Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (10): 2263-2272.doi: 10.16420/j.issn.0513-353x.2022-0578
• Research Papers • Previous Articles Next Articles
LIU Zhiqiang1, CAI Hexu2, and CUI Xia1,**()
Received:
2022-06-07
Revised:
2022-08-15
Online:
2022-10-25
Published:
2022-10-31
Contact:
and CUI Xia
E-mail:cuixia@caas.cn
CLC Number:
LIU Zhiqiang, CAI Hexu, and CUI Xia. A Chromosome-level Genome Assembly of Solanum pimpinellifolium[J]. Acta Horticulturae Sinica, 2022, 49(10): 2263-2272.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2022-0578
标记名称 Marker name | 染色体 Chromosome | 物理位置/bp Position | 正向引物(5′-3′) Forward primer | 反向引物(5′-3′) Reverse primer |
---|---|---|---|---|
Insertion1 | 2 | 23799464 | TACTTGCTAACAGTGTTGAAGG | CTACTTGACAGTCGGCTCTC |
Insertion2 | 3 | 3620314 | ACACCTCGTTACTTGACTAA | AGATAGGAGAGTGACAAACA |
Insertion3 | 8 | 54793793 | TTGGACTTGCTCAACATCAGAA | TTGTTCACTATGCCTAGATCCTAC |
Deletion1 | 1 | 18838033 | TTTAGGTGCTGAGGTTCTTTCT | AACTAGACTGCCAAGGTATGC |
Deletion2 | 9 | 65541719 | TGACCCTCGTACTCCAATGAA | GGTTGAAATTCCTCTGTCCTTAATC |
INV-F1/R1 | 9 | 15652525 | GAGACTTAATAAGTGTGCACG | GATAGATTGTTGTGCCTCATTCCA |
INV-F2/R2 | 9 | 15653722 | GAAGAAGAGCACGAAGGTCAAG | CGCACTCAACAAGAATCACATTAC |
Table 1 List of primers
标记名称 Marker name | 染色体 Chromosome | 物理位置/bp Position | 正向引物(5′-3′) Forward primer | 反向引物(5′-3′) Reverse primer |
---|---|---|---|---|
Insertion1 | 2 | 23799464 | TACTTGCTAACAGTGTTGAAGG | CTACTTGACAGTCGGCTCTC |
Insertion2 | 3 | 3620314 | ACACCTCGTTACTTGACTAA | AGATAGGAGAGTGACAAACA |
Insertion3 | 8 | 54793793 | TTGGACTTGCTCAACATCAGAA | TTGTTCACTATGCCTAGATCCTAC |
Deletion1 | 1 | 18838033 | TTTAGGTGCTGAGGTTCTTTCT | AACTAGACTGCCAAGGTATGC |
Deletion2 | 9 | 65541719 | TGACCCTCGTACTCCAATGAA | GGTTGAAATTCCTCTGTCCTTAATC |
INV-F1/R1 | 9 | 15652525 | GAGACTTAATAAGTGTGCACG | GATAGATTGTTGTGCCTCATTCCA |
INV-F2/R2 | 9 | 15653722 | GAAGAAGAGCACGAAGGTCAAG | CGCACTCAACAAGAATCACATTAC |
项目 Term | HiFi读长片段数 HiFi reads count | 从头组装重叠群数 De novo assembly contigs count |
---|---|---|
总数目Total number | 936 162 | 924 |
总碱基数/ bp Total bases | 15 560 290 479 | 848 409 336 |
最小长度/ bp Minimum length | 804 | 14 243 |
最大长度/ bp Maximum length | 36 414 | 45 069 587 |
平均长度/ bp Average length | 16 621 | 918 192 |
N50长度/ bp N50 | 16 665 | 12 818 588 |
N90长度/ bp N90 | 15 110 | 3 172 915 |
Table 2 Count of HiFi reads and de novo assembly contigs
项目 Term | HiFi读长片段数 HiFi reads count | 从头组装重叠群数 De novo assembly contigs count |
---|---|---|
总数目Total number | 936 162 | 924 |
总碱基数/ bp Total bases | 15 560 290 479 | 848 409 336 |
最小长度/ bp Minimum length | 804 | 14 243 |
最大长度/ bp Maximum length | 36 414 | 45 069 587 |
平均长度/ bp Average length | 16 621 | 918 192 |
N50长度/ bp N50 | 16 665 | 12 818 588 |
N90长度/ bp N90 | 15 110 | 3 172 915 |
评估类型 Type of assessment | 有胚植物(1 614 BUSCOs) Embryophyta | 茄科植物(5 950 BUSCOs) Solanaceae | ||
---|---|---|---|---|
数量Number | 百分比Percent | 数量Number | 百分比Percent | |
完整的BUSCO片段Complete BUSCOs | 1 591 | 98.6 | 5 849 | 98.3 |
完整的单拷贝BUSCO片段Complete and single-copy BUSCOs | 1 580 | 97.9 | 5 741 | 96.5 |
完整的重复BUSCO片段Complete and duplicated BUSCOs | 11 | 0.7 | 108 | 1.8 |
不完整的BUSCO片段Fragmented BUSCOs | 8 | 0.5 | 12 | 0.2 |
缺失的BUSCO片段Missing BUSCOs | 15 | 0.9 | 89 | 1.5 |
Table 3 PI365967 genome assessed by BUSCO pipeline
评估类型 Type of assessment | 有胚植物(1 614 BUSCOs) Embryophyta | 茄科植物(5 950 BUSCOs) Solanaceae | ||
---|---|---|---|---|
数量Number | 百分比Percent | 数量Number | 百分比Percent | |
完整的BUSCO片段Complete BUSCOs | 1 591 | 98.6 | 5 849 | 98.3 |
完整的单拷贝BUSCO片段Complete and single-copy BUSCOs | 1 580 | 97.9 | 5 741 | 96.5 |
完整的重复BUSCO片段Complete and duplicated BUSCOs | 11 | 0.7 | 108 | 1.8 |
不完整的BUSCO片段Fragmented BUSCOs | 8 | 0.5 | 12 | 0.2 |
缺失的BUSCO片段Missing BUSCOs | 15 | 0.9 | 89 | 1.5 |
Fig. 3 Comparative analysis of PI365967 and Heinz1706 genome sequences A:The count of five types structure variations between PI365967 and Heinz1706 genome;B:Size distribution of insertions and deletions in the genome;C:Co-linearity analysis of two genome(The red asterisk indicates an inversion for experimental verification).
Fig. 4 Validation of the inversion,insertion and deletion between PI365967 and Heinz1706 A:Validation of inversion on chromosome 09;B:Validation of three insertions and two deletions.
[1] |
Alonge M, Soyk S, Ramakrishnan S, Wang X G, Goodwin S, Sedlazeck F J, Lippman Z B, Schatz M C. 2019. RaGOO:fast and accurate reference-guided scaffolding of draft genomes, Genome Biology, 20:224.
doi: 10.1186/s13059-019-1829-6 URL |
[2] |
Alonge M, Wang X G, Benoit M, Soyk S, Pereira L, Zhang L, Suresh H, Ramakrishnan S, Maumus F, Ciren D, Levy Y, Harel T H, Shalev-Schlosser G, Amsellem Z, Razifard H, Caicedo A L, Tieman D M, Klee H, Kirsche M, Aganezov S, Ranallo-Benavidez T R, Lemmon Z H, Kim J, Robitaille G, Kramer M, Goodwin S, McCombie W R, Hutton S, van Eck J, Gillis J, Eshed Y, Sedlazeck F J, van der Knaap E, Schatz M C, Lippman Z B. 2020. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell, 182 (1):145-161.
doi: S0092-8674(20)30616-4 pmid: 32553272 |
[3] |
Chen H T, Zeng Y, Yang Y Z, Huang L L, Tang B L, Zhang H, Hao F, Liu W, Li Y H, Liu Y B, Zhang X S, Zhang R, Zhang Y S, Li Y X, Wang K, He H, Wang Z K, Fan G Y, Yang H, Bao A, Shang Z H, Chen J H, Wang W, Qiu Q. 2020. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nature Communications, 11:2494.
doi: 10.1038/s41467-020-16338-x pmid: 32427850 |
[4] |
Cheng H Y, Concepcion G T, Feng X W, Zhang H W, Li H. 2021. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nature Methods, 18:170-175.
doi: 10.1038/s41592-020-01056-5 pmid: 33526886 |
[5] |
Gao L, Gonda I, Sun H H, Ma Q Y, Bao K, Tieman D M, Burzynski-Chang E A, Fish T L, Stromberg K A, Sacks G L, Thannhauser T W, Foolad M R, Diez M J, Blanca J, Canizares J, Xu Y M, van der Knaap E, Huang S W, Klee H J, Giovannoni J J, Fei Z J. 2019. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nature genetics, 51:1044-1051.
doi: 10.1038/s41588-019-0410-2 pmid: 31086351 |
[6] |
Goel M, Sun H, Jiao W B, Schneeberger K. 2019. SyRI:finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biology, 20:277.
doi: 10.1186/s13059-019-1911-0 URL |
[7] | Hosmani P S, Flores-Gonzalez M, Geest H V D, Maumus F, Bakker L V, Schijlen E, Haarst J, Cordewener J, Sanchez-Perez G, Peters S, Fei Z J, Giovannoni J J, Mueller L A, Saha S. 2019. An improved de novo assembly and annotation of the tomato reference genome using single-molecule sequencing,Hi-C proximity ligation and optical maps, BioRxiv: 767764. |
[8] |
Huang da W, Sherman B T, Lempicki R A. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 4:44-57.
doi: 10.1038/nprot.2008.211 pmid: 19131956 |
[9] | Li Tao, Liu Lei, Zhou Long-xi, Zong Yuan-yuan, Deng Xue-bin, Yan Zhe, Song Yan,Li Jun-ming. 2014. Characterizations and its application of wild tomato species Solanum pimpinellifolium. Acta Horticulturae Sinica, 41 (1):178-186. (in Chinese) |
李涛, 刘磊, 郑峥, 周龙溪, 宗园园, 邓学斌, 闫喆, 宋燕, 李君明. 2014. 醋栗番茄的研究与利用现状. 园艺学报, 41 (1):178-186. | |
[10] |
Marçais G, Delcher A L, Phillippy A M, Coston R, Salzberg S L, Zimin A. 2018. MUMmer4:a fast and versatile genome alignment system, PLoS Comput Biol, 14:e1005944.
doi: 10.1371/journal.pcbi.1005944 URL |
[11] |
Nattestad M, Schatz M C. 2016. Assemblytics:a web analytics tool for the detection of variants from an assembly. Bioinformatics, 32:3021-3023.
doi: 10.1093/bioinformatics/btw369 pmid: 27318204 |
[12] |
Razali R, Bougouffa S, Morton M J L, Lightfoot D J, Alam I, Essack M, Arold S T, Kamau A A, Schmöckel S M, Pailles Y, Shahid M, Michell C T, Al-Babili S, Ho Y S, Tester M, Bajic V B, Negrão S. 2018. The genome sequence of the wild tomato Solanum pimpinellifolium provides insights into salinity tolerance. Frontiers in Plant Science,Doi: 10.3389/fpls.2018.01402.
doi: 10.3389/fpls.2018.01402 URL |
[13] |
Su X, Wang B A, Geng X L, Du Y F, Yang Q Q, Liang B, Meng G, Gao Q, Yang W C, Zhu Y F, Lin T. 2021. A high-continuity and annotated tomato reference genome. BMC Genomics, 22:898.
doi: 10.1186/s12864-021-08212-x pmid: 34911432 |
[14] |
Sun X P, Jiao C, Schwaninger H, Chao C T, Ma Y M, Duan N B, Khan A, Ban S, Xu K, Cheng L L, Zhong G Y, Fei Z J. 2020. Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nature Genetics, 52:1423-1432.
doi: 10.1038/s41588-020-00723-9 pmid: 33139952 |
[15] |
Sun Y Q, Shang L G, Zhu Q H, Fan L J, Guo L B. 2021. Twenty years of plant genome sequencing:achievements and challenges. Trends in Plant Science, 27:391-401.
doi: 10.1016/j.tplants.2021.10.006 URL |
[16] |
Tanksley S D. 2004. The genetic,developmental,and molecular bases of fruit size and shape variation in tomato. Plant Cell, 16:S181-S189.
doi: 10.1105/tpc.018119 URL |
[17] |
The Tomato Genome Consortium. 2012. The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485:635-641.
doi: 10.1038/nature11119 URL |
[18] |
Wang X, Gao L, Jiao C, Stravoravdis S, Hosmani P S, Saha S, Zhang J, Mainiero S, Strickler S R, Catala C, Martin G B, Mueller L A, Vrebalov J, Giovannoni J J, Wu S, Fei Z J. 2020. Genome of Solanum pimpinellifolium provides insights into structural variants during tomato breeding. Nature Communications, 11:5817.
doi: 10.1038/s41467-020-19682-0 pmid: 33199703 |
[19] |
Wenger A M, Peluso P, Rowell W J, Chang P C, Hall R J, Concepcion G T, Ebler J, Fungtammasan A, Kolesnikov A, Olson N D, Töpfer A, Alonge M, Mahmoud M, Qian Y, Chin C S, Phillippy A M, Schatz M C, Myers G, DePristo M A, Ruan J, Marschall T, Sedlazeck F J, Zook J M, Li H, Koren S, Carroll A, Rank D R, Hunkapiller M W. 2019. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome, Nature Biotechnology, 37:1155-1162.
doi: 10.1038/s41587-019-0217-9 pmid: 31406327 |
[20] |
Zhou Q, Tang D, Huang W, Yang Z, Zhang Y, Hamilton J P, Visser R G F, Bachem C W B, Robin Buell C, Zhang Z, Zhang C, Huang S W. 2020. Haplotype-resolved genome analyses of a heterozygous diploid potato. Nature Genetics, 52:1018-1023.
doi: 10.1038/s41588-020-0699-x pmid: 32989320 |
[1] | SHI Hongli, LI La, GUO Cuimei, YU Tingting, JIAN Wei, YANG Xingyong. Isolation,Identification and Analysis of Biocontrol Ability of Biocontrol Strain TL1 Against Tomato Botrytis cinerea [J]. Acta Horticulturae Sinica, 2023, 50(1): 79-90. |
[2] | WANG Jin, WANG Xinyu, SHEN Yuanbo, ZHANG Qinghua, Lou Qianqi, ZHANG Shijie, ZHAO Pan, LIANG Yan. Regulation of Chloroplast Development in Tomato Fruit and Its Application [J]. Acta Horticulturae Sinica, 2022, 49(12): 2669-2682. |
[3] | MENG Zhen, ZHANG Weiping, WANG Ying, LI Long, JI Xiaoxue, DONG Bei, QIAO Kang. Establishment and Application of Real-Time PCR for Quantitative Detection of Fusarium oxysporum f. sp. lycopersici [J]. Acta Horticulturae Sinica, 2022, 49(11): 2479-2488. |
[4] | TANG Mingjia, XU Jin, LIN Rui, SONG Jianing, YU Jingquan, and ZHOU Yanhong. Advances in Physiological and Molecular Mechanism of Tomato Responses to Light and Temperature Stress [J]. Acta Horticulturae Sinica, 2022, 49(10): 2174-2188. |
[5] | LU Tao, YU Hongjun, LI Qiang, JIANG Weijie. Effects of Leaf and Fruit Quantity Regulation on Growth,Fruit Quality and Yield of Tomato [J]. Acta Horticulturae Sinica, 2022, 49(6): 1261-1274. |
[6] | MENG Xianmin, CUI Qingqing, DUAN Yundan, ZHUANG Tuanjie, PU Dan, DONG Chunjuan, YANG Wencai, SHANG Qingmao. Promoting Effects of Uniconazole on Grafting Formation of Tomato Seedlings and Underlying Mechanisms [J]. Acta Horticulturae Sinica, 2022, 49(6): 1275-1289. |
[7] | CUI Dongyu, LI Changqing, SUN Yanxin, WANG Jiqing, ZOU Guoyuan, YANG Jungang. Effects of Dwarf Close Planting on Growth and Yield of Tomato Under East-West Cultivation in Greenhouse [J]. Acta Horticulturae Sinica, 2022, 49(4): 875-884. |
[8] | CHEN Tongqiang, ZHANG Tianzhu, WANG Xiaozhuo. Research Progress of The Regulation of Light on Lycopene Biosynthesis in Tomato Fruit [J]. Acta Horticulturae Sinica, 2022, 49(4): 907-923. |
[9] | PENG Yi, LI Yuanhui, YANG Rui, ZHANG Ziyi, LI Yanan, HAN Yunhao, ZHAO Wenchao, WANG Shaohui. The Jasmonic Acid Synthesis Gene LoxD Participates in the Regulation of Tomato Drought Resistance [J]. Acta Horticulturae Sinica, 2022, 49(2): 319-331. |
[10] | ZHANG Aiping, LIU Jiangna, YAN Jianjun, ZHANG Xiying, BAI Yunfeng. Progress and Prospect of Genome Editing in Tomato [J]. Acta Horticulturae Sinica, 2022, 49(1): 221-232. |
[11] | FENG Lixiao, HU Rong, BU Shan, ZHANG Deyong, LUO Xiangwen, LI Fan, DING Ming, ZHANG Zhuo, ZHANG Songbai, LIU Yong. Molecular Detection and Genetic Evolution Analysis of Yunnan Isolates of Lettuce Chlorosis Virus in Tomato [J]. Acta Horticulturae Sinica, 2022, 49(1): 141-147. |
[12] | LI Yanhong, NIE Jun, ZHENG Jinrong, TAN Delong, ZHANG Changyuan, SHI Liangliang, XIE Yuming. Genetic Diversity Analysis and Multivariate Evaluation of Cherry Tomato by Phenotypic Traits in South China [J]. Acta Horticulturae Sinica, 2021, 48(9): 1717-1730. |
[13] | QI Zhenyu, WANG Ting, SANG Kangqi, LIU Yue, WANG Mingqin, YU Jingquan, ZHOU Yanhong, XIA Xiaojian. Effects of Supplemental Lighting at Different Positions on Tomato Plant Morphology,Photosynthesis and Endogenous Hormone Biosynthesis Under Low-light Environment [J]. Acta Horticulturae Sinica, 2021, 48(8): 1504-1516. |
[14] | FENG Qian, DONG Lingdi, YIN Yilei, JIAO Yonggang, GUO Jinghua, LI Qingyun, LIU Bingwei, YU Xianchang, SUN Mintao, HE Chaoxing, LI Yansu, WANG Jun, YAN Yan. Improvement of Photosynthetic Capacity and Lycopene Content of Tomatoes by Covering with Light Conversion Plastic Films [J]. Acta Horticulturae Sinica, 2021, 48(8): 1517-1530. |
[15] | ZHANG Xiaoyi, HONG Yuhui, ZHANG Yuanyuan, LUAN Yushi. Preliminary Study on the Role of sly-miR166b and Its Target Genes in Tomato Resistance to Late Blight [J]. Acta Horticulturae Sinica, 2021, 48(8): 1595-1604. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd