https://www.ahs.ac.cn/images/0513-353X/images/top-banner1.jpg|#|苹果
https://www.ahs.ac.cn/images/0513-353X/images/top-banner2.jpg|#|甘蓝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner3.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner4.jpg|#|灵芝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner5.jpg|#|桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner6.jpg|#|黄瓜
https://www.ahs.ac.cn/images/0513-353X/images/top-banner7.jpg|#|蝴蝶兰
https://www.ahs.ac.cn/images/0513-353X/images/top-banner8.jpg|#|樱桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner9.jpg|#|观赏荷花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner10.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner11.jpg|#|月季
https://www.ahs.ac.cn/images/0513-353X/images/top-banner12.jpg|#|菊花

园艺学报 ›› 2025, Vol. 52 ›› Issue (12): 3189-3201.doi: 10.16420/j.issn.0513-353x.2025-0186

• 遗传育种·种质资源·分子生物学 • 上一篇    下一篇

青花菜花球性状相关QTL定位及其候选基因分析

高旭1, 何道根1,*(), 檀国印1, 朱长志1, 章红运2, 肖家睿2, 王辉3   

  1. 1 台州市农业科学研究院,浙江台州 318014
    2 浙江勿忘农种业股份有限公司,杭州 310020
    3 台州农业科技创新推广重点实验室,浙江台州 318000
  • 收稿日期:2025-05-26 修回日期:2025-08-25 出版日期:2025-12-25 发布日期:2025-12-20
  • 通讯作者:
    *(E-mail:
  • 基金资助:
    浙江省农业(蔬菜)新品种选育重大科技专项(2021C02065); 台州市重大农业科技“揭榜挂帅”研发攻关计划项目(2022-1); 台州市科技计划项目(22nya02); 台州市农业科技项目(202204); 台州市农业科技项目(202306); 台州市农业科技项目(202304); 台州市农业科技项目(202401)

QTL Mapping and Candidate Gene Analysis of Related Traits of Broccoli

GAO Xu1, HE Daogen1,*(), TAN Guoyin1, ZHU Changzhi1, ZHANG Hongyun2, XIAO Jiarui2, WANG Hui3   

  1. 1 Taizhou Acadamy of Agricultural Sciences,Taizhou,Zhejiang 318014,China
    2 Zhejiang Wuwangnong Seeds Shareholding Co.,Ltd,Hangzhou 310020,China
    3 Taizhou Key Laboratory of Agricultural Science and Technology Innovation and Extension,Taizhou,Zhejiang 318000,China
  • Received:2025-05-26 Revised:2025-08-25 Published:2025-12-25 Online:2025-12-20

摘要:

以青花菜花球农艺性状差异显著的高代自交系B20101和B736为亲本,构建包括228个单株的F2分离群体,通过定位花球农艺性状相关QTL,挖掘相关候选基因,为解析青花菜花球形成的分子机制和选育优良新品种奠定理论基础。基于重测序技术开发SNP标记,构建了包含6 329个SNP标记的985个bin标记的遗传图谱。该遗传图谱总距为788.78 cM,平均图距为0.84 cM。对花球农艺性状进行QTL定位分析,分别检测到控制茎横径、球横径、球纵径、单球质量和蕾粒大小的QTL位点3、3、1、4和8个,其表型贡献率(PVE)介于4.5689% ~ 21.0997%。其中1个控制花球蕾粒大小的主效QTL位点(LOD = 10.6897,PVE = 21.0997%)被定位在SNP标记mk_18639516与mk_18698493界定的约58.977 kb区间内。通过分析该QTL区间,筛选出4个可能影响双亲花球蕾粒大小的候选基因,分别为Bo6g067260、Bo6g067270、Bo6g067280和Bo6g067290在双亲中的表达水平存在显著差异,但其序列在双亲及F2群体中无差异。提示这4个基因的调控区(如启动子)序列可能有差异,导致基因表达量的差异,进而影响花球蕾粒的大小。

关键词: 青花菜, 农艺性状, 遗传图谱, QTL定位, 候选基因

Abstract:

Using two high-generation inbred broccoli lines(B20101 and B736)exhibiting significant differences in curd agronomic traits as parents,a test population of 228 F2 individuals was obtained through hybridization and selfing. By mapping QTLs related to curd agronomic traits,candidate genes were identified to lay a theoretical foundation for elucidating the molecular mechanisms of curd formation in broccoli and breeding new superior varieties. Based on resequencing technology,SNP markers and constructed a genetic map consisting of 985 bin markers(comprising 6 329 SNP markers)were developed. The map spanned 788.78 cM,with an average marker interval of 0.84 cM. Through QTL mapping analysis of curd-related agronomic traits,3,3,1,4,and 8 QTLs were detected to control stem diameter,curd diameter,curd height,single curd weight,and floret size,respectively. The phenotypic variation explained(PVE)by these QTLs ranged from 4.5689% to 21.0997%. Among them,one major QTL(LOD = 10.6897,PVE = 21.0997%)controlling floret size was mapped within an approximately 58.977 kb interval defined by SNP markers mk_18639516 and mk_18698493. Analysis of this QTL interval identified four candidate genes-Bo6g067260,Bo6g067270,Bo6g067280,and Bo6g067290-that may influence floret size in the parental lines. These genes showed significant differences in expression levels between the two parents but no sequence variations in the parental lines or the F2 population. This suggests that variations in the regulatory regions(e.g.,promoters)of these genes may lead to differences in gene expression,thereby affecting floret size.

Key words: broccoli, agronomic traits, genetic map, QTL mapping, candidate genes