Acta Horticulturae Sinica ›› 2024, Vol. 51 ›› Issue (8): 1964-1976.doi: 10.16420/j.issn.0513-353x.2023-0981
• Reviews • Previous Articles Next Articles
LI Yadi1, WANG Hanxiang2, HU Baigeng4, YANG Hui5, HU Xinxi1, XIONG Xingyao3,*(), WANG Wanxing2,*(
)
Received:
2024-03-25
Revised:
2024-05-24
Online:
2024-08-25
Published:
2024-08-22
Contact:
XIONG Xingyao, WANG Wanxing
LI Yadi, WANG Hanxiang, HU Baigeng, YANG Hui, HU Xinxi, XIONG Xingyao, WANG Wanxing. Research Progress on Plant Growth Promoting Rhizobacteria to Alleviate Abiotic Stress Tolerance of Horticultural Crops[J]. Acta Horticulturae Sinica, 2024, 51(8): 1964-1976.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2023-0981
促生机制 Promoting mechanism | 作物 Crop | 植物根际促生菌 Plant growth-promoting rhizobacteria | 主要功能 Key function | 参考文献 Reference |
---|---|---|---|---|
促进养分吸收 Promote nutrient absorption | 苜蓿 Medicago sativa L. | 草木樨中华根瘤菌 Sinorhizobium meliloti | 促进N、P吸收,维持营养平衡 Promote N,P absorption,maintain nutritional balance | Duan et al., |
枣 Ziziphus jujuba Mill. | 科萨克氏菌 Kosakonia Radicincitans KR-17 | 改善植物矿物质养分(Na、K、Ca、Mg、Zn、Fe、Cu、P和N),增加生物量 Improve plant mineral nutrients (Na,K,Ca,Mg,Zn,Fe,Cu,P and N) and increase biomass | Shahid et al., | |
莴苣 Lactuca sativa | 根瘤菌Rhizobium laguerreae FB206 | 促进N、P吸收 Promote N,P absorption | Ayuso-Calles et al., | |
产生植物激素 Produce plant hormones | 黄芪 Astragali radix | 假单胞菌 Pseudomonas poae s61 | 降低丙二醛含量,增加根系生物量和根冠比 Reduce malondialdehyde content,increase root biomass and root-shoot ratio | Sun et al., |
番茄Solanum lycopersicum L. | 地衣芽孢杆菌 Bacillus licheniformis NJ04 | 产生IAA诱导根系生长 IAA induced root growth | James et al., | |
黄瓜Cucumis sativus L. | 肠杆菌 Enterobacter sp. SE992 | 产生IAA,促进植物代谢,增加生物量 IAA is produced to promote plant metabolism and increase biomass | Kang et al., | |
促进光合作用 Promote photosynthesis | 水杉接骨木 Sambucus williamsii Hance | 醋酸钙不动杆菌 Acinetobacter calcoaceticus X128 | 促进气孔打开,提高光合速率 Promote stomatal opening and increase photosynthetic rate | Liu et al., |
甜椒 Capsicum annuum L. | 苏云金芽孢杆菌 Bacillus thuringiensis MH161336 | 增加叶绿素含量和叶绿素荧光参数,促进果实增产 Increase chlorophyll content and chlorophyll fluorescence parameters to promote fruit yield | Alkahtani et al., | |
番茄 Solanum lycopersicum L. | 丁香假单胞菌 Pseudomonas syringae | 提高光合效率,增加光合色素、相容溶质和酚类物质的浓度,减少丙二醛含量 The photosynthetic efficiency was increased,the concentrations of photosynthetic pigments,compatible solutes and phenols were increased,and the content of malondialdehyde was decreased | Lucas et al., | |
激活氧化防御机制 Activate the oxidation defense mechanism | 甘蓝 Brassica oleracea L. | 贪噬菌 Variovorax sp. YNA59 | 调节内源性植物激素(ABA、JA和SA)和抗氧化剂(APX、SOD、CAT和GPX)水平 Regulates levels of endogenous plant hormones(ABA,JA and SA)and antioxidants(APX,SOD,CAT and GPX) | Kim et al., |
香菜 Coriandrum sativum L. | 荧光假单胞菌 Pseudomonas fluorescens | 影响抗氧化剂活性,降低氧化应激反应 Affect antioxidant activity,reduce oxidative stress response | Fatemi et al., | |
向日葵 Helianthus annuus linn. | 假单胞菌 Pseudomonas | 降低丙二醛含量,提高抗氧化剂活性,促进植物生长 Reduce malondialdehyde content,improve antioxidant activity,and promote plant growth | Saleem et al., | |
豇豆 Vigna unguiculata (L.) Walp. | 阿氏芽孢杆菌Bacillus aryabhattai | 提高脯氨酸含量,减少膜脂质的过氧化,增强豇豆植物膜的完整性 Increase proline content,reduce membrane lipid peroxidation,and enhance the integrity of cowpea plant membrane | Abiala & Sahoo, | |
番茄 Solanum lycopersicum L. | 枯草芽孢杆菌 Bacillus subtilis Rhizo SF 48 | 产生ACC脱氨酶,避免干旱引起的氧化损伤,促进植物生长 ACC deaminase is produced to avoid oxidative damage caused by drought and promote plant growth | Gowtham et al., | |
积累渗透调节物质 Accumulation of osmotic adjustment substances | 豌豆 Pisum sativum L. | 铜绿假单胞菌 Pseudomonas aeruginosa GKP KS2_7 枯草芽孢杆菌 Bacillus subtilis M BD 133 | 积累总糖、还原糖、蛋白质等渗透保护剂 Accumulation of total sugar,reducing sugar,protein and other osmotic protective agents | Gupta et al., |
积累渗透调节物质 Accumulation of osmotic adjustment substances | 人参 Panax ginseng C. A. Mey. | 巴拿马根瘤菌 Rhizobium panacihumi DCY116T | 增加脯氨酸,酚类和糖含量 Increased proline,phenolic and sugar content | Kang et al., |
番茄Solanum lycopersicum L. | 蜡样芽孢杆菌Bacillus cereus | 增加胞外多糖和脯氨酸含量,促进根系生长,增加生物量 Increase the content of extracellular polysaccharide and proline,promote root growth and increase biomass | Mukhtar et al., | |
诱导抗性基因 Induced resistance genes | 鹰嘴豆 Cicer arietinum L. | 巴西固氮螺菌 Azospirillum brasilense EMCC1454 | 上调了活性氧清除基因(CAT、APX和SOD)以及Cr胁迫耐受基因(CHS、DREB2A、CHI和PAL)的表达 The expression of active oxygen scavenging genes (CAT,APX and SOD) and Cr stress tolerance genes (CHS,DREB2A,CHI and PAL) were up-regulated | El-Ballat et al., |
恶臭假单胞菌Pseudomonas putida | 调节应激反应性miRNA及其靶基因(miR159、miR160、miR166、miR167、miR169、miR171、miR172、miR393和miR396)的表达 Regulates the expression of stress-responsive miRNAs and their target genes (miR159,miR160,miR166,miR167,miR169,miR171,miR172,miR393 and miR396 ) | Jatan et al., | ||
芥菜 Brassica juncea | 铜绿假单胞菌 Pseudomonas aeruginosa MTCC7195 唐菖蒲伯克霍尔德菌 Burkholderia gladioli | 上调关键抗氧化酶基因SOD、CAT、POD、APOX、GR、DHAR和GST的表达,增加生物量 The expression of key antioxidant enzyme genes SOD,CAT,POD,APOX,GR,DHAR and GST were up-regulated,and the biomass was increased. | Sharma et al., | |
招募有益微生物 Recruit beneficial microorganisms | 白菜 Brassica chinensis L. | 假交替单胞菌 Pseudoalteromonas agarivorans Hao | 产生胞外多糖,通过促进植物生长的细菌(如链霉菌和鞘氨醇单胞菌)的丰度来降低土壤铅的有效性并缓解铅胁迫 The production of extracellular polysaccharides reduces the effectiveness of soil lead and alleviates lead stress by promoting the abundance of bacteria (such as Streptomyces and Sphingomonas) that promote plant growth | Cao et al., |
龙葵 Solanum nigrum Linn. | 不动杆菌 Acinetobacter pittii 大肠杆菌Escherichia coli | 丰富了促进植物生长和与根际土壤中Cd动员相关的类群 It enriched the groups related to promoting plant growth and Cd mobilization in rhizosphere soil | He et al., |
Table 1 Growth promoting mechanism and effect of plant growth-promoting rhizobacteria on alleviating abiotic stress in horticultural corps
促生机制 Promoting mechanism | 作物 Crop | 植物根际促生菌 Plant growth-promoting rhizobacteria | 主要功能 Key function | 参考文献 Reference |
---|---|---|---|---|
促进养分吸收 Promote nutrient absorption | 苜蓿 Medicago sativa L. | 草木樨中华根瘤菌 Sinorhizobium meliloti | 促进N、P吸收,维持营养平衡 Promote N,P absorption,maintain nutritional balance | Duan et al., |
枣 Ziziphus jujuba Mill. | 科萨克氏菌 Kosakonia Radicincitans KR-17 | 改善植物矿物质养分(Na、K、Ca、Mg、Zn、Fe、Cu、P和N),增加生物量 Improve plant mineral nutrients (Na,K,Ca,Mg,Zn,Fe,Cu,P and N) and increase biomass | Shahid et al., | |
莴苣 Lactuca sativa | 根瘤菌Rhizobium laguerreae FB206 | 促进N、P吸收 Promote N,P absorption | Ayuso-Calles et al., | |
产生植物激素 Produce plant hormones | 黄芪 Astragali radix | 假单胞菌 Pseudomonas poae s61 | 降低丙二醛含量,增加根系生物量和根冠比 Reduce malondialdehyde content,increase root biomass and root-shoot ratio | Sun et al., |
番茄Solanum lycopersicum L. | 地衣芽孢杆菌 Bacillus licheniformis NJ04 | 产生IAA诱导根系生长 IAA induced root growth | James et al., | |
黄瓜Cucumis sativus L. | 肠杆菌 Enterobacter sp. SE992 | 产生IAA,促进植物代谢,增加生物量 IAA is produced to promote plant metabolism and increase biomass | Kang et al., | |
促进光合作用 Promote photosynthesis | 水杉接骨木 Sambucus williamsii Hance | 醋酸钙不动杆菌 Acinetobacter calcoaceticus X128 | 促进气孔打开,提高光合速率 Promote stomatal opening and increase photosynthetic rate | Liu et al., |
甜椒 Capsicum annuum L. | 苏云金芽孢杆菌 Bacillus thuringiensis MH161336 | 增加叶绿素含量和叶绿素荧光参数,促进果实增产 Increase chlorophyll content and chlorophyll fluorescence parameters to promote fruit yield | Alkahtani et al., | |
番茄 Solanum lycopersicum L. | 丁香假单胞菌 Pseudomonas syringae | 提高光合效率,增加光合色素、相容溶质和酚类物质的浓度,减少丙二醛含量 The photosynthetic efficiency was increased,the concentrations of photosynthetic pigments,compatible solutes and phenols were increased,and the content of malondialdehyde was decreased | Lucas et al., | |
激活氧化防御机制 Activate the oxidation defense mechanism | 甘蓝 Brassica oleracea L. | 贪噬菌 Variovorax sp. YNA59 | 调节内源性植物激素(ABA、JA和SA)和抗氧化剂(APX、SOD、CAT和GPX)水平 Regulates levels of endogenous plant hormones(ABA,JA and SA)and antioxidants(APX,SOD,CAT and GPX) | Kim et al., |
香菜 Coriandrum sativum L. | 荧光假单胞菌 Pseudomonas fluorescens | 影响抗氧化剂活性,降低氧化应激反应 Affect antioxidant activity,reduce oxidative stress response | Fatemi et al., | |
向日葵 Helianthus annuus linn. | 假单胞菌 Pseudomonas | 降低丙二醛含量,提高抗氧化剂活性,促进植物生长 Reduce malondialdehyde content,improve antioxidant activity,and promote plant growth | Saleem et al., | |
豇豆 Vigna unguiculata (L.) Walp. | 阿氏芽孢杆菌Bacillus aryabhattai | 提高脯氨酸含量,减少膜脂质的过氧化,增强豇豆植物膜的完整性 Increase proline content,reduce membrane lipid peroxidation,and enhance the integrity of cowpea plant membrane | Abiala & Sahoo, | |
番茄 Solanum lycopersicum L. | 枯草芽孢杆菌 Bacillus subtilis Rhizo SF 48 | 产生ACC脱氨酶,避免干旱引起的氧化损伤,促进植物生长 ACC deaminase is produced to avoid oxidative damage caused by drought and promote plant growth | Gowtham et al., | |
积累渗透调节物质 Accumulation of osmotic adjustment substances | 豌豆 Pisum sativum L. | 铜绿假单胞菌 Pseudomonas aeruginosa GKP KS2_7 枯草芽孢杆菌 Bacillus subtilis M BD 133 | 积累总糖、还原糖、蛋白质等渗透保护剂 Accumulation of total sugar,reducing sugar,protein and other osmotic protective agents | Gupta et al., |
积累渗透调节物质 Accumulation of osmotic adjustment substances | 人参 Panax ginseng C. A. Mey. | 巴拿马根瘤菌 Rhizobium panacihumi DCY116T | 增加脯氨酸,酚类和糖含量 Increased proline,phenolic and sugar content | Kang et al., |
番茄Solanum lycopersicum L. | 蜡样芽孢杆菌Bacillus cereus | 增加胞外多糖和脯氨酸含量,促进根系生长,增加生物量 Increase the content of extracellular polysaccharide and proline,promote root growth and increase biomass | Mukhtar et al., | |
诱导抗性基因 Induced resistance genes | 鹰嘴豆 Cicer arietinum L. | 巴西固氮螺菌 Azospirillum brasilense EMCC1454 | 上调了活性氧清除基因(CAT、APX和SOD)以及Cr胁迫耐受基因(CHS、DREB2A、CHI和PAL)的表达 The expression of active oxygen scavenging genes (CAT,APX and SOD) and Cr stress tolerance genes (CHS,DREB2A,CHI and PAL) were up-regulated | El-Ballat et al., |
恶臭假单胞菌Pseudomonas putida | 调节应激反应性miRNA及其靶基因(miR159、miR160、miR166、miR167、miR169、miR171、miR172、miR393和miR396)的表达 Regulates the expression of stress-responsive miRNAs and their target genes (miR159,miR160,miR166,miR167,miR169,miR171,miR172,miR393 and miR396 ) | Jatan et al., | ||
芥菜 Brassica juncea | 铜绿假单胞菌 Pseudomonas aeruginosa MTCC7195 唐菖蒲伯克霍尔德菌 Burkholderia gladioli | 上调关键抗氧化酶基因SOD、CAT、POD、APOX、GR、DHAR和GST的表达,增加生物量 The expression of key antioxidant enzyme genes SOD,CAT,POD,APOX,GR,DHAR and GST were up-regulated,and the biomass was increased. | Sharma et al., | |
招募有益微生物 Recruit beneficial microorganisms | 白菜 Brassica chinensis L. | 假交替单胞菌 Pseudoalteromonas agarivorans Hao | 产生胞外多糖,通过促进植物生长的细菌(如链霉菌和鞘氨醇单胞菌)的丰度来降低土壤铅的有效性并缓解铅胁迫 The production of extracellular polysaccharides reduces the effectiveness of soil lead and alleviates lead stress by promoting the abundance of bacteria (such as Streptomyces and Sphingomonas) that promote plant growth | Cao et al., |
龙葵 Solanum nigrum Linn. | 不动杆菌 Acinetobacter pittii 大肠杆菌Escherichia coli | 丰富了促进植物生长和与根际土壤中Cd动员相关的类群 It enriched the groups related to promoting plant growth and Cd mobilization in rhizosphere soil | He et al., |
[18] |
|
[19] |
doi: 10.1007/s11104-018-3862-8 |
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
国辉, 毛志泉, 刘训理. 2011. 植物与微生物互作的研究进展. 中国农学通报, 27 (9):28-33.
|
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[32] |
|
[33] |
doi: S0888-7543(18)30016-8 pmid: 29331610 |
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[8] |
|
[9] |
doi: 10.1186/s40168-020-00833-w pmid: 32305066 |
[10] |
|
[11] |
|
[12] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
李莹, 熊立瑰, 黄芳芳, 李娟, 黄建安, 刘仲华. 2022. 园艺植物叶际微生物研究进展. 植物生理学报, 58 (10):1829-1839.
|
|
[46] |
|
[47] |
|
刘长风, 段士鑫, 张晓宇, 王椰, 王天楚. 2021. 植物根系分泌物在重金属胁迫下的响应研究进展. 福建农业学报, 36 (12):1506-1514.
|
|
[48] |
doi: 10.1186/s13568-019-0899-x pmid: 31673866 |
[49] |
|
[50] |
|
[51] |
|
马莹, 曹梦圆, 石孝均, 李振轮, 骆永明. 2022. 植物促生菌的功能及在可持续农业中的应用. 土壤学报, 60 (6):1555-1568.
|
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
doi: 10.16420/j.issn.0513-353x.2022-0965 |
潘纪源, 董庆龙, 温海彬, 刘亚南, 王晓洁, 张雪梅, 刘文菊, 陆秀君. 2023. 巨大芽孢杆菌菌剂对苹果产量、品质及土壤微生物的影响. 园艺学报, 50 (11):2453-2465.
doi: 10.16420/j.issn.0513-353x.2022-0965 |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
doi: 10.1080/17429145.2021.1908634 |
[74] |
|
[75] |
|
[76] |
doi: 10.1007/s00299-018-2328-z pmid: 30062625 |
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
徐雪东, 张超, 秦成, 苏芸芸, 周洁, 张海, 张立新. 2019. 干旱下接种根际促生细菌对苹果实生苗光合和生理生态特性的影响. 应用生态学报, 30 (10):3501-3508.
doi: 10.13287/j.1001-9332.201910.024 |
|
[83] |
|
杨露, 辛建攀, 田如男. 2022. 根际微生物对植物重金属胁迫的缓解作用及其机理研究进展. 生物技术通报, 38 (3):213-225.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0811 |
|
[84] |
|
杨明洁, 张晓曼, 赵蔓. 2022. 镉胁迫下根际促生菌对紫花地丁生长和镉含量的影响. 西南农业学报,35:831-839.
|
|
[85] |
|
[13] |
|
陈柯霖, 杜昊轩, 李昕, 吴晓琳, 潘美晴, 尹冬梅, 倪迪安, 栾东涛, 张志国. 2022. 萱草响应非生物胁迫的研究进展. 热带亚热带植物学报, 30 (6):801-812.
|
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[86] |
|
[87] |
|
[88] |
|
[1] | LI Yachen, ZHENG Yanmei, SONG Wenpei, LI Dawei, LIANG Hong, and ZHANG Xianzhi, . Research Progress on the Role of Hydrogen-Rich Water in Plant Growth and Development and Stress Response [J]. Acta Horticulturae Sinica, 2024, 51(7): 1489-1500. |
[2] | LUO Xinrui, ZHANG Xiaoxu, WANG Yuping, WANG Zhi, MA Yuanyuan, ZHOU Bingyue. Identification and Expression Analysis of Trihelix Gene Family in Common Bean [J]. Acta Horticulturae Sinica, 2024, 51(12): 2775-2790. |
[3] | ZHANG Pan, YU Yongxu, CAO Linggai, ZHU Guangbing, WU Wei, GUO Yushuang, YIN Guoying, JIA Meng’ao. Research Progress of m6A Methylation Modification Response to Plant Biotic and Abiotic Stresses [J]. Acta Horticulturae Sinica, 2023, 50(9): 1841-1853. |
[4] | WEI Jianming, LI Yunzhou, LIANG Yan. Advances in Research on Improving Tomato Disease Resistance and Stress Resistance by Grafting Technology [J]. Acta Horticulturae Sinica, 2023, 50(9): 1997-2014. |
[5] | SHEN Yuxiao, ZOU Jinyu, LUO Ping, SHANG Wenqian, LI Yonghua, HE Songlin, WANG Zheng, SHI Liyun. Genome-wide Identification and Abiotic Stress Response Analysis of PP2C Family Genes in Rosa chinensis‘Old Blush’ [J]. Acta Horticulturae Sinica, 2023, 50(10): 2139-2156. |
[6] | XU Xiaoping, CAO Qingying, CAI Roudi, GUAN Qingxu, ZHANG Zihao, CHEN Yukun, XU HAN, LIN Yuling, LAI Zhongxiong. Gene Cloning and Expression Analysis of miR408 and Its Target DlLAC12 in Globular Embryo Development and Abiotic Stress in Dimocarpus longan [J]. Acta Horticulturae Sinica, 2022, 49(9): 1866-1882. |
[7] | JIA Xin, ZENG Zhen, CHEN Yue, FENG Hui, LÜ Yingmin, ZHAO Shiwei. Cloning and Expression Analysis of RcDREB2A Gene in Rosa chinensis‘Old Blush’ [J]. Acta Horticulturae Sinica, 2022, 49(9): 1945-1956. |
[8] | MA Weifeng, LI Yanmei, MA Zonghuan, CHEN Baihong, MAO Juan. Identification of Apple POD Gene Family and Functional Analysis of MdPOD15 Gene [J]. Acta Horticulturae Sinica, 2022, 49(6): 1181-1199. |
[9] | ZHANG Qianwen, YANG Xihang, LI Feng, DENG Yingtian. Advances in miRNA-mediated Growth and Development Regulation in Horticultural Crops [J]. Acta Horticulturae Sinica, 2022, 49(5): 1145-1161. |
[10] | NIE Wenfeng, WANG Jinyu, GAO Chunjuan, CHEN Xuehao. A Review on Epigenetic Modifications in Regulating Fruit Development of Horticultural Crops [J]. Acta Horticulturae Sinica, 2022, 49(3): 671-686. |
[11] | ZHOU Zhiming, YANG Jiabao, ZHANG Cheng, ZENG Linglu, MENG Wanqiu, SUN Li. Genome-wide Identification and Expression Analyses of Long-chain Acyl-CoA Synthetases Under Abiotic Stresses in Helianthus annuus [J]. Acta Horticulturae Sinica, 2022, 49(2): 352-364. |
[12] | PENG Yinxia, ZHANG Ying, ZHU Kangyou, SUN Xin, ZHANG Kemin, SUN Zhouping, QI Mingfang, LI Tianlai, WANG Feng. Light Regulation of Ascorbic Acid Biosynthesis in Horticultural Crops [J]. Acta Horticulturae Sinica, 2022, 49(11): 2502-2518. |
[13] | XIE Siyi, ZHOU Chengzhe, ZHU Chen, ZHAN Dongmei, CHEN Lan, WU Zuchun, LAI Zhongxiong, GUO Yuqiong. Genome-wide Identification and Expression Analysis of CsTIFY Transcription Factor Family Under Abiotic Stress and Hormone Treatments in Camellia sinensis [J]. Acta Horticulturae Sinica, 2022, 49(1): 100-116. |
[14] | LIANG Zhile, WANG Kuanhong, YANG Jing, ZHU Biao, ZHU Zhujun. The Importance of Glucosinolates on Plant Response to Abiotic Stress in Brassicaceae Family [J]. Acta Horticulturae Sinica, 2022, 49(1): 200-220. |
[15] | YANG Tianchen, CHEN Xiaotong, LÜ Ke, ZHANG Di. Expression Pattern and Regulation Mechanism of ApSK3 Dehydrin (Agapanthus praecox)Response to Abiotic Stress and Hormone Signals [J]. Acta Horticulturae Sinica, 2021, 48(8): 1565-1578. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd