园艺学报 ›› 2023, Vol. 50 ›› Issue (4): 896-908.doi: 10.16420/j.issn.0513-353x.2022-0102
收稿日期:
2022-09-06
修回日期:
2022-12-02
出版日期:
2023-04-25
发布日期:
2023-04-27
通讯作者:
*(E-mail:liaoyongling@yangtzeu.edu.cn;xufeng198@126.com)
基金资助:
ZHENG Jiarui, YANG Xiaoyan, YE Jiabao, LIAO Yongling(), XU Feng(
)
Received:
2022-09-06
Revised:
2022-12-02
Online:
2023-04-25
Published:
2023-04-27
Contact:
*(E-mail:liaoyongling@yangtzeu.edu.cn;xufeng198@126.com)
摘要:
MYC2(Myelocytomatosis proteins 2)是一类bHLH家族转录因子,是JA信号途径中的主要调控因子。MYC2通过转录调控下游目标基因的转录和表达,参与植物逆境防御、生长发育及次生代谢等进程。MYC3/4作为JA信号的次级调控因子可与MYC2协同作用。目前对MYC2的功能研究较为深入和广泛。本文综述了MYC2的结构特征及其在植物激素信号传导、逆境防御、生长发育和次生代谢中的调控机制,为进一步深入探讨MYC2的分子功能提供理论基础。
中图分类号:
郑嘉瑞, 杨晓燕, 叶家保, 廖咏玲, 许锋. MYC2转录因子在植物中的功能研究进展[J]. 园艺学报, 2023, 50(4): 896-908.
ZHENG Jiarui, YANG Xiaoyan, YE Jiabao, LIAO Yongling, XU Feng. Advances in the Functional Studies of MYC2 Transcription Factor in Plants[J]. Acta Horticulturae Sinica, 2023, 50(4): 896-908.
图2 MYC2参与植物激素合成及信号传导网络图 PRP39a/40a:mRNA剪切因子;MED25:转录中介体亚基;CUL3BPM:利用Cullin3和BPM蛋白作为底物衔接子的E3泛素连接酶;UBP12/13:去泛素化酶;EDS5:病原体诱导水杨酸合成因子;PAD4:诱导SA积累的因子;DELLA:DELLA蛋白;JAM:JA-ASSOCIATED MYC2-LIKE转录因子;JAZ:Jasmonate-ZIM domain蛋白;MTB:MYC2-TARGETED BHLH转录因子。
Fig. 2 The network of MYC2 involved in plant hormone synthesis and signal transduction PRP39a/40a:PRE-mRNA-Processing Protein 39a/40a;MED25:Mediator Complex Subunit 25;CUL3BPM: Cullin 3,BPM,BTB/POZ-MATH;UBP12/13:Ubiquttin-specific protease 12/13;EDS5:Enhanced disease susceptibility 5;PAD4:Phytoalexin deficient 4;DELLA:DELLA protein;JAM:JA-ASSOCIATED MYC2-LIKE transcription factor;JAZ:Jasmonate-ZIM domain protein;MTB:MYC2-TARGETED BHLH transcription factor.
图3 MYC2参与植物生物和非生物胁迫调控网络图 At:拟南芥;Ma:小果野蕉;Ptr:枳;Sl:番茄;Ca:辣椒;Os:水稻。COR:番茄丁香假单胞菌产生的与JA-Ile(JA-isoleucine)结构相似的植物毒素;SL:独脚金内酯;PDF:植物防御因子;PI:蛋白抑制酶;NAC:NAC转录因子;VSP:创伤诱导基因;ICE:诱导CBF基因表达因子;BADH:甜菜碱醛脱氢酶;CAT:过氧化氢酶;NSs:番茄斑萎病毒的非结构蛋白;TPS:萜烯合酶;TD:苏氨酸脱氨酶;P1BS:顺式元件基序;SPX:SPX蛋白。
Fig. 3 The network of MYC2 involved in biotic and abiotic stress in plants At:Arabidopsis thaliana;Ma:Musa acuminata;Ptr:Poncirus trifoliata;Sl:Solanum lycopersicum;Ca:Capsicum annuum;Os:Oryza sativa. COR:Coronatine;PDF:Plant defense factor;PI:Proteinase inhibitor;NAC:NAC transcription factor;VSP:Vegetative storage protein;ICE:Inducer of CBF(C-repeat-binging factors)expression;BADH:Betaine aldehyde dehydrogenase;CAT:Catalase;NSs:Non-structural protein of tomato spotted wilt orthotospovirus(TSWV);TPS:Terpene synthase;TD:Threonine deaminase;P1BS:Program in biomedical sciences;SPX:SPX protein.
图4 MYC2参与植物次生代谢调控网络图 At:拟南芥;Na:渐狭叶烟草;As:沉香;Md:苹果;Tc:红豆杉;Tw:雷公藤;Nt:烟草;Sm:丹参;Cr:长春花;Fh:小苍兰。ASS:倍半萜烯合酶;PMT:腐胺甲基转移酶;RMT1:MYC2靶标阻遏物;BIS:调节萜类吲哚生物碱合成的bHLH基因;MIA:单萜吲哚生物碱。
Fig. 4 MYC2 participates in the regulation network of plant secondary metabolism At:Arabidopsis thaliana;Na:Nicotiana attenuata;As:Aquilaria sinensis;Md:Malus × domestica;Tc:Taxus chinensis;Tw:Tripterygium wilfordii;Nt:Nicotiana tabacum;Sm:Salvia miltiorrhiza;Cr:Catharanthus roseus;Fh:Freesia hybrida.ASS:Sesquiterpene synthase;PMT:Putrescine N-methyltransferase;RMT1:Repressor of MYC2 targets 1;BIS:bHLH iridoid synthesis;MIA:Monoterpene indole alkaloid.
图5 MYC2参与植物生长发育调控网络图 Md:苹果;At:拟南芥;Le:番茄。MPK:丝裂原活化蛋白激酶;HY5:调控光形态建成的转录因子;ERF:ERF转录因子;FAMA:FAMA transcription factors;BT:BT蛋白;USR:含U-box结构域的衰老相关基因;SAG:衰老相关基因;SPCH:异源二聚体转录因子SPEECHLESS。
Fig. 5 MYC2 participates in the regulation network of plant growth and development Md:Malus × domestica;At:Arabidopsis thaliana;Le:Lycopersicon esculentum.MPK:Mitogen-activated protein kinase;HY5:Hypocotyl 5;USR:U-box senescence related;SAG:Senescence-associated gene;SPCH:SPEECHLESS.
[1] |
Aerts N, Pereira Mendes M, van Wees S C M. 2021. Multiple levels of crosstalk in hormone networks regulating plant defense. The Plant Journal, 105 (2):489-504.
doi: 10.1111/tpj.15124 pmid: 33617121 |
[2] |
Allu A D, Brotman Y, Xue G P, Balazadeh S. 2016. Transcription factor ANAC032 modulates JA/SA signalling in response to Pseudomonas syringae infection. EMBO Reports, 17 (11):1578-1589.
doi: 10.15252/embr.201642197 URL |
[3] |
An J P, Li H H, Song L Q, Su L, Liu X, You C X, Wang X F, Hao Y J. 2016. The molecular cloning and functional characterization of MdMYC2,a bHLH transcription factor in apple. Plant Physiology and Biochemistry, 108:24-31.
doi: 10.1016/j.plaphy.2016.06.032 URL |
[4] |
An J P, Wang X N, Yao J F, Ren Y R, You C X, Wang X F, Hao X F. 2017. Apple MdMYC2 reduces aluminum stress tolerance by directly regulating MdERF3 gene. Plant Soil, 418:255-266.
doi: 10.1007/s11104-017-3297-7 URL |
[5] | An J P, Wang X F, Zhang X W, You C X, Hao Y J. 2021. Apple BT 2 protein negatively regulates jasmonic acid-triggered leaf senescence by modulating the stability of MYC2 and JAZ2. Plant,Cell & Environment, 44 (1):216-233. |
[6] |
Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martínez-García J F, Bilbao-Castro J R, Robertson D L. 2010. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis,poplar,rice,moss,and algae. Plant Physiology, 153 (3):1398-1412.
doi: 10.1104/pp.110.153593 pmid: 20472752 |
[7] |
Chakraborty M, Gangappa S N, Maurya J P, Sethi V, Srivastava A K, Singh A, Dutta S, Ojha M, Gupta N, Sengupta M, Ram H, Chattopadhyay S. 2019. Functional interrelation of MYC2 and HY 5 plays an important role in Arabidopsis seedling development. The Plant Journal, 99 (6):1080-1097.
doi: 10.1111/tpj.14381 pmid: 31059179 |
[8] |
Chen R, Jiang H, Li L, Zhai Q, Qi L, Zhou W, Liu X, Li H, Zheng W, Sun J, Li C. 2012. The Arabidopsis mediator subunit MED 25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors. The Plant Cell, 24 (7):2898-2916.
doi: 10.1105/tpc.112.098277 URL |
[9] |
Chen Sijia, Wang Huan, Li Ruirui, Wang Zhuoyi, Luo Jing, Wang Caiyun. 2022. Characterization of CmMYC 2 in formation of green color in ray florets of chrysanthemum. Acta Horticulturae Sinica, 49 (11):2377-2387. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2021-0524 |
陈思嘉, 王焕, 李蕊蕊, 王卓异, 罗靖, 王彩云. 2022. 菊花CmMYC2在舌状花绿色性状形成过程中的功能研究. 园艺学报, 49 (11):2377-2387.
doi: 10.16420/j.issn.0513-353x.2021-0524 |
|
[10] | Chico J M, Lechner E, Fernandez-Barbero G, Canibano E, García-Casado G, Franco-Zorrilla J M, Hammann P, Zamarreño A M, García-Mina J M, Rubio V, Genschik P, Solano R. 2020. CUL3 E3 ubiquitin ligases regulate MYC2,MYC3,and MYC4 stability and JA responses. Proceedings of the National Academy of Sciences of the United States of America, 117 (11):6205-6215. |
[11] |
Chini A, Boter M, Solano R. 2009. Plant oxylipins:COI1/JAZs/MYC 2 as the core jasmonic acid-signalling module. The FEBS Journal, 276 (17):4682-4692.
doi: 10.1111/j.1742-4658.2009.07194.x URL |
[12] |
Chini A, Fonseca S, Fernández G, Adie B, Chico J M, Lorenzo O, García-Casado G, López-Vidriero I, Lozano F M, Ponce M R, Micol J L, Solano R. 2007. The JAZ family of repressors is the missing link in jasmonate signalling. Nature, 448 (7154):666-671.
doi: 10.1038/nature06006 |
[13] |
Chini A, Gimenez-Ibanez S, Goossens A, Solano R. 2016. Redundancy and specificity in jasmonate signalling. Current Opinion in Plant Biology, 33:147-156.
doi: S1369-5266(16)30109-1 pmid: 27490895 |
[14] |
Cui H, Qiu J, Zhou Y, Bhandari D D, Zhao C, Bautor J, Parker J E. 2018. Antagonism of transcription factor MYC 2 by EDS1/PAD4 complexes bolsters salicylic acid defense in Arabidopsis effector-triggered immunity. Molecular Plant, 11 (8):1053-1066.
doi: 10.1016/j.molp.2018.05.007 URL |
[15] |
de Geyter N, Gholami A, Goormachtig S, Goossens A. 2012. Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends in Plant Science, 17 (6):349-359.
doi: 10.1016/j.tplants.2012.03.001 pmid: 22459758 |
[16] |
Dombrecht B, Xue G P, Sprague S J, Kirkegaard J A, Ross J J, Reid J B, Fitt G P, Sewelam N, Schenk P M, Manners J M, Kazan K. 2007. MYC 2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. The Plant Cell, 19 (7):2225-2245.
doi: 10.1105/tpc.106.048017 URL |
[17] |
Du M, Zhao J, Tzeng D T W, Liu Y, Deng L, Yang T, Zhai Q, Wu F, Huang Z, Zhou M, Wang Q, Chen Q, Zhong S, Li C B, Li C. 2017. MYC 2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato. The Plant Cell, 29 (8):1883-1906.
doi: 10.1105/tpc.16.00953 URL |
[18] |
Fernández-Calvo P, Chini A, Fernández-Barbero G, Chico J M, Gimenez-Ibanez S, Geerinck J, Eeckhout D, Schweizer F, Godoy M, Franco-Zorrilla J M, Pauwels L, Witters E, Puga M I, Paz-Ares J, Goossens A, Reymond P, de Jaeger G, Solano R. 2011. The Arabidopsis bHLH transcription factors MYC3 and MYC 4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. The Plant Cell, 23 (2):701-715.
doi: 10.1105/tpc.110.080788 pmid: 21335373 |
[19] |
Fu J, Liu L, Liu Q, Shen Q, Wang C, Yang P, Zhu C, Wang Q. 2020. ZmMYC 2 exhibits diverse functions and enhances JA signaling in transgenic Arabidopsis. Plant Cell Reports, 39 (2):273-288.
doi: 10.1007/s00299-019-02490-2 |
[20] |
Gao C, Qi S, Liu K, Li D, Jin C, Li Z, Huang G, Hai J, Zhang M, Chen M. 2016. MYC2,MYC3,and MYC4 function redundantly in seed storage protein accumulation in Arabidopsis. Plant Physiology and Biochemistry, 108:63-70.
doi: 10.1016/j.plaphy.2016.07.004 URL |
[21] |
Gimenez-Ibanez S, Boter M, Ortigosa A, García-Casado G, Chini A, Lewsey M G, Ecker J R, Ntoukakis V, Solano R. 2017. JAZ 2 controls stomata dynamics during bacterial invasion. The New Phytologist, 213 (3):1378-1392.
doi: 10.1111/nph.2017.213.issue-3 URL |
[22] |
Godee C, Mira M M, Wally O, Hill R D, Stasolla C. 2017. Cellular localization of the Arabidopsis class 2 phytoglobin influences somatic embryogenesis. Journal of Experimental Botany, 68 (5):1013-1023.
doi: 10.1093/jxb/erx003 pmid: 28199692 |
[23] |
Goossens J, Fernández-Calvo P, Schweizer F, Goossens A. 2016. Jasmonates:signal transduction components and their roles in environmental stress responses. Plant Molecular Biology, 91 (6):673-689.
doi: 10.1007/s11103-016-0480-9 pmid: 27086135 |
[24] |
Guo H, Nolan T M, Song G, Liu S, Xie Z, Chen J, Schnable P S, Walley J W, Yin Y. 2018. FERONIA receptor kinase contributes to plant immunity by suppressing jasmonic acid signaling in Arabidopsis thaliana. Current Biology, 28 (20):3316-3324.
doi: 10.1016/j.cub.2018.07.078 URL |
[25] |
Gupta N, Prasad V B R, Chattopadhyay S. 2014. LeMYC 2 acts as a negative regulator of blue light mediated photomorphogenic growth,and promotes the growth of adult tomato plants. BMC Plant Biology, 14:38.
doi: 10.1186/1471-2229-14-38 |
[26] |
Han X, Hu Y, Zhang G, Jiang Y, Chen X, Yu D. 2018. Jasmonate negatively regulates stomatal development in Arabidopsis cotyledons. Plant Physiology, 176 (4):2871-2885.
doi: 10.1104/pp.17.00444 URL |
[27] |
Hong G J, Xue X Y, Mao Y B, Wang L J, Chen X Y. 2012. Arabidopsis MYC 2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. The Plant Cell, 24 (6):2635-2648.
doi: 10.1105/tpc.112.098749 URL |
[28] |
Hou X, Lee L Y C, Xia K, Yan Y, Yu H. 2010. DELLAs modulate jasmonate signaling via competitive binding to JAZs. Developmental Cell, 19 (6):884-894.
doi: 10.1016/j.devcel.2010.10.024 pmid: 21145503 |
[29] |
Hu S, Yang H, Gao H, Yan J, Xie D. 2021. Control of seed size by jasmonate. Science China Life Sciences, 64 (8):1215-1226.
doi: 10.1007/s11427-020-1899-8 pmid: 33774798 |
[30] |
Hu Y N, Sun H L, Han Z Y, Wang S, Wang T, Li Q Q, Tian J, Wang Y, Zhang X Y, Xu X F, Han Z H, Wu T. 2022. ERF 4 affects fruit ripening by acting as a JAZ interactor between ethylene and jasmonic acid hormone signaling pathways. Horticultural Plant Journal, 8 (6):689-699.
doi: 10.1016/j.hpj.2022.01.002 URL |
[31] |
Huo Y, Zhang J, Zhang B, Chen L, Zhang X, Zhu C. 2021. MYC 2 transcription factors TwMYC2a and TwMYC2b negatively regulate triptolide biosynthesis in hairy roots. Plants, 10 (4):679.
doi: 10.3390/plants10040679 URL |
[32] |
Huot B, Yao J, Montgomery B L, He S Y. 2014. Growth-defense tradeoffs in plants:a balancing act to optimize fitness. Molecular Plant, 7 (8):1267-1287.
doi: 10.1093/mp/ssu049 URL |
[33] |
Jeong J S, Jung C, Seo J S, Kim J K, Chua N H. 2017. The deubiquitinating enzymes UBP12 and UBP 13 positively regulate MYC2 levels in jasmonate responses. The Plant Cell, 29 (6):1406-1424.
doi: 10.1105/tpc.17.00216 pmid: 28536144 |
[34] |
Kazan K. 2015. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends in Plant Science, 20 (4):219-229.
doi: 10.1016/j.tplants.2015.02.001 pmid: 25731753 |
[35] | Kong Y, Wang G, Chen X, Li L, Zhang X, Chen S, He Y, Hong G. 2021. OsPHR2 modulates phosphate starvation-induced OsMYC2 signalling and resistance to Xanthomonas oryzae pv. oryzae. Plant,Cell & Environment, 44 (10):3432-3444. |
[36] |
Li T, Xu Y, Zhang L, Ji Y, Tan D, Yuan H, Wang A. 2017. The jasmonate-activated transcription factor MdMYC 2 regulates ETHYLENE RESPONSE FACTOR and ethylene biosynthetic genes to promote ethylene biosynthesis during apple fruit ripening. Plant Cell, 29 (6):1316-1334.
doi: 10.1105/tpc.17.00349 URL |
[37] |
Liu Y, Du M, Deng L, Shen J, Fang M, Chen Q, Lu Y, Wang Q, Li C, Zhai Q. 2019. MYC 2 regulates the termination of jasmonate signaling via an autoregulatory negative feedback loop. The Plant Cell, 31 (1):106-127.
doi: 10.1105/tpc.18.00405 URL |
[38] |
López-Vidriero I, Godoy M, Grau J, Peñuelas M, Solano R, Franco-Zorrilla J M. 2021. DNA features beyond the transcription factor binding site specify target recognition by plant MYC2-related bHLH proteins. Plant Communications, 2 (6):100232.
doi: 10.1016/j.xplc.2021.100232 URL |
[39] |
Lorenzo O, Chico J M, Sánchez-Serrano J J, Solano R. 2004. JASMONATE-INSENSITIVE 1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. The Plant Cell, 16 (7):1938-1950.
doi: 10.1105/tpc.022319 URL |
[40] |
Min D, Li F, Cui X, Zhou J, Li J, Ai W, Shu P, Zhang X, Li X, Meng D, Guo Y, Li J. 2020. SlMYC 2 are required for methyl jasmonate-induced tomato fruit resistance to Botrytis cinerea. Food Chemistry, 310:125901.
doi: 10.1016/j.foodchem.2019.125901 URL |
[41] |
Min D, Li F, Zhang X, Cui X, Shu P, Dong L, Ren C. 2018. SlMYC 2 involved in methyl jasmonate-induced tomato fruit chilling tolerance. Journal of Agricultural and Food Chemistry, 66 (12):3110-3117.
doi: 10.1021/acs.jafc.8b00299 URL |
[42] |
Mine A, Nobori T, Salazar-Rondon M C, Winkelmüller T M, Anver S, Becker D, Tsuda K. 2017. An incoherent feed-forward loop mediates robustness and tunability in a plant immune network. EMBO Reports, 18 (3):464-476.
doi: 10.15252/embr.201643051 pmid: 28069610 |
[43] |
Ming R, Zhang Y, Wang Y, Khan M, Dahro B, Liu J H. 2021. The JA-responsive MYC2-BADH-like transcriptional regulatory module in Poncirus trifoliata contributes to cold tolerance by modulation of glycine betaine biosynthesis. The New Phytologist, 229 (5):2730-2750.
doi: 10.1111/nph.v229.5 URL |
[44] |
Nakata M, Mitsuda N, Herde M, Koo A J K, Moreno J E, Suzuki K, Howe G A, Ohme-Takagi M. 2013. A bHLH-type transcription factor,ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1,acts as a repressor to negatively regulate jasmonate signaling in Arabidopsis. The Plant Cell, 25 (5):1641-1656.
doi: 10.1105/tpc.113.111112 URL |
[45] |
Ortigosa A, Fonseca S, Franco-Zorrilla J M, Fernández-Calvo P, Zander M, Lewsey M G, García-Casado G, Fernández-Barbero G, Ecker J R, Solano R. 2020. The JA-pathway MYC transcription factors regulate photomorphogenic responses by targeting HY5 gene expression. The Plant Journal, 102 (1):138-152.
doi: 10.1111/tpj.14618 pmid: 31755159 |
[46] |
Patra B, Pattanaik S, Schluttenhofer C, Yuan L. 2018. A network of jasmonate-responsive bHLH factors modulate monoterpenoid indole alkaloid biosynthesis in Catharanthus roseus. The New Phytologist, 217 (4):1566-1581.
doi: 10.1111/nph.2018.217.issue-4 URL |
[47] | Peng Yi, Li Yuanhui, Yang Rui, Zhang Ziyi, Li Yanan, Han Yunhao, Zhao Wenchao, Wang Shaohui. 2022. The jasmonic acid synthesis gene LoxD participates in the regulation of tomato drought resistance. Acta Horticulturae Sinica, 49 (2):319-331. (in Chinese) |
彭轶, 李元慧, 杨瑞, 张子怡, 李亚楠, 韩云昊, 赵文超, 王绍辉. 2022. 茉莉酸合成基因LoxD参与调控番茄的抗旱性. 园艺学报, 49 (2):319-331.
doi: 10.16420/j.issn.0513-353x.2021-0025 URL |
|
[48] |
Peñuelas M, Monte I, Schweizer F, Vallat A, Reymond P, García-Casado G, Franco-Zorrilla J M, Solano R. 2019. Jasmonate-related MYC transcription factors are functionally conserved in Marchantia polymorpha. The Plant Cell, 31 (10):2491-2509.
doi: 10.1105/tpc.18.00974 pmid: 31391256 |
[49] |
Qi T, Song S, Ren Q, Wu D, Huang H, Chen Y, Fan M, Peng W, Ren C, Xie D. 2011. The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. The Plant Cell, 23 (5):1795-1814.
doi: 10.1105/tpc.111.083261 URL |
[50] |
Qi T, Wang J, Huang H, Liu B, Gao H, Liu Y, Song S, Xie D. 2015. Regulation of Jasmonate-Induced Leaf Senescence by Antagonism between bHLH Subgroup IIIe and IIId Factors in Arabidopsis. The Plant Cell, 27 (6):1634-1649.
doi: 10.1105/tpc.15.00110 URL |
[51] |
Ramirez-Prado J S, Latrasse D, Rodriguez-Granados N Y, Huang Y, Manza-Mianza D, Brik-Chaouche R, Jaouannet M, Citerne S, Bendahmane A, Hirt H, Raynaud C, Benhamed M. 2019. The Polycomb protein LHP 1 regulates Arabidopsis thaliana stress responses through the repression of the MYC2-dependent branch of immunity. The Plant Journal, 100 (6):1118-1131.
doi: 10.1111/tpj.14502 pmid: 31437321 |
[52] |
Reinbothe C, Springer A, Samol I, Reinbothe S. 2009. Plant oxylipins:role of jasmonic acid during programmed cell death,defence and leaf senescence. The FEBS Journal, 276 (17):4666-4681.
doi: 10.1111/j.1742-4658.2009.07193.x URL |
[53] |
Rekhter D, Lüdke D, Ding Y, Feussner K, Zienkiewicz K, Lipka V, Wiermer M, Zhang Y, Feussner I. 2019. Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science, 365 (6452):498-502.
doi: 10.1126/science.aaw1720 pmid: 31371615 |
[54] |
Sasaki-Sekimoto Y, Jikumaru Y, Obayashi T, Saito H, Masuda S, Kamiya Y, Ohta H, Shirasu K. 2013. Basic helix-loop-helix transcription factors JASMONATE-ASSOCIATED MYC2-LIKE 1 (JAM1),JAM2,and JAM3 are negative regulators of jasmonate responses in Arabidopsis. Plant Physiology, 163 (1):291-304.
doi: 10.1104/pp.113.220129 pmid: 23852442 |
[55] |
Schweizer F, Fernández-Calvo P, Zander M, Diez-Diaz M, Fonseca S, Glauser G, Lewsey M G, Ecker J R, Solano R, Reymond P. 2013. Arabidopsis basic helix-loop-helix transcription factors MYC2,MYC3,and MYC 4 regulate glucosinolate biosynthesis,insect performance,and feeding behavior. The Plant Cell, 25 (8):3117-3132.
doi: 10.1105/tpc.113.115139 pmid: 23943862 |
[56] |
Sethi V, Raghuram B, Sinha A K, Chattopadhyay S. 2014. A mitogen-activated protein kinase cascade module,MKK3-MPK6 and MYC2,is involved in blue light-mediated seedling development in Arabidopsis. The Plant Cell, 26 (8):3343-3357.
doi: 10.1105/tpc.114.128702 URL |
[57] | Shoji T, Hashimoto T. 2011. Tobacco MYC 2 regulates jasmonate-inducible nicotine biosynthesis genes directly and by way of the NIC2-locus ERF genes. Plant & Cell Physiology, 52 (6):1117-1130. |
[58] |
Shu P, Li Z, Min D, Zhang X, Ai W, Li J, Zhou J, Li Z, Li F, Li X. 2020. CRISPR/Cas9-mediated mutagenesis adverse to tomato plant growth and MeJA-induced fruit resistance to Botrytis cinerea. Journal of Agricultural and Food Chemistry, 68 (20):5529-5538.
doi: 10.1021/acs.jafc.9b08069 URL |
[59] |
Song R F, Li T T, Liu W C. 2021. Jasmonic acid impairs Arabidopsis seedling salt stress tolerance through MYC2-mediated repression of CAT2 expression. Frontiers in Plant Science, 12:730228.
doi: 10.3389/fpls.2021.730228 URL |
[60] |
Sui X, Singh S K, Patra B, Schluttenhofer C, Guo W, Pattanaik S, Yuan L. 2018. Cross-family transcription factor interaction between MYC2 and GBFs modulates terpenoid indole alkaloid biosynthesis. Journal of Experimental Botany, 69 (18):4267-4281.
doi: 10.1093/jxb/ery229 pmid: 29931167 |
[61] |
Sun H, Wang L, Zhang B, Ma J, Hettenhausen C, Cao G, Sun G, Wu J, Wu J. 2014. Scopoletin is a phytoalexin against Alternaria alternata in wild tobacco dependent on jasmonate signalling. Journal of Experimental Botany, 65 (15):4305-4315.
doi: 10.1093/jxb/eru203 URL |
[62] |
Toledo-Ortiz G, Huq E, Quail P H. 2003. The Arabidopsis basic/helix-loop-helix transcription factor family. The Plant Cell, 15 (8):1749-1770.
doi: 10.1105/tpc.013839 URL |
[63] | van Moerkercke A, Duncan O, Zander M, Šimura J, Broda M, Vanden Bossche R, Lewsey M G, Lama S, Singh K B, Ljung K, Ecker J R, Goossens A, Millar A H, van Aken O.. 2019. A MYC2/MYC3/MYC4-dependent transcription factor network regulates water spray-responsive gene expression and jasmonate levels. Proceedings of the National Academy of Sciences of the United States of America, 116 (46):23345-23356. |
[64] |
Wang H, Li S, Li Y a, Xu Y, Wang Y, Zhang R, Sun W, Chen Q, Wang X J, Li C, Zhao J. 2019. MED 25 connects enhancer-promoter looping and MYC2-dependent activation of jasmonate signalling. Nature Plants, 5 (6):616-625.
doi: 10.1038/s41477-019-0441-9 |
[65] |
Wang H, Li Y, Pan J, Lou D, Hu Y, Yu D. 2017. The bHLH transcription factors MYC2,MYC3,and MYC 4 are required for jasmonate-mediated inhibition of flowering in Arabidopsis. Molecular Plant, 10 (11):1461-1464.
doi: 10.1016/j.molp.2017.08.007 URL |
[66] | Wang Q, Liu H, Zhang M, Liu S, Hao Y, Zhang Y. 2020. MdMYC2 and MdERF 3 positively co-regulate α-farnesene biosynthesis in apple. Frontiers in Plant Science, 11:512844. |
[67] |
Wasternack C, Hause B. 2013. Jasmonates:biosynthesis,perception,signal transduction and action in plant stress response,growth and development. Annals of Botany, 111 (6):1021-1058.
doi: 10.1093/aob/mct067 pmid: 23558912 |
[68] |
Wu F, Deng L, Zhai Q, Zhao J, Chen Q, Li C. 2020. Mediator subunit MED 25 couples alternative splicing of genes with fine-tuning of jasmonate signaling. The Plant Cell, 32 (2):429-448.
doi: 10.1105/tpc.19.00583 URL |
[69] | Wu X, Xu S, Zhao P, Zhang X, Yao X, Sun Y, Fang R, Ye J. 2019. The Orthotospovirus nonstructural protein NSs suppresses plant MYC-regulated jasmonate signaling leading to enhanced vector attraction and performance. PLoS Pathogens, 15 (6):e1007897. |
[70] |
Xu X, Fang P, Zhang H, Chi C, Song L, Xia X, Shi K, Zhou Y, Zhou J, Yu J. 2019. Strigolactones positively regulate defense against root-knot nematodes in tomato. Journal of Experimental Botany, 70 (4):1325-1337.
doi: 10.1093/jxb/ery439 pmid: 30576511 |
[71] | Xu Y H, Liao Y C, Lv F F, Zhang Z, Sun P W, Gao Z H, Hu K P, Sui C, Jin Y, Wei J H. 2017. Transcription factor AsMYC2 controls the jasmonate-responsive expression of ASS1 regulating sesquiterpene biosynthesis in Aquilaria sinensis(Lour.)Gilg. Plant & Cell Physiology, 58 (11):1924-1933. |
[72] |
Yan C, Xie D. 2015. Jasmonate in plant defence:sentinel or double agent? Plant Biotechnology Journal, 13 (9):1233-1240.
doi: 10.1111/pbi.12417 URL |
[73] |
Yang N, Zhou W, Su J, Wang X, Li L, Wang L, Cao X, Wang Z. 2017. Overexpression of increases the production of phenolic acids in Salvia miltiorrhiza. Frontiers in Plant Science, 8:1804.
doi: 10.3389/fpls.2017.01804 pmid: 29230228 |
[74] |
Yang Y, Yang X H, Guo X, Hu X X, Dong D F, Li G C, Xiong X Y. 2022. Exogenously applied methyl jasmonate induces early defense related genes in response to Phytophthora infestans infection in potato plants. Horticultural Plant Journal, 8 (4):511-526.
doi: 10.1016/j.hpj.2022.04.003 URL |
[75] |
Yang Z, Li Y, Gao F, Jin W, Li S, Kimani S, Yang S, Bao T, Gao X, Wang L. 2020. MYB 21 interacts with MYC2 to control the expression of terpene synthase genes in flowers of Freesia hybrida and Arabidopsis thaliana. Journal of Experimental Botany, 71 (14):4140-4158.
doi: 10.1093/jxb/eraa184 URL |
[76] |
Yi R, Yan J, Xie D. 2020. Light promotes jasmonate biosynthesis to regulate photomorphogenesis in Arabidopsis. Science China Life Sciences, 63 (7):943-952.
doi: 10.1007/s11427-019-1584-4 |
[77] |
Yu J, Zhang Y, Di C, Zhang Q, Zhang K, Wang C, You Q, Yan H, Dai S Y, Yuan J S, Xu W, Su Z. 2016. JAZ 7 negatively regulates dark-induced leaf senescence in Arabidopsis. Journal of Experimental Botany, 67 (3):751-762.
doi: 10.1093/jxb/erv487 URL |
[78] |
Zhang C, Lei Y, Lu C, Wang L, Wu J. 2020a. MYC2,MYC3,and MYC 4 function additively in wounding-induced jasmonic acid biosynthesis and catabolism. Journal of Integrative Plant Biology, 62 (8):1159-1175.
doi: 10.1111/jipb.v62.8 URL |
[79] |
Zhang M, Jin X, Chen Y, Wei M, Liao W, Zhao S, Fu C, Yu L. 2018a. TcMYC2a,a basic helix-loop-helix transcription factor,transduces JA-signals and regulates taxol biosynthesis in Taxus chinensis. Frontiers in Plant Science, 9:863.
doi: 10.3389/fpls.2018.00863 URL |
[80] |
Zhang Y, Wang Y, Wei H, Li N, Tian W, Chong K, Wang L. 2018b. Circadian evening complex represses jasmonate-induced leaf senescence in Arabidopsis. Molecular Plant, 11 (2):326-337.
doi: 10.1016/j.molp.2017.12.017 URL |
[81] |
Zhang Z, Xu M, Guo Y. 2020b. Ring/U-Box protein AtUSR1 functions in promoting leaf senescence through JA signaling pathway in Arabidopsis. Frontiers in Plant Science, 11:608589.
doi: 10.3389/fpls.2020.608589 URL |
[82] | Zhao M L, Wang J N, Shan W, Fan J G, Kuang J F, Wu K Q, Li X P, Chen W X, He F Y, Chen J Y, Lu W J. 2013. Induction of jasmonate signalling regulators MaMYC2s and their physical interactions with MaICE 1 in methyl jasmonate-induced chilling tolerance in banana fruit. Plant,Cell & Environment, 36 (1):30-51. |
[83] | Zheng X Y, Spivey N W, Zeng W, Liu P P, Fu Z Q, Klessig D F, He S Y, Dong X. 2012. Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host & Microbe, 11 (6):587-596. |
[1] | 张倩雯, 杨希航, 李峰, 邓颖天. miRNA调控园艺作物生长发育研究进展[J]. 园艺学报, 2022, 49(5): 1145-1161. |
[2] | 周杰, 师恺, 夏晓剑, 周艳虹, 喻景权. 中国蔬菜栽培科技60年回顾与展望[J]. 园艺学报, 2022, 49(10): 2131-2142. |
[3] | 梁志乐, 汪宽鸿, 杨静, 祝彪, 朱祝军. 硫代葡萄糖苷在十字花科植物应对非生物胁迫中的作用[J]. 园艺学报, 2022, 49(1): 200-220. |
[4] | 杨丽媛, 王倩, 王许会, 徐通达, 马军. 草莓生长素合成关键酶FveTAA1保守氨基酸位点T111的生物学功能研究[J]. 园艺学报, 2021, 48(9): 1695-1705. |
[5] | 谷家茂, 王晨扬, 王峰, 齐明芳, 刘玉凤, 李天来. CAMTA/SR在植物生长发育及其逆境响应中的作用[J]. 园艺学报, 2021, 48(4): 613-631. |
[6] | 汪宽鸿, 祝彪, 朱祝军. GSH/GSSG在植物应对非生物胁迫中的作用综述[J]. 园艺学报, 2021, 48(4): 647-660. |
[7] | 张庆雯, 王兆昊, 祁静静, 谢宇, 雷天刚, 何永睿, 陈善春, 姚利晓. 植物胼胝质合成酶研究进展[J]. 园艺学报, 2021, 48(4): 661-675. |
[8] | 卢素文, 郑暄昂, 王佳洋, 房经贵. 葡萄类黄酮代谢研究进展[J]. 园艺学报, 2021, 48(12): 2506-2524. |
[9] | 刘 昕, 陈韵竹, Kim Pyol, Kim Min-Jun, Song Hyondok, 李玉花, 王 宇. 番茄果实颜色形成的分子机制及调控研究进展[J]. 园艺学报, 2020, 47(9): 1689-1704. |
[10] | 刘婧愉*,滕瑞敏*,李 辉,刘 昊,庄 静**. 茶树DHAR酶基因的克隆与非生物胁迫响应分析[J]. 园艺学报, 2020, 47(5): 983-994. |
[11] | 姚利晓,何永睿,陈善春*. microRNA 参与柑橘生长发育和抗逆的研究进展[J]. 园艺学报, 2020, 47(5): 995-1008. |
[12] | 徐志璇,任仲海*. 番茄AP2/ERF超家族重鉴定及过表达SlERF.D.3株系表型分析[J]. 园艺学报, 2020, 47(4): 653-664. |
[13] | 乔永刚,曹亚萍,贾孟君,王勇飞,贺嘉欣,张鑫瑞,王文斌,宋 芸*. 连翘异型花柱植株花芽生长发育与传粉习性研究[J]. 园艺学报, 2020, 47(4): 699-707. |
[14] | 刘 范, 田 娜, 孙雪丽, 刘嘉鹏, 伍俊为, 黄玉吉, 程春振. 香蕉GLP基因家族全基因组鉴定及表达分析[J]. 园艺学报, 2020, 47(10): 1930-1946. |
[15] | 崔佳维1,雷炳富1,刘厚诚2,*. 光合有效辐射日总量(DLI)对植物生长发育的影响[J]. 园艺学报, 2019, 46(9): 1670-1680. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司