园艺学报 ›› 2023, Vol. 50 ›› Issue (9): 2015-2030.doi: 10.16420/j.issn.0513-353x.2022-0786
收稿日期:
2022-09-10
修回日期:
2023-02-27
出版日期:
2023-09-25
发布日期:
2023-09-26
通讯作者:
基金资助:
JI Yajing, LI Jinyan, ZHANG Peiyu, MA Liqun, ZHU Hongliang*()
Received:
2022-09-10
Revised:
2023-02-27
Published:
2023-09-25
Online:
2023-09-26
Contact:
*(E-mail:hlzhu@cau.edu.cn)
摘要:
番茄是果实研究的模式植物,番茄果形研究有助于理解果实形态发生的机制。本文主要从QTL基因调控、转录调控、转录后调控和植物激素调控等方面综述了番茄果形建成的研究进展,旨在更好理解调控番茄果形的分子机制,为番茄优质育种提供见解。
姬雅静, 李金焱, 张沛宇, 马力群, 朱鸿亮. 番茄果实形状的调控机制研究进展[J]. 园艺学报, 2023, 50(9): 2015-2030.
JI Yajing, LI Jinyan, ZHANG Peiyu, MA Liqun, ZHU Hongliang. Research Progress on the Regulatory Mechanism of Shape Formation in Tomato Fruit[J]. Acta Horticulturae Sinica, 2023, 50(9): 2015-2030.
图1 番茄果实的发育过程 A:从左到右分别为合轴生长、花序、花器官示意图。B:果实的发育和成熟过程。C:果实纵切面,沿基—顶轴和近—远轴的生长分别决定果实长度和果皮厚度。D:果实横切面,沿中—边轴的生长决定果实的宽度。
Fig. 1 Schematic diagram of the growth and development of tomato A:Sketch map of axial growth of tomato plant,inflorescence,and floral organs. B:Development and ripening of tomato fruit. C:Longitudinal section of tomato fruit. Fruit length and pericarp thickness is determined by growth along proximal-distal and abaxial-adaxial axis,respectively. D:Transversal section of tomato fruit. Fruit width is determined by growth along medio-lateral axis.
类型 Type | 基因号 Gene ID | 对果形的影响 Effect on fruit shape | 调控果形的分子机制 Molecular mechanisms that regulate fruit shape | 参考文献 Reference |
---|---|---|---|---|
QTL基因 QTL gene | SUN Solyc10g079240 | sun果实伸长 Tomato fruit elongates in sun | SUN通过招募CAM影响微管重排来调节细胞分裂 SUN regulates cell division by recruiting CAM to influence microtubule rearrangement | Bürstenbinder et al., |
OVATE Solyc02g085500 | ovate番茄为梨形 ovate mutant is a pear-shaped tomato | OVATE和SlOFP20与TRM相互作用改变调节细胞分裂和器官生长 Interaction between OVATE and SlOFP20 and TRM regulates cell division and organ growth | Liu et al., van de Knaap et al., 2002;Wu et al., | |
WUSCHEL/LC Solyc02g083950 | lc番茄心室数增多,果实更大更扁平 The number of ventricles in lc mutant tomato increases,and the fruit is larger and flattened | lc中两个SNP的出现抑制了转录抑制因子AGAMOUS与WUS的结合,影响了WUS-CLV途径 Two SNPs in lc are believed to inhibit the binding of transcription inhibitor AGAMOUS to WUS and affect the WUS-CLV pathway | Liu et al., | |
GLOBE Solyc12g006860 | 扁平型番茄敲除GLOBE变为圆果形 Knock out GLOBE in flat tomato to make round fruit | GLOBE编码油菜素内酯羟化酶,调控的分子机制未知 GLOBE encodes a brassinoidin-lipid hydroxylase,but its molecular mechanism is unknown | Sierra-Orozco et al., | |
CLV3/FAS Solyc11g071380 | fas番茄心室数增多,果实更大更扁平 The number of ventricles was increased and the fruit was larger and flattened in fas | 影响了WUS-CLV途径 It affects the WUS-CLV pathway | Chu et al., | |
CLV1/FAB Solyc04g081590 | fab番茄心室数增多,果实更大 The carpel number increased and the fruit was larger and flattened in fab | 影响了WUS-CLV途径 It affects the WUS-CLV pathway | Xu et al., | |
HAPT3/FIN Solyc11g064850 | fin番茄心室数增多,果实更大 fin had more carpels and larger fruits | HAPT3的突变导致CLV3不能完全阿拉伯糖基化,影响了WUS-CLV途径 Mutations in HAPT3 lead to incomplete arabinylation of CLV3,which affects the WUS-CLV pathway | Xu et al., | |
转录因子 Transcription factors | ENO Solyc03g117230 | eno形成更大的多心室番茄 eno forms larger and multi-ventricular tomatoes | ENO调节WUS的表达,影响了WUS-CLV途径 ENO regulates the expression of WUS and affects the WUS-CLV pathway | Fernández-Lozano et al., Lisbona et al.,2020 |
BZR1.7 Solyc10g076390 | 超表达BZR1.7形成长果表型 Overexpression of BZR1.7 forms a long-fruit phenotype | BZR1.7通过调控SUN的表达来改变果实形状 BZR1.7 regulates SUN expression to change fruit shape | Yu et al., | |
BES1.8 Solyc10g076390 | 过表达 BES1.8,番茄心室数增多 Overexpression of BES1.8 increases the number of tomato ventricles | SlBES1.8与WUS互作抑制SlWUS和SlCLV3启动子的结合,影响了WUS-CLV途径 The interaction between SlBES1.8 and WUS inhibits the binding of SlWUS and SlCLV3 promoters which affecting the WUS-CLV pathway | Su et al., | |
KNU Solyc02g094428 | knu心室增多 The number of carpel increases in knu | 影响了WUS-CLV途径 It affects the WUS-CLV pathway | Bollier et al., | |
锌指蛋白 Zinc finger protein | IMA Solyc02g087970 | ima心室增多 The number of carpel increases in ima | 影响了WUS-CLV途径 It affects the WUS-CLV pathway | Bollier et al., |
转录后调控 Post- transcriptional regulation | miR159 | 抑制Sly-miR159表达导致果实更扁更大 Inhibition of Sly-miR159 expression results in flattened and larger fruit | Sly-miR159通过其靶基因SlGAMYB2调控赤霉素生物合成影响果实形状 Sly-miR159 regulates GA biosynthesis and affects fruit shape through its target gene SlGAMYB2 | Zhao et al., |
miR160 | 圆果敲除Sly-miR160形成梨形果 Knock out Sly-miR160 in round fruit to form pear-shaped tomato | miR160通过靶向3种生长素反应因子SlARF10、SlARF16和SlARF17调控生长素信号 miR160 regulates auxin signaling by targeting SlARF10、SlARF16 and SlARF17 | Damodharan et al., | |
miR319 | miR319基因敲除产生类似ovate的梨形果 Knockout of the miR319 gene produces a pear-shaped fruit similar to ovate | Sly-miR319调节OVATE的表达以及雌蕊发育期间的生长素水平 Sly-miR319 regulates OVATE expression and auxin homeostasis during pistil development | Carvalho et al., | |
miR396 | miR396下调导致果实更大 Downregulation of miR396 results in larger tomato fruit | miR396的下调导致靶向的生长调节因子GRF表达上调,导致果实明显变大 The downregulation of miR396 leads to upregulation of the targeted growth regulator GRF,resulting in significantly larger fruits | Cao et al., | |
生长素 Auxin | IAA17 Solyc06g008590 | SlIAA17- RNAi株系产生更大果实 The SlIAA17- RNAi produces larger tomato fruit | 抑制SlIAA17的表达后,通过倍性水平的增加影响果皮细胞的大小,最终影响水果的最终大小 Inhibition of SlIAA17 affects the size of epidermal cells by increasing ploidy levels and ultimately the final fruit size | Su et al., |
ARF7 Solyc07g042260 | SlARF7-RNAi为心形果实 SlARF7-RNAi line is heart-shaped fruit | SlARF7通过调节生长素和GA反应,调控细胞分裂和扩张 SlARF7 regulates cell division and expansion by regulating auxin and GA responses | de Jong et al., | |
赤霉素 GA | PRE2 Solyc02g067380 | SlPRE2过表达系的果实略增大,功能丧失系果实变小 The diameter of SlPRE2 overexpression fruit increases slightly,while the fruit diameter of functional loss line decreases | 通过GA调节反应参与细胞伸长 It is involved in cell elongation through GA regulation | Zhu et al., |
GRAS2 Solyc07g063940 | SlGRAS2-RNAi株系果实变小 The fruit becomes smaller in the SlGRAS2-RNAi line | SlGRAS2参与GA的生物合成和信号转导,调节细胞扩张,影响果实的大小和质量 SlGRAS2 participates in regulating GA biosynthesis and signal transduction,cell expansion,and then influences fruit size and weight | Li et al., | |
CDF4 Solyc02g067230 | PPC2启动SlCDF4表达增加,通过细胞层数和细胞大小的增加,产生更大果实 PPC2 activated SlCDF4 expression is increased,which results in larger fruit with increased number of cell layers and cell size | SlCDF4可能影响生长素和GA合成,调节细胞分裂和扩张 SlCDF4 may affect synthesis of auxin and GA,and regulate cell division and expansion | Renau-Morata et al., | |
脱落酸 ABA | FLACCA Solyc07g066480 | ABA缺失双突变体not/flc 果皮细胞更小,果实更小 ABA-deficient double mutants not/flc shows smaller pericarp cells and fruit | ABA通过抑制乙烯合成从而促进细胞扩张和果实生长 ABA promotes cell expansion and fruit growth by inhibiting ethylene synthesis | Nitsch et al., |
NCED1 Solyc07g056570 | ||||
乙烯 Ethylene | EBF2-like Solyc07g008250 | 过表达SlEBF2-like导致果实纵向伸长Overexpression of SLEBF2-like results in longitudinal elongation of fruit | SlEBF2-like通过调节乙烯反应参与果实发育 SlEBF2-like is involved in fruit development by regulating ethylene reaction | Guo et al., |
翻译后修饰 Post- translational modification | ORF9/MEL Solyc05g012790 | 圆形番茄敲除ORF9果实拉长 Knocking out of ORF9 elongates fruit shape in round tomato | ORF9与MAP65-2和CAM1互作,推测CAM1在MEL高度可逆的棕榈酰化修饰中与MAP65-1结合或解离,进而对生长旺盛部位动态调控细胞状态 ORF9 interacts with MAP65-2 and CAM1 that suggest binds to or dissociates between CAM1 and MAP65-1 during highly reversible palmitoylation modification of MEL,thereby dynamically regulates cell state of vigorous growth sites | 杨其洪, |
表1 调控番茄果实形状的主要因素及分子机制
Table 1 Main factors and molecular mechanism regulating tomato fruit shape
类型 Type | 基因号 Gene ID | 对果形的影响 Effect on fruit shape | 调控果形的分子机制 Molecular mechanisms that regulate fruit shape | 参考文献 Reference |
---|---|---|---|---|
QTL基因 QTL gene | SUN Solyc10g079240 | sun果实伸长 Tomato fruit elongates in sun | SUN通过招募CAM影响微管重排来调节细胞分裂 SUN regulates cell division by recruiting CAM to influence microtubule rearrangement | Bürstenbinder et al., |
OVATE Solyc02g085500 | ovate番茄为梨形 ovate mutant is a pear-shaped tomato | OVATE和SlOFP20与TRM相互作用改变调节细胞分裂和器官生长 Interaction between OVATE and SlOFP20 and TRM regulates cell division and organ growth | Liu et al., van de Knaap et al., 2002;Wu et al., | |
WUSCHEL/LC Solyc02g083950 | lc番茄心室数增多,果实更大更扁平 The number of ventricles in lc mutant tomato increases,and the fruit is larger and flattened | lc中两个SNP的出现抑制了转录抑制因子AGAMOUS与WUS的结合,影响了WUS-CLV途径 Two SNPs in lc are believed to inhibit the binding of transcription inhibitor AGAMOUS to WUS and affect the WUS-CLV pathway | Liu et al., | |
GLOBE Solyc12g006860 | 扁平型番茄敲除GLOBE变为圆果形 Knock out GLOBE in flat tomato to make round fruit | GLOBE编码油菜素内酯羟化酶,调控的分子机制未知 GLOBE encodes a brassinoidin-lipid hydroxylase,but its molecular mechanism is unknown | Sierra-Orozco et al., | |
CLV3/FAS Solyc11g071380 | fas番茄心室数增多,果实更大更扁平 The number of ventricles was increased and the fruit was larger and flattened in fas | 影响了WUS-CLV途径 It affects the WUS-CLV pathway | Chu et al., | |
CLV1/FAB Solyc04g081590 | fab番茄心室数增多,果实更大 The carpel number increased and the fruit was larger and flattened in fab | 影响了WUS-CLV途径 It affects the WUS-CLV pathway | Xu et al., | |
HAPT3/FIN Solyc11g064850 | fin番茄心室数增多,果实更大 fin had more carpels and larger fruits | HAPT3的突变导致CLV3不能完全阿拉伯糖基化,影响了WUS-CLV途径 Mutations in HAPT3 lead to incomplete arabinylation of CLV3,which affects the WUS-CLV pathway | Xu et al., | |
转录因子 Transcription factors | ENO Solyc03g117230 | eno形成更大的多心室番茄 eno forms larger and multi-ventricular tomatoes | ENO调节WUS的表达,影响了WUS-CLV途径 ENO regulates the expression of WUS and affects the WUS-CLV pathway | Fernández-Lozano et al., Lisbona et al.,2020 |
BZR1.7 Solyc10g076390 | 超表达BZR1.7形成长果表型 Overexpression of BZR1.7 forms a long-fruit phenotype | BZR1.7通过调控SUN的表达来改变果实形状 BZR1.7 regulates SUN expression to change fruit shape | Yu et al., | |
BES1.8 Solyc10g076390 | 过表达 BES1.8,番茄心室数增多 Overexpression of BES1.8 increases the number of tomato ventricles | SlBES1.8与WUS互作抑制SlWUS和SlCLV3启动子的结合,影响了WUS-CLV途径 The interaction between SlBES1.8 and WUS inhibits the binding of SlWUS and SlCLV3 promoters which affecting the WUS-CLV pathway | Su et al., | |
KNU Solyc02g094428 | knu心室增多 The number of carpel increases in knu | 影响了WUS-CLV途径 It affects the WUS-CLV pathway | Bollier et al., | |
锌指蛋白 Zinc finger protein | IMA Solyc02g087970 | ima心室增多 The number of carpel increases in ima | 影响了WUS-CLV途径 It affects the WUS-CLV pathway | Bollier et al., |
转录后调控 Post- transcriptional regulation | miR159 | 抑制Sly-miR159表达导致果实更扁更大 Inhibition of Sly-miR159 expression results in flattened and larger fruit | Sly-miR159通过其靶基因SlGAMYB2调控赤霉素生物合成影响果实形状 Sly-miR159 regulates GA biosynthesis and affects fruit shape through its target gene SlGAMYB2 | Zhao et al., |
miR160 | 圆果敲除Sly-miR160形成梨形果 Knock out Sly-miR160 in round fruit to form pear-shaped tomato | miR160通过靶向3种生长素反应因子SlARF10、SlARF16和SlARF17调控生长素信号 miR160 regulates auxin signaling by targeting SlARF10、SlARF16 and SlARF17 | Damodharan et al., | |
miR319 | miR319基因敲除产生类似ovate的梨形果 Knockout of the miR319 gene produces a pear-shaped fruit similar to ovate | Sly-miR319调节OVATE的表达以及雌蕊发育期间的生长素水平 Sly-miR319 regulates OVATE expression and auxin homeostasis during pistil development | Carvalho et al., | |
miR396 | miR396下调导致果实更大 Downregulation of miR396 results in larger tomato fruit | miR396的下调导致靶向的生长调节因子GRF表达上调,导致果实明显变大 The downregulation of miR396 leads to upregulation of the targeted growth regulator GRF,resulting in significantly larger fruits | Cao et al., | |
生长素 Auxin | IAA17 Solyc06g008590 | SlIAA17- RNAi株系产生更大果实 The SlIAA17- RNAi produces larger tomato fruit | 抑制SlIAA17的表达后,通过倍性水平的增加影响果皮细胞的大小,最终影响水果的最终大小 Inhibition of SlIAA17 affects the size of epidermal cells by increasing ploidy levels and ultimately the final fruit size | Su et al., |
ARF7 Solyc07g042260 | SlARF7-RNAi为心形果实 SlARF7-RNAi line is heart-shaped fruit | SlARF7通过调节生长素和GA反应,调控细胞分裂和扩张 SlARF7 regulates cell division and expansion by regulating auxin and GA responses | de Jong et al., | |
赤霉素 GA | PRE2 Solyc02g067380 | SlPRE2过表达系的果实略增大,功能丧失系果实变小 The diameter of SlPRE2 overexpression fruit increases slightly,while the fruit diameter of functional loss line decreases | 通过GA调节反应参与细胞伸长 It is involved in cell elongation through GA regulation | Zhu et al., |
GRAS2 Solyc07g063940 | SlGRAS2-RNAi株系果实变小 The fruit becomes smaller in the SlGRAS2-RNAi line | SlGRAS2参与GA的生物合成和信号转导,调节细胞扩张,影响果实的大小和质量 SlGRAS2 participates in regulating GA biosynthesis and signal transduction,cell expansion,and then influences fruit size and weight | Li et al., | |
CDF4 Solyc02g067230 | PPC2启动SlCDF4表达增加,通过细胞层数和细胞大小的增加,产生更大果实 PPC2 activated SlCDF4 expression is increased,which results in larger fruit with increased number of cell layers and cell size | SlCDF4可能影响生长素和GA合成,调节细胞分裂和扩张 SlCDF4 may affect synthesis of auxin and GA,and regulate cell division and expansion | Renau-Morata et al., | |
脱落酸 ABA | FLACCA Solyc07g066480 | ABA缺失双突变体not/flc 果皮细胞更小,果实更小 ABA-deficient double mutants not/flc shows smaller pericarp cells and fruit | ABA通过抑制乙烯合成从而促进细胞扩张和果实生长 ABA promotes cell expansion and fruit growth by inhibiting ethylene synthesis | Nitsch et al., |
NCED1 Solyc07g056570 | ||||
乙烯 Ethylene | EBF2-like Solyc07g008250 | 过表达SlEBF2-like导致果实纵向伸长Overexpression of SLEBF2-like results in longitudinal elongation of fruit | SlEBF2-like通过调节乙烯反应参与果实发育 SlEBF2-like is involved in fruit development by regulating ethylene reaction | Guo et al., |
翻译后修饰 Post- translational modification | ORF9/MEL Solyc05g012790 | 圆形番茄敲除ORF9果实拉长 Knocking out of ORF9 elongates fruit shape in round tomato | ORF9与MAP65-2和CAM1互作,推测CAM1在MEL高度可逆的棕榈酰化修饰中与MAP65-1结合或解离,进而对生长旺盛部位动态调控细胞状态 ORF9 interacts with MAP65-2 and CAM1 that suggest binds to or dissociates between CAM1 and MAP65-1 during highly reversible palmitoylation modification of MEL,thereby dynamically regulates cell state of vigorous growth sites | 杨其洪, |
图2 QTL基因影响番茄果实形状的分子基础(van der Knaap et al.,2014;Xu et al.,2015) 红框:功能基因编码区域;| :SNP位点;↑:碱基插入;∧:基因点突变和相应氨基酸改变;右侧示意图表示对应QTL基因的突变表型。 其中根据Xu等(2015)的报道,5株fin突变体中,2株在HAPT3发生碱基错义突变,3株发生碱基缺失导致转录本缺失。m:突变株系。
Fig. 2 The molecular basis of QTL gene affecting tomato fruit shape(van der Knaap et al.,2014;Xu et al.,2015) Red box indicates the coding region of the functional gene;| indicates SNP;↑ indicates base insertion;∧ denotes the point mutation and corresponding amino acid changes of genes. The tomato diagrams on the right show the mutation phenotypes of corresponding QTL genes. According to Xu et al.(2015),five fin mutants were obtained by mutagenesis,of which two of them have missense mutations in HAPT3,and the others have base deletion leading to transcript absence. m stands for mutant.
图3 WUS-CLV途径调节心室数量影响果实大小 A:分生组织中通过调控WUS-CLV途径影响果实心室数量和果实大小的基因。B:番茄果实的横切图。 WT一般为2个心室,fas、fab、lc、fin、eno、ima、knu、OE-BES1.8心室增多,果实变大。
Fig. 3 The WUS-CLV pathway regulates the carpel number and then affects fruit size A:Genes in meristem that affect the number of fruit ventricles and size by regulating WUS-CLV pathway. B:Cross section of tomato fruit. WT fruit generally has two locules,while fruits of fas,fab,lc,fin,eno,ima,knu and OE-BES1.8 have more locules and larger size.
[1] |
doi: 10.1186/1471-2148-5-72 |
[2] |
|
[3] |
doi: 10.1105/tpc.17.00653 URL |
[4] |
doi: 10.1104/pp.16.01743 pmid: 28115582 |
[5] |
|
[6] |
doi: 10.1016/j.cub.2022.04.031 URL |
[7] |
doi: 10.1016/j.plantsci.2016.02.012 URL |
[8] |
doi: 10.1104/pp.112.204552 pmid: 22942390 |
[9] |
|
[10] |
doi: 10.1093/jxb/erh207 pmid: 15258170 |
[11] |
|
[12] |
|
[13] |
doi: 10.1007/s00438-014-0822-8 URL |
[14] |
doi: 10.5511/plantbiotechnology.14.0204a URL |
[15] |
doi: 10.1016/s0092-8674(00)80239-1 pmid: 9160749 |
[16] |
doi: 10.1111/tpj.2016.86.issue-6 URL |
[17] |
|
[18] |
doi: 10.1093/jxb/erq293 URL |
[19] |
doi: 10.1093/jxb/erv152 URL |
[20] |
doi: 10.1186/1471-2229-12-1 URL |
[21] |
doi: 10.1007/s00122-018-3050-5 URL |
[22] |
doi: 10.1104/pp.109.147546 pmid: 19812183 |
[23] |
doi: 10.1016/j.plantsci.2014.12.007 pmid: 25617322 |
[24] |
doi: 10.1126/science.283.5409.1911 pmid: 10082464 |
[25] |
doi: S0168-9525(16)30005-1 pmid: 27129984 |
[26] |
doi: 10.1093/jxb/ers229 pmid: 22945942 |
[27] |
Gómez, Jamilena, Capel, Zurita, Angosto, Lozano. 1999. Stamenless,a tomato mutant with homeotic conversions in petals and stamens. Planta, 209 (2):172-179.
doi: 10.1007/s004250050619 pmid: 10436218 |
[28] |
doi: 10.1007/s001220051405 URL |
[29] |
doi: 10.1016/j.plantsci.2018.04.016 URL |
[30] |
|
[31] |
|
韩洪强. 2014. 控制茄子果型相关性状关键基因的克隆及功能研究[博士论文]. 上海: 上海交通大学.
|
|
[32] |
doi: 10.1093/mp/sss011 pmid: 22331621 |
[33] |
doi: 10.1105/tpc.18.00363 URL |
[34] |
doi: 10.1146/annurev-arplant-042811-105503 pmid: 22554243 |
[35] |
doi: 10.1111/tpj.2009.60.issue-1 URL |
[36] |
doi: 10.1007/s001220051555 URL |
[37] |
doi: 10.1007/s00438-011-0602-7 URL |
[38] |
|
[39] |
doi: 10.1111/tpj.2005.43.issue-1 URL |
[40] |
|
[41] |
doi: 10.1111/jipb.v60.6 URL |
[42] |
doi: 10.16420/j.issn.0513-353x.2021-0152 URL |
李娜, 尚建立, 李楠楠, 周丹, 孔胜楠, 王吉明, 马双武. 2021. 西瓜果实形状的分子精准鉴定. 园艺学报, 48 (7):1386-1396.
doi: 10.16420/j.issn.0513-353x.2021-0152 URL |
|
[43] |
doi: 10.1007/s00122-016-2679-1 URL |
[44] |
|
[45] |
doi: 10.1093/genetics/158.1.413 pmid: 11333249 |
[46] |
|
[47] |
doi: 10.1105/tpc.111.091538 URL |
[48] |
doi: S0960-9822(20)30200-1 pmid: 32169211 |
[49] |
doi: 10.1111/tpj.2016.85.issue-2 URL |
[50] |
doi: 10.1242/dev.104687 pmid: 24496620 |
[51] |
doi: 10.1007/s00344-011-9204-1 URL |
[52] |
doi: 10.1016/j.tplants.2021.05.008 URL |
[53] |
doi: 10.1016/s0092-8674(00)81703-1 pmid: 9865698 |
[54] |
doi: 10.1111/tpj.2011.67.issue-2 URL |
[55] |
|
[56] |
doi: 10.1104/pp.111.173997 URL |
[57] |
doi: 10.1016/j.jplph.2012.02.004 pmid: 22424572 |
[58] |
doi: 10.1038/nchembio.182 |
[59] |
doi: 10.1007/s00122-016-2836-6 |
[60] |
doi: 10.1101/gad.11.23.3194 URL |
[61] |
doi: 10.1038/s41598-020-67537-x pmid: 32606421 |
[62] |
doi: 10.1038/hdy.2013.45 pmid: 23673388 |
[63] |
|
[64] |
doi: 10.1016/s0092-8674(00)80700-x pmid: 10761929 |
[65] |
doi: 10.1105/tpc.010413 URL |
[66] |
doi: 10.1111/tpj.2008.55.issue-3 URL |
[67] |
doi: 10.1038/s41438-021-00574-3 pmid: 34075031 |
[68] |
doi: 10.1111/jipb.v64.11 URL |
[69] |
doi: 10.1016/j.pbi.2009.09.008 URL |
[70] |
doi: 10.1111/tpj.15683 pmid: 35076967 |
[71] |
doi: 10.1093/pcp/pcu124 URL |
[72] |
doi: 10.1093/jxb/erv361 URL |
[73] |
doi: 10.1007/s00122-015-2603-0 URL |
[74] |
|
[75] |
doi: 10.1242/dev.125.9.1647 pmid: 9521903 |
[76] |
doi: 10.1186/1471-2229-11-1 |
[77] |
|
[78] |
doi: 10.1007/s00122-001-0776-1 pmid: 12582693 |
[79] |
doi: 10.1111/j.1469-8137.2012.04100.x pmid: 22404712 |
[80] |
|
[81] |
|
王莎, 程大伟, 顾红, 李明, 何莎莎, 李芳菲, 谷世超, 陈锦永. 2019. 植物生长调节剂对‘阳光玫瑰’葡萄果实无核及品质的影响. 果树学报, 36 (12):1675-1682.
|
|
[82] |
|
[83] |
|
[84] |
|
[85] |
doi: 10.1038/s41467-017-02088-w |
[86] |
doi: 10.1126/science.1153040 pmid: 18339939 |
[87] |
doi: 10.1038/ng.3309 pmid: 26005869 |
[88] |
|
[89] |
doi: 10.16420/j.issn.0513-353x.2022-0023 URL |
徐悦, 李子雄, 陈婕, 孙亮. 2023. 2,4-D调控番茄果形的转录基础. 园艺学报, 50 (4):802-814.
doi: 10.16420/j.issn.0513-353x.2022-0023 URL |
|
[90] |
doi: 10.1111/pbi.13279 pmid: 31622529 |
[91] |
|
杨其洪. 2020. 番茄MELONGENODIA和HELICAL基因分别调控果实伸长和植株螺旋生长的分子机理[博士论文]. 武汉: 华中农业大学.
|
|
[92] |
doi: 10.1093/hr/uhac121 URL |
[93] |
|
[94] |
doi: 10.1016/j.cub.2020.12.009 URL |
[95] |
doi: 10.1016/j.hpj.2021.04.002 URL |
[96] |
doi: 10.16420/j.issn.0513-353x.2021-0334 URL |
张婷婷, 薛婉钰, 刘娜, 陈书霞. 2022. 几种主要果菜类蔬菜果形遗传及其调控机制研究进展. 园艺学报, 49 (10):2189-2204.
doi: 10.16420/j.issn.0513-353x.2021-0334 URL |
|
[97] |
doi: 10.1111/pbi.13762 pmid: 34882929 |
[98] |
|
[99] |
doi: 10.1038/s41598-016-0028-x |
[100] |
doi: 10.1007/s00299-019-02425-x |
[1] | 苏银玲, 杨子祥, 但 忠, 麻继仙, 杨 龙, 李易蓉, 唐正富, 汪玲敏, 木万福. 番茄新品种‘云番茄 68’[J]. 园艺学报, 2023, 50(S1): 63-64. |
[2] | 樊 娟, 沈松真, 苗青青, 张乐辉, 姚恩鹏, 裴卓强. 番茄新品种‘卫红 16 号’[J]. 园艺学报, 2023, 50(S1): 65-66. |
[3] | 韦建明, 李云洲, 梁燕. 嫁接技术提高番茄抗病抗逆性的研究进展[J]. 园艺学报, 2023, 50(9): 1997-2014. |
[4] | 张巧丽, 陈笛, 宋艳萍, 朱鸿亮, 罗云波, 曲桂芹. 番茄果实叶绿素代谢转录调控网络研究进展[J]. 园艺学报, 2023, 50(9): 2031-2047. |
[5] | 宰文珊, 熊自立, 马彦如, 史建磊, 张海利. 番茄新品种‘瓯秀816’[J]. 园艺学报, 2023, 50(9): 2061-2062. |
[6] | 莫雨杏, 周艳, 林润婷, 多泳星, 张涛, 刘锴栋. 番木瓜CpWRI3参与调控果实成熟过程中脂肪酸合成[J]. 园艺学报, 2023, 50(8): 1637-1648. |
[7] | 周洁, 李甜竹, 刘汝懿, 李陈浩, 袁泽南, 李建明. 空气湿度与土壤含水量耦合对番茄灰霉病的影响[J]. 园艺学报, 2023, 50(8): 1779-1792. |
[8] | 潘光辉, 罗佳, 尹贤贵, 汝学娟. 抗晚疫病番茄新品种‘渝番421’[J]. 园艺学报, 2023, 50(8): 1805-1806. |
[9] | 沈心彦, 侯晓雷, 孙培楠, 刘敏敏, 唐亚萍, 李宁, 卢永恩, 叶志彪, 欧阳波. 分子标记辅助选择改良加工番茄的耐旱性[J]. 园艺学报, 2023, 50(7): 1429-1443. |
[10] | 潘佳佳, 张东梅, 孟建, 高苏南, 朱凯杰, 刘军伟, 李国怀. 李坏死环斑病毒诱导的桃PpPDS沉默体系的优化及验证[J]. 园艺学报, 2023, 50(7): 1587-1600. |
[11] | 杨孟霞, 刘晓林, 曹雪, 魏凯, 宁宇, 杨沛, 李珊珊, 陈紫月, 王孝宣, 国艳梅, 杜永臣, 李君明, 刘磊, 李鑫, 黄泽军. 番茄CRISPR/Cas9介导的多基因编辑技术体系构建与应用[J]. 园艺学报, 2023, 50(6): 1215-1229. |
[12] | 张辉, 朱为民, 朱龙英, 杨学东, 张迎迎, 田守波, 万延慧, 刘雅慧, 杨志杰. 樱桃番茄新品种‘沪樱9号’[J]. 园艺学报, 2023, 50(6): 1379-1380. |
[13] | 李国斌, 蔡梁玉, 肖立成, 王家发, 张得迪, 张俊红. 利用CRISPR/Cas9技术创制番茄粉果和无绿肩材料[J]. 园艺学报, 2023, 50(5): 985-999. |
[14] | 徐悦, 李子雄, 陈婕, 孙亮. 2,4-D调控番茄果形的转录基础[J]. 园艺学报, 2023, 50(4): 802-814. |
[15] | 郑锦荣, 聂俊, 李艳红, 谭德龙, 谢玉明, 张长远. 樱桃番茄新品种‘粤科达101’[J]. 园艺学报, 2023, 50(4): 909-910. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司