van Tuinen A, Fraser P D, Manfredonia A, Newman R, Burgess D, Brummell D A, King S R, Palys J, Uhlig J. 2005. Fruit-specific RNAi-mediated suppression of DET 1 enhances carotenoid and flavonoid content in tomatoes. Nature Biotechnology, 23 (7):890-895.
doi: 10.1038/nbt1108 pmid: 15951803 |
[25] | Egea I, Barsan C, Bian W, Purgatto E, Latche A, Chervin C, Bouzayen M, Pech J C. 2010. Chromoplast differentiation:current status and perspectives. Plant & Cell Physiology, 51 (10):1601-1611. |
[26] |
Endo T, Fujii H, Sugiyama A, Nakano M, Nakajima N, Ikoma Y, Omura M, Shimada T. 2016. Overexpression of a citrus basic helix-loop-helix transcription factor(CubHLH1),which is homologous to Arabidopsis activation-tagged bri1 suppressor 1 interacting factor genes,modulates carotenoid metabolism in transgenic tomato. Plant Science, 243:35-48.
doi: 10.1016/j.plantsci.2015.11.005 URL |
[27] |
Fantini E, Falcone G, Frusciante S, Giliberto L, Giuliano G. 2013. Dissection of tomato lycopene biosynthesis through virus-induced gene silencing. Plant Physiology, 163 (2):986-998.
doi: 10.1104/pp.113.224733 pmid: 24014574 |
[28] | Fan Baolian, Wang Xiaoyun. 2021. Research progress of transcription factors regulating carotenoid synthesis pathway in plant. Molecular Plant Breeding, 19 (13):4401-4408. (in Chinese) |
樊宝莲, 王晓云. 2021. 转录因子调控植物类胡萝卜素合成途径的研究进展. 分子植物育种, 19 (13):4401-4408. | |
[29] |
Fu C C, Han Y C, Fan Z Q, Chen J Y, Chen W X, Lu W J, Kuang J F. 2016. The papaya transcription factor CpNAC 1 modulates carotenoid biosynthesis through activating phytoene desaturase genes CpPDS2/4 during fruit ripening. Journal of Agricultural and Food Chemistry, 64 (27):5454-5463.
doi: 10.1021/acs.jafc.6b01020 URL |
[30] | Fu C C, Han Y C, Kuang J F, Chen J Y, Lu W J. 2017. Papaya CpEIN3a and CpNAC 2 co-operatively regulate carotenoid biosynthesis-related genes CpPDS2/4,CpLCY-e and CpCHY-b during fruit ripening. Plant & Cell Physiology, 58 (12):2155-2165. |
[31] |
Fuentes P, Pizarro L, Moreno J C, Handford M, Rodriguez-Concepcion M, Stange C. 2012. Light-dependent changes in plastid differentiation influence carotenoid gene expression and accumulation in carrot roots. Plant Molecular Biology, 79 (1-2):47-59.
doi: 10.1007/s11103-012-9893-2 pmid: 22427026 |
[32] |
Fujisawa M, Shima Y, Nakagawa H, Kitagawa M, Kimbara J, Nakano T, Kasumi T, Ito Y. 2014. Transcriptional regulation of fruit ripening by tomato FRUITFULL homologs and associated MADS box proteins. The Plant Cell, 26 (1):89-101.
doi: 10.1105/tpc.113.119453 pmid: 24415769 |
[33] |
Gady A L, Vriezen W H, van de Wal M H, Huang P, Bovy A G, Visser R G, Bachem C W. 2012. Induced point mutations in the phytoene synthase 1 gene cause differences in carotenoid content during tomato fruit ripening. Molecular Breeding, 29 (3):801-812.
pmid: 22408384 |
[34] |
Gao J, Yang S, Tang K, Li G, Gao X, Liu B, Wang S, Feng X. 2021. GmCCD4 controls carotenoid content in soybeans. Plant Biotechnology Journal, 19 (4):801-813.
doi: 10.1111/pbi.13506 URL |
[35] | Gao Huijun, Ming Jiaqi, Zhang Yajuan, Xu Juan. 2015. Regulation of carotenoids biosynthesis in horticultural crops. Acta Horticulturae Sinica, 42 (9):1633-1648. (in Chinese) |
高慧君, 明家琪, 张雅娟, 徐娟. 2015. 园艺植物中类胡萝卜素合成与调控的研究进展. 园艺学报, 42 (9):1633-1648. | |
[36] |
Gandikota M, Birkenbihl R P, Hohmann S, Cardon G H, Saedler H, Huijser P. 2007. The miRNA156/ 157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. The Plant Journal, 49 (4):683-693.
doi: 10.1111/j.1365-313X.2006.02983.x URL |
[37] |
Giuliano G. 2017. Provitamin A biofortification of crop plants:a gold rush with many miners. Current Opinion in Biotechnology, 44:169-180.
doi: 10.1016/j.copbio.2017.02.001 URL |
[38] |
Guo J E, Hu Z, Yu X, Li A, Li F, Wang Y, Tian S, Chen G. 2018. A histone deacetylase gene,SlHDA3,acts as a negative regulator of fruit ripening and carotenoid accumulation. Plant Cell Reports, 37 (1):125-135.
doi: 10.1007/s00299-017-2211-3 URL |
[39] |
Han Y, Gao H, Chen H, Fu C. 2019. The involvement of papaya CpSBP 1 in modulating fruit softening and carotenoid accumulation by repressing CpPME1/2 and CpPDS4. Scientia Horticulturae, 256:108582.
doi: 10.1016/j.scienta.2019.108582 URL |
[40] | Han Y, Wang X, Chen W, Dong M, Yuan W, Liu X, Shang F. 2013. Differential expression of carotenoid-related genes determines diversified carotenoid coloration in flower petal of Osmanthus fragrans. Tree Genetics & Genomes, 10 (2):329-338. |
[41] |
Hao Y, Hu G, Breitel D, Liu M, Mila I, Frasse P, Fu Y, Aharoni A, Bouzayen M, Zouine M. 2015. Auxin response factor SlARF 2 is an essential component of the regulatory mechanism controlling fruit ripening in tomato. PLoS Genetics, 11 (12):e1005649.
doi: 10.1371/journal.pgen.1005649 URL |
[42] | Hashimoto H, Uragami C, Cogdell R J. 2016. Carotenoids and photosynthesis. Carotenoids in Nature, 79:111-139. |
[43] |
Havaux M. 1998. Carotenoids as membrane stabilizers in chloroplasts. Trends in Plant Science, 3:147-151.
doi: 10.1016/S1360-1385(98)01200-X URL |
[44] | He Jingjuan, Fan Yanping. 2021. Progress in composition and metabolic regulation of carotenoids related to floral color. Acta Horticulturae Sinica, 48 (12):1162-1172. (in Chinese) |
何静娟, 范燕萍. 2021. 观赏植物花色相关的类胡萝卜素组成及代谢调控研究进展. 园艺学报, 48 (12):1162-1172. | |
[45] |
Hermanns A S, Zhou X S, Xu Q, Tadmor Y, Li L. 2020. Carotenoid pigment accumulation in horticultural plants. Horticultural Plant Journal, 6 (6):343-360.
doi: 10.1016/j.hpj.2020.10.002 URL |
[46] |
Hirschberg J. 2001. Carotenoid biosynthesis in flowering plants. Current Opinion in Plant Biology, 4 (3):210-218.
doi: 10.1016/s1369-5266(00)00163-1 pmid: 11312131 |
[47] |
Iorizzo M, Ellison S, Senalik D, Zeng P, Satapoomin P, Huang J, Bowman M, Iovene M, Sanseverino W, Cavagnaro P. 2016. A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nature Genetics, 48 (6):657-666.
doi: 10.1038/ng.3565 pmid: 27158781 |
[48] |
Itkin M, Seybold H, Breitel D, Rogachev I, Meir S, Aharoni A. 2009. TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network. The Plant Journal, 60 (6):1081-1095.
doi: 10.1111/j.1365-313X.2009.04064.x pmid: 19891701 |
[49] |
Jahns P, Holzwarth A R. 2012. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem Ⅱ. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1817 (1):182-193.
doi: 10.1016/j.bbabio.2011.04.012 URL |
[50] |
Jeknic Z, Jeknic S, Jevremovic S, Subotić A, Chen T. 2014. Alteration of flower color in Iris germanica L.‘Fire Bride’through ectopic expression of phytoene synthase gene(crtB)from Pantoea agglomerans. Plant Cell Reports, 33 (8):1307-1321.
doi: 10.1007/s00299-014-1617-4 URL |
[51] |
Karlova R, Rosin F M, Busscher-Lange J, Parapunova V, Do P T, Fernie A R, Fraser P D, Baxter C, Angenent G C, de Maagd R A. 2011. Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. The Plant cell, 23 (3):923-941.
doi: 10.1105/tpc.110.081273 pmid: 21398570 |
[52] |
Ke Q, Kang L, Kim H S, Xie T, Liu C, Ji C Y, Kim S, Park W, Ahn M J, Shiwen W. 2019. Down-regulation of lycopene ε-cyclase expression in transgenic sweetpotato plants increases the carotenoid content and tolerance to abiotic stress. Plant Science, 281:52-60.
doi: S0168-9452(18)31453-5 pmid: 30824061 |
[53] |
Kilambi H V, Manda K, Rai A, Charakana C, Bagri J, Sharma R, Sreelakshmi Y. 2017. Green-fruited Solanum habrochaites lacks fruit-specific carotenogenesis due to metabolic and structural blocks. Journal of Experimental Botany, 68 (17):4803-4819.
doi: 10.1093/jxb/erx288 URL |
[54] |
Lee J M, Joung J G, McQuinn R, Chung M Y, Fei Z, Tieman D, Klee H, Giovannoni J. 2012. Combined transcriptome,genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF 6 plays an important role in ripening and carotenoid accumulation. The Plant Journal, 70 (2):191-204.
doi: 10.1111/j.1365-313X.2011.04863.x URL |
[55] |
Li F, Vallabhaneni R, Wurtzel E T. 2008a. PSY3,a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress-induced root carotenogenesis. Plant Physiology, 146 (3):1333-1345.
doi: 10.1104/pp.107.111120 URL |
[56] | Li F, Vallabhaneni R, Yu J, Rocheford T, Wurtzel E T. 2008b. The maize phytoene synthase gene family:overlapping roles for carotenogenesis in endosperm,photomorphogenesis,and thermal stress tolerance. Journal of Plant Physiology, 147 (3):1334-1346. |
[57] | Li L, Yuan H. 2013. Chromoplast biogenesis and carotenoid accumulation. Archives of Biochemistry & Biophysics, 539 (2):102-109. |
[58] |
Liu G, Ren G, Guirgis A, Thornburg R W. 2009. The MYB 305 transcription factor regulates expression of nectarin genes in the ornamental tobacco floral nectary. The Plant Cell, 21 (9):2672-2687.
doi: 10.1105/tpc.108.060079 URL |
[59] |
Liu L, Jia C, Zhang M, Chen D, Chen S, Guo R, Guo D, Wang Q. 2014. Ectopic expression of a BZR1-1D transcription factor in brassinosteroid signalling enhances carotenoid accumulation and fruit quality attributes in tomato. Plant Biotechnology Journal, 12 (1):105-115.
doi: 10.1111/pbi.12121 pmid: 24102834 |
[60] | Liu Xin, Chen Yunzhu, Kim Pyol, Kim Minjun, Song Hyondok, Li Yuhua, Wang Yu. 2020. Progress on molecular mechanism and regulation of tomato fruit color formation. Acta Horticulturae Sinica, 47 (9):1689-1704. (in Chinese) |
刘昕, 陈韵竹, Kim Pyol, Kim Minjun, Song Hyondok, 李玉花, 王宇. 2020. 番茄果实颜色形成的分子机制及调控研究进展. 园艺学报, 47 (9):1689-1704. | |
[61] |
Llorente B, D’Andrea L, Ruiz-Sola M A, Botterweg E, Pulido P, Andilla J, Loza-Alvarez P, Rodriguez-Concepcion M. 2016. Tomato fruit carotenoid biosynthesis is adjusted to actual ripening progression by a light-dependent mechanism. The Plant Journal, 85 (1):107-119.
doi: 10.1111/tpj.13094 pmid: 26648446 |
[62] |
Llorente B, Martinez-Garcia J F, Stange C, Rodriguez-Concepcion M. 2017. Illuminating colors:regulation of carotenoid biosynthesis and accumulation by light. Current Opinion in Plant Biology, 37:49-55.
doi: S1369-5266(16)30213-8 pmid: 28411584 |
[63] |
Lu C, Pu Y, Liu Y, Li Y, Qu J, Huang H, Dai S. 2019. Comparative transcriptomics and weighted gene co-expression correlation network analysis (WGCNA)reveal potential regulation mechanism of carotenoid accumulation in Chrysanthemum × morifolium. Plant Physiology and Biochemistry, 142:415-428.
doi: 10.1016/j.plaphy.2019.07.023 URL |
[64] |
Lu S, van Eck J, Zhou X, Lopez A B, O'Halloran D M, Cosman K M, Conlin B J, Paolillo D J, Garvin D F, Vrebalov J. 2006. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation. The Plant Cell, 18 (12):3594-3605.
doi: 10.1105/tpc.106.046417 URL |
[65] |
Lu S, Zhang Y, Zhu K, Yang W, Ye J, Chai L, Xu Q, Deng X. 2018. The citrus transcription factor CsMADS 6 modulates carotenoid metabolism by directly regulating carotenogenic genes. Plant Physiology, 176 (4):2657-2676.
doi: 10.1104/pp.17.01830 URL |
[66] |
Lu S, Ye J, Zhu K, Zhang Y, Zhang M, Xu Q, Deng X. 2021. A fruit ripening-associated transcription factor CsMADS 5 positively regulates carotenoid biosynthesis in citrus. Journal of Experimental Botany, 72 (8):3028-3043.
doi: 10.1093/jxb/erab045 URL |
[67] |
Luo Y S, Wang C J, Wang M M, Wang Y L, Xu W L, Han H Y, Wang Z C, Zhong Y J, Huang H X, Qu S P. 2021. Accumulation of carotenoids and expression of carotenoid biosynthesis genes in fruit flesh during fruit development in two Cucurbita maxima inbred lines. Horticultural Plant Journal, 7 (6):529-538.
doi: 10.1016/j.hpj.2020.07.006 URL |
[68] |
Luo Z, Zhang J, Li J, Yang C, Wang T, Ouyang B, Li H, Giovannoni J, Ye Z. 2013. A STAY-GREEN protein SlSGR1 regulates lycopene and beta-carotene accumulation by interacting directly with SlPSY 1 during ripening processes in tomato. The New Phytologist, 198 (2):442-452.
doi: 10.1111/nph.12175 URL |
[69] |
Ma N, Feng H, Meng X, Li D, Yang D, Wu C, Meng Q. 2014. Overexpression of tomato SlNAC 1 transcription factor alters fruit pigmentation and softening. BMC Plant Biology, 14:351.
doi: 10.1186/s12870-014-0351-y URL |
[70] |
Manning K, Tor M, Poole M, Hong Y, Thompson A J, King G J, Giovannoni J J, Seymour G B. 2006. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nature Genetics, 38 (8):948-952.
doi: 10.1038/ng1841 pmid: 16832354 |
[71] |
Martel C, Vrebalov J, Tafelmeyer P, Giovannoni J J. 2011. The tomato MADS-box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerous ripening processes in a COLORLESS NONRIPENING-dependent manner. Plant Physiology, 157 (3):1568-1579.
doi: 10.1104/pp.111.181107 pmid: 21941001 |
[72] |
Meng C, Yang D, Ma X, Zhao W, Liang X, Ma N, Meng Q. 2016. Suppression of tomato SlNAC1 transcription factor delays fruit ripening. Journal of Plant Physiology, 193:88-96.
doi: 10.1016/j.jplph.2016.01.014 pmid: 26962710 |
[73] |
Meng Y, Wang Z, Wang Y, Wang C, Zhu B, Liu H, Ji W, Wen J, Chu C, Tadege M. 2019. The MYB activator WHITE PETAL1 associates with MtTT8 and MtWD40-1 to regulate carotenoid-derived flower pigmentation in Medicago truncatula. The Plant Cell, 31 (11):2751-2767.
doi: 10.1105/tpc.19.00480 URL |
[74] | Moon J, Zhu L, Shen H, Huq E. 2008. PIF1 directly and indirectly regulates chlorophyll biosynthesis to optimize the greening process in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 105 (27):9433-9438. |
[75] |
Neuman H, Galpaz N, Cunningham F X, Zamir D, Hirschberg J. 2014. The tomato mutation nxd 1 reveals a gene necessary for neoxanthin biosynthesis and demonstrates that violaxanthin is a sufficient precursor for abscisic acid biosynthesis. The Plant Journal, 78 (1):80-93.
doi: 10.1111/tpj.12451 pmid: 24506237 |
[76] |
Nisar N, Li L, Lu S, Khin Nay C, Pogson Barry J. 2015. Carotenoid Metabolism in Plants. Molecular Plant, 8 (1):68-82.
doi: 10.1016/j.molp.2014.12.007 pmid: 25578273 |
[77] |
Ohmiya A, Kishimoto S, Aida R, Yoshioka S, Sumitomo K. 2006. Carotenoid cleavage dioxygenase(CmCCD4a)contributes to white color formation in chrysanthemum petals. Plant Physiology, 142 (3):1193-1201.
pmid: 16980560 |
[78] |
Park S, Kim H S, Jung Y J, Kim S H, Ji C Y, Wang Z, Jeong J C, Lee H S, Lee S Y, Kwak S S. 2016. Orange protein has a role in phytoene synthase stabilization in sweetpotato. Scientific Reports, 6:33563.
doi: 10.1038/srep33563 pmid: 27633588 |
[79] | Pogson B, McDonald K A, Truong M, Britton G, DellaPenna D. 1996. Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants. The Plant Cell, 8 (9):1627-1639. |
[80] | Ramel F, Birtic S, Ginies C, Soubigou-Taconnat L, Triantaphylides C, Havaux M. 2012. Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proceedings of the National Academy of Sciences of the United States of America, 109 (14):5535-5540. |
[81] |
Riahi L, Zoghlami N, Dereeper A, Laucou V, Mliki A, This P. 2013. Molecular characterization and evolutionary pattern of the 9-cis-epoxycarotenoid dioxygenase NCED1 gene in grapevine. Molecular Breeding, 32 (2):253-266.
doi: 10.1007/s11032-013-9866-4 URL |
[82] |
Richaud D, Stange C, Gadaleta A, Colasuonno P, Parada R, Schwember A R. 2018. Identification of Lycopene epsilon cyclase(LCYE)gene mutants to potentially increase beta-carotene content in durum wheat(Triticum turgidum L. ssp. durum)through TILLING. PLoS ONE, 13 (12):e0208948.
doi: 10.1371/journal.pone.0208948 URL |
[83] |
Rodriguez-Concepcion M, Boronat A. 2015. Breaking new ground in the regulation of the early steps of plant isoprenoid biosynthesis. Current Opinion in Plant Biology, 25:17-22.
doi: 10.1016/j.pbi.2015.04.001 URL |
[84] | Rodriguez-Concepcion M, Stange C. 2013. Biosynthesis of carotenoids in carrot:an underground story comes to light. Archives of Biochemistry & Biophysics, 539 (2):110-116. |
[85] |
Ronen G, Cohen M, Zamir D, Hirschberg J. 1999. Regulation of carotenoid biosynthesis during tomato fruit development:expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. The Plant Journal, 17 (4):341-351.
doi: 10.1046/j.1365-313X.1999.00381.x URL |
[86] |
Ruyter-Spira C, Al-Babili S, van der Krol S, Bouwmeester H. 2013. The biology of strigolactones. Trends in Plant Science, 18 (2):72-83.
doi: 10.1016/j.tplants.2012.10.003 pmid: 23182342 |
[87] |
Sagawa J M, Stanley L E, LaFountain A M, Frank H A, Liu C, Yuan Y W. 2016. An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers. The New Phytologist, 209 (3):1049-1057.
doi: 10.1111/nph.13647 URL |
[88] |
Schwartz S H, Tan B C, Gage D A, Zeevaart J A, McCarty D R. 1997. Specific oxidative cleavage of carotenoids by VP 14 of maize. Science, 276 (5320):1872-1874.
doi: 10.1126/science.276.5320.1872 pmid: 9188535 |
[89] | Shi H, Wang X, Mo X, Tang C, Zhong S, Deng X W. 2015. Arabidopsis DET1 degrades HFR1 but stabilizes PIF1 to precisely regulate seed germination. Proceedings of the National Academy of Sciences of the United States of America, 112 (12):3817-3822. |
[90] |
Shima Y, Kitagawa M, Fujisawa M, Nakano T, Kato H, Kimbara J, Kasumi T, Ito Y. 2013. Tomato FRUITFULL homologues act in fruit ripening via forming MADS-box transcription factor complexes with RIN. Plant Molecular Biology, 82 (4-5):427-438.
doi: 10.1007/s11103-013-0071-y pmid: 23677393 |
[91] |
Simkin A J, Schwartz S H, Auldridge M, Taylor M G, Klee H J. 2004. The tomato carotenoid cleavage dioxygenase 1genes contribute to the formation of the flavor volatiles beta-ionone,pseudoionone,and geranylacetone. The Plant Journal, 40 (6):882-892.
doi: 10.1111/j.1365-313X.2004.02263.x URL |
[92] |
Simpson K, Quiroz L F, Rodriguez-Concepción M, Stange C R. 2016. Differential contribution of the first two enzymes of the MEP pathway to the supply of metabolic precursors for carotenoid and chlorophyll biosynthesis in carrot(Daucus carota). Frontiers in Plant Science, 7:1344-1344.
doi: 10.3389/fpls.2016.01344 pmid: 27630663 |
[93] |
Stanley L E, Yuan Y W. 2019. Transcriptional regulation of carotenoid biosynthesis in plants:so many regulators,so little consensus. Frontiers in Plant Science, 10:1017-1017.
doi: 10.3389/fpls.2019.01017 pmid: 31447877 |
[94] |
Stanley L E, Ding B, Sun W, Mou F J, Hill C, Chen S, Yuan Y W. 2020. A tetratricopeptide repeat protein regulates carotenoid biosynthesis and chromoplast development in monkeyflower(Mimulus). The Plant Cell, 32 (5):1536-1555.
doi: 10.1105/tpc.19.00755 pmid: 32132132 |
[95] |
Stauder R, Welsch R, Camagna M, Kohlen W, Balcke G U, Tissier A, Walter M H. 2018. Strigolactone levels in dicot roots are determined by an ancestral symbiosis-regulated clade of the PHYTOENE SYNTHASE gene family. Frontiers in Plant Science, 9:255.
doi: 10.3389/fpls.2018.00255 pmid: 29545815 |
[96] |
Sun T, Li L. 2020. Toward the 'golden' era:the status in uncovering the regulatory control of carotenoid accumulation in plants. Plant Science, 290:110331.
doi: 10.1016/j.plantsci.2019.110331 URL |
[97] |
Sun T, Yuan H, Cao H, Yazdani M, Tadmor Y, Li L. 2018. Carotenoid metabolism in plants:the role of plastids. Molecular Plant, 11 (1):58-74.
doi: 10.1016/j.molp.2017.09.010 URL |
[98] |
Szymańska R, Ślesak I, Orzechowska A, Kruk J. 2017. Physiological and biochemical responses to high light and temperature stress in plants. Environmental and Experimental Botany, 139:165-177.
doi: 10.1016/j.envexpbot.2017.05.002 URL |
[99] |
Tan B C, Joseph L M, Deng W T, Liu L, Li Q B, Cline K, McCarty D R. 2003. Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. The Plant Journal, 35 (1):44-56.
doi: 10.1046/j.1365-313X.2003.01786.x URL |
[100] | Toledo-Ortiz G, Huq E, Rodriguez-Concepcion M. 2010. Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors. Proceedings of the National Academy of Sciences of the United States of America, 107 (25):11626-11631. |
[101] |
Toledo-Ortiz G, Johansson H, Lee K P, Bou-Torrent J, Stewart K, Steel G, Rodriguez-Concepcion M, Halliday K J. 2014. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. PLoS Genetics, 10 (6):e1004416.
doi: 10.1371/journal.pgen.1004416 URL |
[102] |
Tzuri G, Zhou X, Chayut N, Yuan H, Portnoy V, Meir A, Sa'ar U, Baumkoler F, Mazourek M, Lewinsohn E. 2015. A‘golden’SNP in CmOr governs the fruit flesh color of melon(Cucumis melo). The Plant Journal, 82 (2):267-279.
doi: 10.1111/tpj.12814 URL |
[103] |
Vrebalov J, Pan I L, Arroyo A J, McQuinn R, Chung M, Poole M, Rose J, Seymour G, Grandillo S, Giovannoni J. 2009. Fleshy fruit expansion and ripening are regulated by the tomato SHATTERPROOF gene TAGL1. The Plant Cell, 21 (10):3041-3062.
doi: 10.1105/tpc.109.066936 pmid: 19880793 |
[104] |
Walter M, Floss D, Strack D. 2010. Apocarotenoids:hormones,mycorrhizal metabolites and aroma volatiles. Planta, 232:1-17.
doi: 10.1007/s00425-010-1156-3 URL |
[105] |
Wang J W, Czech B, Weigel D. 2009. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell, 138 (4):738-749.
doi: 10.1016/j.cell.2009.06.014 URL |
[106] |
Wang W, Liu G, Niu H, Timko M P, Zhang H. 2014. The F-box protein COI 1 functions upstream of MYB305 to regulate primary carbohydrate metabolism in tobacco(Nicotiana tabacum L. cv. TN90). Journal of Experimental Botany, 65 (8):2147-2160.
doi: 10.1093/jxb/eru084 URL |
[107] |
Watanabe K, Oda-Yamamizo C, Sage-Ono K, Ohmiya A, Ono M. 2017. Alteration of flower colour in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4. Transgenic Research, 27 (1):25-38.
doi: 10.1007/s11248-017-0051-0 URL |
[108] |
Wei S, Yu B, Gruber M Y, Khachatourians G G, Hegedus D D, Hannoufa A. 2010. Enhanced seed carotenoid levels and branching in transgenic Brassica napus expressing the Arabidopsis miR156b gene. Journal of Agricultural and Food Chemistry, 58 (17):9572-9578.
doi: 10.1021/jf102635f URL |
[109] |
Welsch R, Beyer P, Hugueney P, Kleinig H, Von Lintig J. 2000. Regulation and activation of phytoene synthase,a key enzyme in carotenoid biosynthesis,during photomorphogenesis. Planta, 211 (6):846-854.
pmid: 11144270 |
[110] |
Welsch R, Maass D, Voegel T, Dellapenna D, Beyer P. 2007. Transcription factor RAP2.2 and its interacting partner SINAT2:stable elements in the carotenogenesis of Arabidopsis leaves. Plant Physiology, 145 (3):1073-1085.
pmid: 17873090 |
[111] |
Welsch R, Wust F, Bar C, Al-Babili S, Beyer P. 2008. A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes. Plant Physiology, 147 (1):367-380.
doi: 10.1104/pp.108.117028 pmid: 18326788 |
[112] |
Welsch R, Zhou X, Yuan H, Alvarez D, Sun T, Schlossarek D, Yang Y, Shen G, Zhang H, Rodriguez-Concepcion M. 2018. Clp protease and OR directly control the proteostasis of phytoene synthase,the crucial enzyme for carotenoid biosynthesis in Arabidopsis. Molecular Plant, 11 (1):149-162.
doi: S1674-2052(17)30336-2 pmid: 29155321 |
[113] |
Xiong C, Luo D, Lin A, Zhang C, Shan L, He P, Li B, Zhang Q, Hua B, Yuan Z. 2019. A tomato B-box protein SlBBX20 modulates carotenoid biosynthesis by directly activating PHYTOENE SYNTHASE 1,and is targeted for 26S proteasome-mediated degradation. The New Phytologist, 221 (1):279-294.
doi: 10.1111/nph.15373 URL |
[114] |
Xu P, Chukhutsina V U, Nawrocki W J, Schansker G, Croce R. 2020. Photosynthesis without β-carotene. eLife, 9:e58984.
doi: 10.7554/eLife.58984 URL |
[115] |
Yamagishi M, Kishimoto S, Nakayama M. 2010. Carotenoid composition and changes in expression of carotenoid biosynthetic genes in tepals of Asiatic hybrid lily. Plant Breeding, 129 (1):100-107.
doi: 10.1111/j.1439-0523.2009.01656.x URL |
[116] | Zeng Tuo, Li Jiawen, Zhou Li, Li Jinjin, Shi Anqi, Fu Hansen, Luo Jing, Zheng Riru, Wang Yuanyuan, Wang Caiyun. 2021. Advances in the mutualistic and antagonistic interactions between flower colors and the pollinators of ornamental plants. Acta Horticulturae Sinica, 48 (10):2001-2017. (in Chinese) |
曾拓, 李伽文, 周黎, 李进进, 史安琪, 付瀚森, 罗靖, 郑日如, 王媛媛, 王彩云. 2021. 观赏植物花色与授粉昆虫相互适应关系的研究进展. 园艺学报, 48 (10):2001-2017. | |
[117] |
Zhang B, Liu C, Wang Y, Yao X, Wang F, Wu J, King G J, Liu K. 2015. Disruption of a CAROTENOID CLEAVAGE DIOXYGENASE 4 gene converts flower colour from white to yellow in Brassica species. The New Phytologist, 206 (4):1513-1526.
doi: 10.1111/nph.13335 URL |
[118] |
Zhang Y, Li Z, Tu Y, Cheng W, Yang Y. 2018. Tomato(Solanum lycopersicum)SlIPT4,encoding an isopentenyltransferase,is involved in leaf senescence and lycopene biosynthesis during fruit ripening. BMC Plant Biology, 18 (1):107.
doi: 10.1186/s12870-018-1327-0 pmid: 29866038 |
[119] | Zhang Yin, Wan Yong, Zhang Ting, Ye Junli, Deng Xiuxin. 2020. RNAi-mediated suppression of CCD1gene impacts carotenoid accumulation in citrus calli. Acta Horticulturae Sinica, 47 (10):1982-1990. (in Chinese) |
张印, 万勇, 张婷, 叶俊丽, 邓秀新. 2020. 柑橘愈伤组织RNAi 沉默CCD1基因对其类胡萝卜素积累的影响. 园艺学报, 47 (10):1982-1990. | |
[120] | Zheng Qingdong, Wang Yi, Ou Yue, Ke Yujie, Yao Yahe, Wang Mengjie, Chen Jiayi, Ai Ye. 2021. Research advances of genes responsible for flower colors in Orchidaceae. Acta Horticulturae Sinica, 48 (10):2057-2072. (in Chinese) |
郑清冬, 王艺, 欧悦, 柯玉洁, 姚亚合, 王梦洁, 陈嘉忆, 艾叶. 2021. 兰科植物花色相关基因研究进展. 园艺学报, 48 (10):2057-2072. | |
[121] |
Zheng X, Zhu K, Sun Q, Zhang W, Wang X, Cao H, Tan M, Xie Z, Zeng Y, Ye J. 2019. Natural variation in CCD 4 promoter underpins species-specific evolution of red coloration in citrus peel. Molecular Plant, 12 (9):1294-1307.
doi: 10.1016/j.molp.2019.04.014 URL |
[122] |
Zhong S, Fei Z, Chen Y R, Zheng Y, Huang M, Vrebalov J, McQuinn R, Gapper N, Liu B, Xiang J. 2013. Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nature Biotechnology, 31 (2):154-159.
doi: 10.1038/nbt.2462 pmid: 23354102 |
[123] |
Zhou D, Shen Y, Zhou P, Fatima M, Lin J, Yue J, Zhang X, Chen L Y, Ming R. 2019. Papaya CpbHLH1/ 2 regulate carotenoid biosynthesis-related genes during papaya fruit ripening. Horticulture Research, 6:80.
doi: 10.1038/s41438-019-0162-2 URL |
[124] | Zhou X, Welsch R, Yang Y, Alvarez D, Riediger M, Yuan H, Fish T, Liu J, Thannhauser T W, Li L. 2015. Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 112 (11):3558-3563. |
[125] |
Zhu F, Luo T, Liu C, Wang Y, Yang H, Yang W, Zheng L, Xiao X, Zhang M, Xu R. 2017. An R2R3-MYB transcription factor represses the transformation of alpha- and beta-branch carotenoids by negatively regulating expression of CrBCH2and CrNCED5 in flavedo of Citrus reticulate. The New Phytologist, 216 (1):178-192.
doi: 10.1111/nph.14684 URL |
[126] |
Zhu K, Sun Q, Chen H, Mei X, Lu S, Ye J, Deng X. 2021. Ethylene activation of carotenoid biosynthesis by a novel transcription factor CsERF061. Journal of Experimental Botany, 72 (8):3137-3154.
doi: 10.1093/jxb/erab047 pmid: 33543285 |
[127] |
Zhu K J, Wu Q J, Huang Y, Ye J L, Xu Q, Deng X X. 2020. Genome-wide characterization of cis-acting elements in the promoters of key carotenoid pathway genes from the main species of genus Citrus. Horticultural Plant Journal, 6 (6):385-395.
doi: 10.1016/j.hpj.2020.10.003 URL |
[128] |
Zhu L, Bu Q, Xu X, Paik I, Huang X, Hoecker U, Deng X W, Huq E. 2015. CUL 4 forms an E3 ligase with COP1 and SPA to promote light-induced degradation of PIF1. Nature Communications, 6:7245.
doi: 10.1038/ncomms8245 URL |
[129] | Zhu M, Chen G, Zhou S, Tu Y, Wang Y, Dong T, Hu Z. 2014. A new tomato NAC(NAM/ATAF1/2/CUC2)transcription factor,SlNAC4,functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant & Cell Physiology, 55 (1):119-135. |
[130] |
Zhu Z, Chen G, Guo X, Yin W, Yu X, Hu J, Hu Z. 2017. Overexpression of SlPRE2,an atypical bHLH transcription factor,affects plant morphology and fruit pigment accumulation in tomato. Scientific Reports, 7 (1):5786.
doi: 10.1038/s41598-017-04092-y URL |
[131] |
Zhu Z, Li G, Yan C, Liu L, Zhang Q, Han Z, Li B. 2019. DRL1,encoding a NAC transcription factor,is involved in leaf senescence in grapevine. International Journal of Molecular Sciences,20,doi:10.3390/ijms20112678.
doi: 10.3390/ijms20112678 URL |
[1] | YE Zimao, SHEN Wanxia, LIU Mengyu, WANG Tong, ZHANG Xiaonan, YU Xin, LIU Xiaofeng, and ZHAO Xiaochun, . Effect of R2R3-MYB Transcription Factor CitMYB21 on Flavonoids Biosynthesis in Citrus [J]. Acta Horticulturae Sinica, 2023, 50(2): 250-264. |
[2] | ZHENG Qingbo, BAO Zeyang, LAN Qingqing, ZHOU Yuwen, ZHOU Yufei, ZHENG Caixia, and LI Xu, . Advances in Studies on Adventitious Root Formation by Juvenile- and Auxin-determined [J]. Acta Horticulturae Sinica, 2023, 50(2): 441-450. |
[3] | SHAO Fengqing, LUO Xiurong, WANG Qi, ZHANG Xianzhi, WANG Wencai. Advances in Research of DNA Methylation Regulation During Fruit Ripening [J]. Acta Horticulturae Sinica, 2023, 50(1): 197-208. |
[4] | GE Shibei, ZHANG Xuening, HAN Wenyan, LI Qingyun, LI Xin. Research Progress on Plant Flavonoids Biosynthesis and Their Anti-stress Mechanism [J]. Acta Horticulturae Sinica, 2023, 50(1): 209-224. |
[5] | XUE Weiwen, ZHOU Xianfang, ZHANG Zhaoqi, FANG Fang. Advances in Lignin Accumulation and Its Regulation on the Quality of Postharvest Fruit and Vegetables [J]. Acta Horticulturae Sinica, 2022, 49(9): 2023-2036. |
[6] | ZHANG Lugang, LU Qianqian, HE Qiong, XUE Yihua, MA Xiaomin, MA Shuai, NIE Shanshan, YANG Wenjing. Creation of Novel Germplasm of Purple-orange Heading Chinese Cabbage [J]. Acta Horticulturae Sinica, 2022, 49(7): 1582-1588. |
[7] | LU Tao, YU Hongjun, LI Qiang, JIANG Weijie. Effects of Leaf and Fruit Quantity Regulation on Growth,Fruit Quality and Yield of Tomato [J]. Acta Horticulturae Sinica, 2022, 49(6): 1261-1274. |
[8] | WANG Yan, SUN Zheng, FENG Shan, YUAN Xinyi, ZHONG Linlin, ZENG Yunliu, FU Xiaopeng, CHENG Yunjiang, Bao Manzhu, ZHANG Fan. The Negative Regulation of DcERF-1 on Senescence of Cut Carnation [J]. Acta Horticulturae Sinica, 2022, 49(6): 1313-1326. |
[9] | LIU Shangjia, L& Yao, CAO Bili, CHEN Zijing, GAO Song, XU Kun. Effects of High Temperature and Waterlogging Stress on Photosynthesis and Nitrogen Metabolism of Ginger Leaves [J]. Acta Horticulturae Sinica, 2022, 49(5): 1073-1080. |
[10] | ZHOU Xuzixin, YANG Wei, MAO Meiqin, XUE Yanbin, MA Jun. Identification of Pigment Components and Key Genes in Carotenoid Pathway in Mutants of Chimeric Ananas comosus var. bracteatus [J]. Acta Horticulturae Sinica, 2022, 49(5): 1081-1091. |
[11] | XIANG Miaolian, WU Fan, LI Shucheng, MA Qiaoli, WANG Yinbao, XIAO Liuhua, CHEN Jinyin, CHEN Ming. Exogenous Melatonin Regulates Reactive Oxygen Metabolism to Induce Resistance of Postharvest Pear Fruit to Black Spot [J]. Acta Horticulturae Sinica, 2022, 49(5): 1102-1110. |
[12] | HE Jingjuan, FAN Yanping. Progress in Composition and Metabolic Regulation of Carotenoids Related to Floral Color [J]. Acta Horticulturae Sinica, 2022, 49(5): 1162-1172. |
[13] | WU Kongjie, HU Chengxiao, TAN Qiling, SUN Xuecheng, ZHAO Xiaohu, WU Songwei. Research Advanced on Character of Sugar Accumulation and Mechanism of Sucrose Transport in Citrus Fruit [J]. Acta Horticulturae Sinica, 2022, 49(12): 2543-2558. |
[14] | ZHAO Yong, ZHU Hongju, YANG Dongdong, GONG Chengsheng, LIU Wenge. Research Progress of Citric Acid Metabolism in the Fruit [J]. Acta Horticulturae Sinica, 2022, 49(12): 2579-2596. |
[15] | LI Junzhang, QIN Yuan, XIAO Qiang, AN Chang, LIAO Jingyi, ZHENG Ping. Recent Advances in Molecular Biology of Crassulacean Acid Metabolism Plants and the Application Potential of CAM Engineering [J]. Acta Horticulturae Sinica, 2022, 49(12): 2597-2610. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd