https://www.ahs.ac.cn/images/0513-353X/images/top-banner1.jpg|#|苹果
https://www.ahs.ac.cn/images/0513-353X/images/top-banner2.jpg|#|甘蓝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner3.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner4.jpg|#|灵芝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner5.jpg|#|桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner6.jpg|#|黄瓜
https://www.ahs.ac.cn/images/0513-353X/images/top-banner7.jpg|#|蝴蝶兰
https://www.ahs.ac.cn/images/0513-353X/images/top-banner8.jpg|#|樱桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner9.jpg|#|观赏荷花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner10.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner11.jpg|#|月季
https://www.ahs.ac.cn/images/0513-353X/images/top-banner12.jpg|#|菊花

Acta Horticulturae Sinica ›› 2023, Vol. 50 ›› Issue (2): 331-344.doi: 10.16420/j.issn.0513-353x.2021-0870

• Research Papers • Previous Articles     Next Articles

The Emitted Pattern Analysis of Flower Volatiles and Cloning of PsGDS Gene in Tree Peony Cultivar‘High Noon’

LI Ruiya, SONG Chengwei, NIU Tongfei, WEI Zhenzhen, GUO Lili, HOU Xiaogai*()   

  1. Key Labboratory of Efficient Cultivation and Comprehensive Utilization of Peony in Henan Province,College of Agricultural College,Henan University of Science and Technology,Luoyang,Henan 471023,China
  • Received:2022-08-30 Revised:2022-10-20 Online:2023-02-25 Published:2023-03-06
  • Contact: *(E-mail:hkdhxg@haust.edu.cn)

Abstract:

The regular patterns of volatile composition and relative content were analyzed with dynamic headspace bagging-adsorption and GC-MS technology in‘High Noon’of tree peony cultivar. The results showed that 34 compounds were detected and the sequences of the total relative content of the volatiles in different flowering periods was as follows:full blooming > initial flowering > decay period > blooming stage,and the highest relative content was in petals. The change during one day showed an increasing firstly and then a decrease,and reached the peak between 14:00—16:00. The linalool,2,6-Octadiene-1-diol-3,7-dimethyl,germacrene D were the main floral ingredients in the volatile of tree peony cultivar‘High Noon’. In addition, the gene Germacrene D synthasePsGDS,GenBank accession No. MZ513465)was cloned and identified from tree peony cultivar‘High Noon’. The open reading frame of PsGDS is 1 725 bp,encoding 574 amino acids. The sequence similarity analysis between PsGDS and GDS of other species showed that the sequence similarity reached 52.6% on average,and phylogenetic analysis revealed that PsGDS has a close evolutionary relationship with woody plants,among which,grapes is the closest,and herbs is farther. The expression level in‘High Noon’is higher than other peony varieties,and the expression pattern of PsGDS showed the PsGDS was expressed the highest at the initial flowering stage of different flowering period,was also the highest at the petals of different flowering periods,and at the time period from 12:00 to 14:00 during one day. The expression pattern of PsGDS was consistent with GDS,showing a very significant positive correlation. Additionally,the analysis of subcellular localization of PsGDS revealed that PsGDS was mainly localized in the cytoplasm. These results indicated that the PsGDS was the key gene to control the volatilization of germacrene D in‘High Noon’,and play a catalytic role in the cytoplasm to catalyze the production of germacrene D.

Key words: tree peony, flower, emitted volatile, Germacrene D synthase

CLC Number: