园艺学报 ›› 2022, Vol. 49 ›› Issue (6): 1313-1326.doi: 10.16420/j.issn.0513-353x.2021-0478
王妍1,2, 孙政1,2, 冯珊1,2, 袁心怡1,2, 仲林林1,2, 曾云流1,2, 傅小鹏1,4, 程运江1,2,3, 包满珠1,4, 张帆1,2,3,4,*()
收稿日期:
2021-12-31
修回日期:
2022-04-22
出版日期:
2022-06-25
发布日期:
2022-07-05
通讯作者:
张帆
E-mail:zhangfan@mail.hzau.edu.cn
基金资助:
WANG Yan1,2, SUN Zheng1,2, FENG Shan1,2, YUAN Xinyi1,2, ZHONG Linlin1,2, ZENG Yunliu1,2, FU Xiaopeng1,4, CHENG Yunjiang1,2,3, Bao Manzhu1,4, ZHANG Fan1,2,3,4,*()
Received:
2021-12-31
Revised:
2022-04-22
Online:
2022-06-25
Published:
2022-07-05
Contact:
ZHANG Fan
E-mail:zhangfan@mail.hzau.edu.cn
摘要:
以香石竹(Dianthus caryophyllus L.)为材料,克隆得到1个ERF转录因子基因,命名为DcERF-1。氨基酸序列比对及系统进化树分析发现,DcERF-1与拟南芥AtERF-1的同源性最高,属于Ⅸ(B3)亚组。实时荧光定量PCR显示,DcERF-1表达量在花中最高,且在花瓣自然衰老和乙烯诱导的衰老过程中都呈现先上升后下降的趋势。DcERF-1定位于细胞核中。DcERF-1在香石竹花瓣中瞬时过量表达后,花瓣褪色速度明显延缓,离子渗透率明显降低; DcERF-1被瞬时沉默后,花瓣褪色速度显著加快,离子渗透率显著升高,衰老标志基因DcSAG12表达量显著上调。酵母单杂交试验证明乙烯信号转导途径核心转录因子DcEIN3能直接结合DcERF-1的启动子。双荧光素酶瞬时表达试验证明DcERF-1能抑制乙烯生物合成途径中ACC氧化酶基因DcACO4的表达活性。综合结果表明DcERF-1负调控香石竹切花衰老。
中图分类号:
王妍, 孙政, 冯珊, 袁心怡, 仲林林, 曾云流, 傅小鹏, 程运江, 包满珠, 张帆. 香石竹DcERF-1转录因子对切花衰老的负调控作用[J]. 园艺学报, 2022, 49(6): 1313-1326.
WANG Yan, SUN Zheng, FENG Shan, YUAN Xinyi, ZHONG Linlin, ZENG Yunliu, FU Xiaopeng, CHENG Yunjiang, Bao Manzhu, ZHANG Fan. The Negative Regulation of DcERF-1 on Senescence of Cut Carnation[J]. Acta Horticulturae Sinica, 2022, 49(6): 1313-1326.
用途 Usage | 名称 Name | 引物序列(5′-3′) Primer sequence |
---|---|---|
基因沉默 Gene silencing | TRV2-DcERF-1 | F:cgtgagctcggtaccggatccAGAGGATGCAGCTTTGGCC |
R:gtgagtaaggttaccgaattcCTAATTAACTAACAATTGATCACCAAGTTG | ||
基因过表达 Gene overexpression | p1300-DcERF-1 | F:caaatcgactctagaaagcttATGAGTAATTTTGATTCTGATTATACAGTTCT |
R:gcccttgctcaccatggtaccATTAACTAACAATTGATCACCAAGTTGC | ||
实时荧光定量 PCR Real-time quantitative PCR | DcERF-1-qPCR | F:CAACGTCCTCCTCAGAAACCAG |
R:TCACACCAACTTGACAACCCAC | ||
DcSAG12-qPCR | F:TCAGAATGACGAAGACGCCC | |
R:AACCGCACTCGCCCTTAAAC | ||
DcACO4-qPCR | F:ACCATGCTTGCGAGAATTGG | |
R:AGCGGTTTCCCAGTCAGTTG | ||
DcACS3-qPCR | F:TTTGATGGGTGGAAAGCTTATG | |
R:AAATGGATGCACTTGGGTTCTT | ||
DcACS9-qPCR | F:GTCTCTTCCTCGGCTCCGTC | |
R:ACAAATGGGCCTGACTCGAC | ||
DcACO1-qPCR | F:GGGAAGTGATGCCGTGATTT | |
R:CAAGCAGTTGGAATGGGACC | ||
DcACS1-qPCR | F:AAGGAAACGCGGCATTGTT | |
R:CGAAGCTCCATTTGCCCTC | ||
酵母单杂交 Yeast one hybrid assay | AD-DcEIN3 | F:gccatggaggccagtgaattcATGGTGATGTTGTTTGAGGAAATG |
R:atgcccacccgggtggaattcTTATCTGTACCAAGCCGATGATGT | ||
DcP-pAbAi | F:cttgaattcgagctcggtaccTTTCTACCACAAAATAATGAATTAAATATTC | |
R:atacagagcacatgcctcgagTCTGGGTATTGATTACTTAAGCTAAAAA | ||
双荧光素酶试验 Dual luciferase assay | DcERF-1-62-SK | F:caggaattcgatatcaagcttATGAGTAATTTTGATTCTGATTATACAGTTCT |
R:tcagcgtaccgaattggtaccCTAATTAACTAACAATTGATCACCAAGTTG | ||
DcACS9-0800 | F:gtcgacggtatcgataagcttAACACAAATTCTTATTTAAGACGGGTA | |
R:cgctctagaactagtggatccAGTTTCTAGTTGAGGTGATAATGATTAGG | ||
DcACS3-0800 | F:gtcgacggtatcgataagcttTTTCTTATCTAATATTCAGTCAATTATTCAATT | |
R:cgctctagaactagtggatccAAAAACCACCCCAAGAAAAAAA | ||
DcACO4-0800 | F:gtcgacggtatcgataagcttTCCCAAAGTCCAGCATTTGTTG | |
R:cgctctagaactagtggatccTTTTCTTCCTACAAATTAAAATATATTTTACAA |
表1 引物序列
Table 1 Primer sequences
用途 Usage | 名称 Name | 引物序列(5′-3′) Primer sequence |
---|---|---|
基因沉默 Gene silencing | TRV2-DcERF-1 | F:cgtgagctcggtaccggatccAGAGGATGCAGCTTTGGCC |
R:gtgagtaaggttaccgaattcCTAATTAACTAACAATTGATCACCAAGTTG | ||
基因过表达 Gene overexpression | p1300-DcERF-1 | F:caaatcgactctagaaagcttATGAGTAATTTTGATTCTGATTATACAGTTCT |
R:gcccttgctcaccatggtaccATTAACTAACAATTGATCACCAAGTTGC | ||
实时荧光定量 PCR Real-time quantitative PCR | DcERF-1-qPCR | F:CAACGTCCTCCTCAGAAACCAG |
R:TCACACCAACTTGACAACCCAC | ||
DcSAG12-qPCR | F:TCAGAATGACGAAGACGCCC | |
R:AACCGCACTCGCCCTTAAAC | ||
DcACO4-qPCR | F:ACCATGCTTGCGAGAATTGG | |
R:AGCGGTTTCCCAGTCAGTTG | ||
DcACS3-qPCR | F:TTTGATGGGTGGAAAGCTTATG | |
R:AAATGGATGCACTTGGGTTCTT | ||
DcACS9-qPCR | F:GTCTCTTCCTCGGCTCCGTC | |
R:ACAAATGGGCCTGACTCGAC | ||
DcACO1-qPCR | F:GGGAAGTGATGCCGTGATTT | |
R:CAAGCAGTTGGAATGGGACC | ||
DcACS1-qPCR | F:AAGGAAACGCGGCATTGTT | |
R:CGAAGCTCCATTTGCCCTC | ||
酵母单杂交 Yeast one hybrid assay | AD-DcEIN3 | F:gccatggaggccagtgaattcATGGTGATGTTGTTTGAGGAAATG |
R:atgcccacccgggtggaattcTTATCTGTACCAAGCCGATGATGT | ||
DcP-pAbAi | F:cttgaattcgagctcggtaccTTTCTACCACAAAATAATGAATTAAATATTC | |
R:atacagagcacatgcctcgagTCTGGGTATTGATTACTTAAGCTAAAAA | ||
双荧光素酶试验 Dual luciferase assay | DcERF-1-62-SK | F:caggaattcgatatcaagcttATGAGTAATTTTGATTCTGATTATACAGTTCT |
R:tcagcgtaccgaattggtaccCTAATTAACTAACAATTGATCACCAAGTTG | ||
DcACS9-0800 | F:gtcgacggtatcgataagcttAACACAAATTCTTATTTAAGACGGGTA | |
R:cgctctagaactagtggatccAGTTTCTAGTTGAGGTGATAATGATTAGG | ||
DcACS3-0800 | F:gtcgacggtatcgataagcttTTTCTTATCTAATATTCAGTCAATTATTCAATT | |
R:cgctctagaactagtggatccAAAAACCACCCCAAGAAAAAAA | ||
DcACO4-0800 | F:gtcgacggtatcgataagcttTCCCAAAGTCCAGCATTTGTTG | |
R:cgctctagaactagtggatccTTTTCTTCCTACAAATTAAAATATATTTTACAA |
图2 香石竹DcERF-1与其他植物ERF蛋白氨基酸比对 Ph:矮牵牛;Ma:香蕉;Md:苹果;At:拟南芥。
Fig. 2 Alignment of the predicted ERF proteins between carnation and other plant species Ph:Petunia hybrida;Ma:Musa acuminata:Md:Malus × domestica;At:Arabidopsis thaliana.
图3 香石竹DcERF-Ⅸ亚组蛋白与拟南芥AtERF-Ⅸ亚组蛋白的进化关系 ●○ 同源蛋白。
Fig. 3 The phylogenetic tree of carnation DcERF-Ⅸ proteins and Arabidopsis thaliana AtERF-Ⅸ proteins ●○ Homologous proteins.
图4 DcERF-1在香石竹不同器官(A)、不同开放阶段(B)和乙烯处理后不同时间的表达量(C)
Fig. 4 The expression level of DcERF-1 in different organs(A),different flower opening stages(B)and different time after ethylene treatment(C) *α = 0.05;** α = 0.01;*** α = 0.001.
图6 DcERF-1瞬时过表达延缓香石竹切花衰老 A:褪色表型;B:表达量;C:离子渗透率。
Fig. 6 Overexpression of DcERF-1 delayed petal senescence A:The color-fading phenotype;B:The expression level;C:The ion leakage rate. ** α = 0.01.
图7 DcERF-1沉默加速花瓣衰老 A:褪色表型;B:表达量;C:离子渗透率。
Fig. 7 Silencing of DcERF-1 promotes petal senescence A:The color-fading phenotype;B:The expression level;C:The ion leakage rate. ** α = 0.01;*** α = 0.001.
[1] |
Aalifar M, Aliniaeifard S, Arab M, Mehrjerdi M Z, Serek M. 2020. Blue light postpones senescence of carnation flowers through regulation of ethylene and abscisic acid pathway-related genes. Plant Physiology and Biochemistry, 151:103-112.
doi: 10.1016/j.plaphy.2020.03.018 URL |
[2] |
Abiri R, Shaharuddin N A, Maziah M, Yusof Z N B, Atabaki N, Sahebi M, Valdiani A, Kalhori N, Azizi P, Hanafi M M. 2017. Role of ethylene and the APETALA 2/ethylene response factor superfamily in rice under various abiotic and biotic stress conditions. Environmental and Experimental Botany, 134:33-44.
doi: 10.1016/j.envexpbot.2016.10.015 URL |
[3] |
Ahammed G J, Gantait S, Mitra M, Yang Y, Li X. 2020. Role of ethylene crosstalk in seed germination and early seedling development:a review. Plant Physiology and Biochemistry, 151:124-131.
doi: S0981-9428(20)30129-7 pmid: 32220785 |
[4] |
Chen C X, Hussain N, Wang Y R, Li M T, Liu L, Qin M Z, Ma N, Gao J P, Sun X M. 2020. An ethylene-inhibited NF-YC transcription factor RhNF-YC 9 regulates petal expansion in rose. Horticultural Plant Journal, 6 (6):419-427.
doi: 10.1016/j.hpj.2020.11.007 URL |
[5] |
Cui M Y, Lin Y C, Zu Y G, Efferth T, Li D W, Tang Z H. 2015. Ethylene increases accumulation of compatible solutes and decreases oxidative stress to improve plant tolerance to water stress in Arabidopsis. Journal of Plant Biology, 58 (3):193-201.
doi: 10.1007/s12374-014-0302-z URL |
[6] | de Paepe A, van der Straeten D. 2005. Ethylene biosynthesis and signaling:an overview. Vitamins and Hormones, 72:399-430. |
[7] |
Dubois M, Van den Broeck L, Inzé D. 2018. The pivotal role of ethylene in plant growth. Trends in Plant Science, 23 (4):311-323.
doi: 10.1016/j.tplants.2018.01.003 URL |
[8] |
Fujimoto S Y, Ohta M, Usui A, Shinshi H, Ohme-Takagi M. 2000. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell, 12 (3):393-404.
pmid: 10715325 |
[9] |
Hoppen C, Muller L, Albrecht A C, Groth G. 2019. The NOP-1 peptide derived from the central regulator of ethylene signaling EIN2 delays floral senescence in cut flowers. Scientific Reports, 9 (1):1287.
doi: 10.1038/s41598-018-37571-x URL |
[10] | Iqbal N, Khan N A, Ferrante A, Trivellini A, Francini A, Khan M I R. 2017. Ethylene role in plant growth,development and senescence:interaction with other phytohormones. Frontiers in Plant Science, 8 (9):475. |
[11] |
Khaskheli A J, Ahmed W, Ma C, Zhang S, Liu Y, Li Y, Zhou X, Gao J. 2018. RhERF 113 functions in ethylene-Induced petal senescence by modulating cytokinin content in rose. Plant and Cell Physiology, 59 (12):2442-2451.
doi: 10.1093/pcp/pcy162 pmid: 30101287 |
[12] | Kong Wei-long, Hu Rui, Bao Man-zhu, Fu Xiao-peng. 2017. Cloning and expression analysis of the aquaporin genes in carnation. Acta Horticulturae Sinica, 44 (3):515-527. (in Chinese) |
孔维龙, 胡瑞, 包满珠, 傅小鹏. 2017. 香石竹水孔蛋白基因的克隆及表达分析. 园艺学报, 44 (3):515-527. | |
[13] |
Lee M M, Lee S H, Park K Y. 1997. Effects of spermine on ethylene biosynthesis in cut carnation(Dianthus caryophyllus L.)flowers during senescence. Journal of Plant Physiology, 151 (1):68-73.
doi: 10.1016/S0176-1617(97)80038-7 URL |
[14] |
Li T, Jiang Z Y, Zhang L C, Tan D M, Wei Y, Yuan H, Li T L, Wang A D. 2016. Apple(Malus domestica)MdERF2 negatively affects ethylene biosynthesis during fruit ripening by suppressing MdACS1 transcription. Plant Journal, 88 (5):735-748.
doi: 10.1111/tpj.13289 URL |
[15] |
Liu J, Li J, Wang H, Fu Z, Liu J, Yu Y. 2011. Identification and expression analysis of ERF transcription factor genes in petunia during flower senescence and in response to hormone treatments. Journal of Experimental Botany, 62 (2):825-840.
doi: 10.1093/jxb/erq324 URL |
[16] |
Liu J, Yang J, Zhang H, Cong L, Zhai R, Yang C, Wang Z, Ma F, Xu L. 2019. Melatonin inhibits ethylene synthesis via nitric oxide regulation to delay postharvest senescence in pears. Journal of Agricultural and Food Chemistry, 67:2279-2288.
doi: 10.1021/acs.jafc.8b06580 URL |
[17] |
Liu M C, Diretto G, Pirrello J, Roustan J P, Li Z G, Giuliano G, Regad F, Bouzayen M. 2014. The chimeric repressor version of an ethylene response factor(ERF)family member,Sl-ERF.B3,shows contrasting effects on tomato fruit ripening. New Phytologist, 203 (1):206-218.
doi: 10.1111/nph.12771 URL |
[18] |
Ma N, Ma C, Liu Y, Shahid M O, Wang C, Gao J. 2018. Petal senescence:a hormone view. Journal of Experimental Botany, 69 (4):719-732.
doi: 10.1093/jxb/ery009 URL |
[19] |
Manzano S, Martínez C, Megías Z, Garrido D, Jamilena M. 2013. Involvement of ethylene biosynthesis and signalling in the transition from male to female flowering in the monoecious Cucurbita pepo. Journal of Plant Growth Regulation, 32 (4):789-798.
doi: 10.1007/s00344-013-9344-6 URL |
[20] | Naing A H, Soe M T, Kyu S Y, Kim C K. 2021. Nano-silver controls transcriptional regulation of ethylene- and senescence-associated genes during senescence in cut carnations. Scientia Horticulturae, 287:1-9. |
[21] |
Nakano T, Suzuki K, Fujimura T, Shinshi H. 2006. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology, 140 (2):411-432.
doi: 10.1104/pp.105.073783 URL |
[22] | Poór P, Nawaz K, Gupta R, Ashfaque F, Khan M. 2021. Ethylene involvement in the regulation of heat stress tolerance in plants. Plant Cell Reports,1-24. |
[23] |
Pun U K, Yamada T, Azuma M, Tanase K, Yoshioka S, Shimizu-Yumoto H, Satoh S, Ichimura K. 2016. Effect of sucrose on sensitivity to ethylene and enzyme activities and gene expression involved in ethylene biosynthesis in cut carnations. Postharvest Biology and Technology, 121:151-158.
doi: 10.1016/j.postharvbio.2016.08.001 URL |
[24] |
Pun U K, Yamada T, Tanase K, Shimizu-Yumoto H, Satoh S, Ichimura K. 2014. Effect of ethanol on ethylene biosynthesis and sensitivity in cut carnation flowers. Postharvest Biology and Technology, 98:30-33.
doi: 10.1016/j.postharvbio.2014.06.018 URL |
[25] |
Sacalis J, Wulster G, Janes H. 1983. Senescence in isolated carnation petals:differential response of various petal portions to ACC,and effects of uptake of exudate from excised gynoecia. Zeitschrift für Pflanzenphysiologie, 112:7-14.
doi: 10.1016/S0044-328X(83)80057-9 URL |
[26] |
Schneider H M, Wojciechowski T, Postma J A, Brown K M, Lynch J P. 2018. Ethylene modulates root cortical senescence in barley. Annals of Botany, 122 (1):95-105.
doi: 10.1093/aob/mcy059 pmid: 29897390 |
[27] | Shinozaki Y, Ezura H, Ariizumi T. 2018. The role of ethylene in the regulation of ovary senescence and fruit set in tomato(Solanum lycopersicum). Plant Signaling & Behavior, 13 (4):e1146844. |
[28] |
Solano R, Stepanova A, Chao Q, Ecker J R. 1998. Nuclear events in ethylene signaling:a transcriptional cascade mediated by ETHYLENE- INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes and Development, 12 (23):3703-3714.
pmid: 9851977 |
[29] | Tanase K, Onozaki T, Satoh S, Shibata M, Ichimura K. 2008. Differential expression levels of ethylene biosynthetic pathway genes during senescence of long-lived carnation cultivars. Postharvest Biology & Technology, 47 (2):210-217. |
[30] |
Tanase K, Otsu S, Satoh S, Onozaki T. 2015. Expression levels of ethylene biosynthetic genes and senescence-related genes in carnation(Dianthus caryophyllus L.)with ultra-long-life flowers. Scientia Horticulturae, 183:31-38.
doi: 10.1016/j.scienta.2014.11.025 URL |
[31] | Wang Kaixuan, Wang Yi, Shi Tian, Ding Xining, Yuan Junhui, Shi Guoan, Hu Yonghong. 2020. Physiological effects of rapamycin pretreatment on delaying the senescence of cut flower in tree peony‘Luoyanghong’. Acta Horticulturae Sinica, 47 (10):1956-1968. (in Chinese) |
王凯轩, 王依, 史田, 丁熙柠, 袁军辉, 史国安, 胡永红. 2020. 雷帕霉素预处理延缓牡丹‘洛阳红’切花衰老的生理效应. 园艺学报, 47 (10):1956-1968. | |
[32] |
Wang L, Zhang F, Qiao H. 2020a. Chromatin regulation in the response of ethylene:nuclear events in ethylene signaling. Small Methods, 4 (8):1900288.
doi: 10.1002/smtd.201900288 URL |
[33] |
Wang L, Zhang F, Rode S, Chin K K, Ko E E, Kim J, Iyer V R, Qiao H. 2017. Ethylene induces combinatorial effects of histone H 3 acetylation in gene expression in Arabidopsis. BMC Genomics, 18 (1):538.
doi: 10.1186/s12864-017-3929-6 URL |
[34] |
Wang L, Zhang Z, Zhang F, Shao Z, Zhao B, Huang A, Tran J, Hernandez F V, Qiao H. 2021. EIN2-directed histone acetylation requires EIN3-mediated positive feedback regulation in response to ethylene. Plant Cell, 33 (2):322-337.
doi: 10.1093/plcell/koaa029 URL |
[35] |
Wang Y, Zhao H, Liu C, Cui G, Qu L, Bao M, Wang J, Chan Z, Wang Y. 2020b. Integrating physiological and metabolites analysis to identify ethylene involvement in petal senescence in Tulipa gesneriana. Plant Physiology and Biochemistry, 149:121-131.
doi: 10.1016/j.plaphy.2020.02.001 URL |
[36] | Wang Yi, Wang Kaixuan, Hu Siyuan, Zhou Shuang, Shi Guoan. 2021. Effects of ethylene metabolism and energy status on vase quality of cut Itoh peony‘Bartzella’flowers. Acta Horticulturae Sinica, 48 (6):1135-1149. (in Chinese) |
王依, 王凯轩, 胡思源, 周爽, 史国安. 2021. 乙烯代谢和能量状态对‘巴茨拉’牡丹切花瓶插品质的作用研究. 园艺学报, 48 (6):1135-1149. | |
[37] | Wu Fan, Zhang Chao, Guo Jia, Liu Ai-qing, Dong Li. 2016. Isolation and expression analysis of ERF transcription factor genes in tree peony cut flowers. Acta Horticulturae Sinica, 43 (1):109-120. (in Chinese) |
吴凡, 张超, 郭加, 刘爱青, 董丽. 2016. 牡丹切花ERF转录因子基因的分离与表达分析. 园艺学报, 43 (1):109-120. | |
[38] |
Xu H, Luo D, Zhang F. 2021. DcWRKY75 promotes ethylene induced petal senescence in carnation(Dianthus caryophyllus L.). Plant Journal, 108 (5):1473-1492.
doi: 10.1111/tpj.15523 URL |
[39] |
Yang C, Lu X, Ma B, Chen S Y, Zhang J S. 2015. Ethylene signaling in rice and arabidopsis:conserved and diverged aspects. Molecular Plant, 8 (4):495-505.
doi: 10.1016/j.molp.2015.01.003 URL |
[40] |
Yang S F, Hoffman N E. 2003. Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology, 35 (1):155-189.
doi: 10.1146/annurev.pp.35.060184.001103 URL |
[41] |
Yang Z, Wang C, Qiu K, Chen H, Li Z, Li X, Song J, Wang X, Gao J, Kuai B, Zhou X. 2020. The transcription factor ZmNAC 126 accelerates leaf senescence downstream of the ethylene signalling pathway in maize. Plant,Cell and Environment, 43 (9):2287-2300.
doi: 10.1111/pce.13803 URL |
[42] | Yu Yi-xun, Bao Man-zhu. 2004a. Carnation flower vase life prolonged by transformation with antisense ACC oxidase gene. Acta Horticulturae Sinica, 31 (5):633-636. (in Chinese) |
余义勋, 包满珠. 2004a. 反义ACO基因导入获得瓶插寿命延长的香石竹植株. 园艺学报, 31 (5):633-636. | |
[43] | Yu Yi-xun, Bao Man-zhu. 2004b. Integration of different T-DNA structures of ACC oxidase gene into carnation genome extended cut flower vase-life differently. Chinese Journal of Biotechnology, 20 (5):704-707. (in Chinese) |
余义勋, 包满珠. 2004b. 不同结构的外源ACO基因导入香石竹对瓶插寿命的影响. 生物工程学报, 20 (5):704-707. | |
[44] | Yu Yi-xun, Bao Man-zhu. 2004c. Prolonging the vase life of carnation‘Mabel’through integrating repeated ACC oxidase genes into its genome. Journal of Plant Physiology and Molecular Biology, 30 (5):541-545. (in Chinese) |
余义勋, 包满珠. 2004c. 通过转重复结构的ACC氧化酶基因延长香石竹的瓶插期. 植物生理及分子生物学报, 30 (5):541-545. | |
[45] |
Zhang F, Qi B, Wang L, Zhao B, Rode S, Riggan N D, Ecker J R, Qiao H. 2016a. EIN2-dependent regulation of acetylation of histone H3K14 and non-canonical histone H3K 23 in ethylene signalling. Nature Communications, 7:13018.
doi: 10.1038/ncomms13018 URL |
[46] | Zhang F, Tang W, Hedtke B, Zhong L, Liu L, Peng L, Lu C, Grimm B, Lin R. 2014. Tetrapyrrole biosynthetic enzyme protoporphyrinogen IX oxidase 1 is required for plastid RNA editing. Proceedings of the National Academy of Sciences of the United States of America, 111 (5):2023-2028. |
[47] |
Zhang F, Wang L, Ko E E, Shao K, Qiao H. 2018. Histone deacetylases SRT1 and SRT 2 interact with ENAP1 to mediate ethylene-induced transcriptional repression. Plant Cell, 30 (1):153-166.
doi: 10.1105/tpc.17.00671 URL |
[48] |
Zhang F, Wang L, Lim J Y, Kim T, Pyo Y, Sung S, Shin C, Qiao H. 2016b. Phosphorylation of CBP 20 links microRNA to root growth in the ethylene response. PLoS Genetics, 12 (11):e1006437.
doi: 10.1371/journal.pgen.1006437 URL |
[49] | Zhang F, Wang L, Qi B, Zhao B, Ko E E, Riggan N D, Chin K, Qiao H. 2017. EIN2 mediates direct regulation of histone acetylation in the ethylene response. Proceedings of the National Academy of Sciences of the United States of America, 114 (38):10274-10279. |
[50] | Zhao Hui, Geng Xingmin, Wang Lulu, Xu Shida. 2022. Research on the effect of ethylene in heat resistance mechanism of Rhododendron. Acta Horticulturae Sinica, 49 (3):561-570. |
赵晖, 耿兴敏, 王露露, 许世达. 2022. 乙烯在杜鹃花耐热机制中的作用研究. 园艺学报, 49 (3):561-570. | |
[51] |
Zhou M, Guo S G, Tian S W, Zhang J, Ren Y, Gong G Y, Li C B, Zhang H Y, Xu Y. 2020. Overexpression of the watermelon ethylene response factor ClERF 069 in transgenic tomato resulted in delayed fruit ripening. Horticultural Plant Journal, 6 (4):247-256.
doi: 10.1016/j.hpj.2020.05.004 URL |
[1] | 杜玉玲, 杨凡, 赵娟, 刘书琪, 龙超安. 新鱼腥草素钠对柑橘指状青霉的抑菌作用[J]. 园艺学报, 2023, 50(1): 145-152. |
[2] | 薛维文, 周显芳, 张昭其, 方方. 果蔬采后木质素积累及其调控对品质的影响研究进展[J]. 园艺学报, 2022, 49(9): 2023-2036. |
[3] | 赵晖, 耿兴敏, 王露露, 许世达. 乙烯在杜鹃花耐热机制中的作用研究[J]. 园艺学报, 2022, 49(3): 561-570. |
[4] | 李俊璋, 秦源, 肖强, 安昌, 廖静怡, 郑平. 景天酸代谢植物分子生物学研究进展及应用潜力[J]. 园艺学报, 2022, 49(12): 2597-2610. |
[5] | 陈和敏, 李佐, 马男, 肖文芳, 陈和明, 吕复兵, 李宗艳, 朱根发. 兰花切花保鲜及盆花品质保持技术研究进展[J]. 园艺学报, 2022, 49(12): 2743-2760. |
[6] | 杨博, 魏佳, 李坤峰, 王程亮, 倪隽蓓, 滕元文, 白松龄. PpyERF060-PpyABF3-PpyMADS71调控乙烯信号通路介导的梨芽休眠进程[J]. 园艺学报, 2022, 49(10): 2249-2262. |
[7] | 林胜男, 刘杰玮, 张晓妮, 包满珠, 傅小鹏. 香石竹WRKY家族全基因组鉴定及其表达分析[J]. 园艺学报, 2021, 48(9): 1768-1784. |
[8] | 王依, 王凯轩, 胡思源, 周爽, 史国安. 乙烯代谢和能量状态对‘巴茨拉’牡丹切花瓶插品质的作用研究[J]. 园艺学报, 2021, 48(6): 1135-1149. |
[9] | 李欣, 刘亮, 余让才, 李昕悦, 玉云祎, 岳跃冲, 范燕萍. 文心兰花药帽脱落与切花花朵衰老的关系研究[J]. 园艺学报, 2021, 48(6): 1163-1172. |
[10] | 曾泽湘, 肖显梅, 谭小丽, 范中奇, 陈建业. 菜薹BrWRKY57的特性及其对BrPPH1和BrNCED3的调控[J]. 园艺学报, 2021, 48(3): 518-530. |
[11] | 李崇晖, 杨光穗, 张志群, 尹俊梅. 红掌R2R3-MYB转录因子基因AaMYB6调控花青素苷合成[J]. 园艺学报, 2021, 48(10): 1859-1872. |
[12] | 杜艳民, 王文辉, 贾晓辉, 王志华, 佟伟, 张鑫楠. 前期低氧处理对梨虎皮病的防控及乙烯释放的影响[J]. 园艺学报, 2021, 48(1): 15-25. |
[13] | 李钰卓, 刘柯, 袁璐, 曹丽雯, 王挺进, 甘苏生, 陈利萍. 菜薹BrNAP克隆及其在采后叶片衰老中的功能分析[J]. 园艺学报, 2021, 48(1): 60-72. |
[14] | 李继东*,倪 静*,叶 霞,陈 鹏,谭 彬,张梦洋,郑先波,张 玉,冯建灿**. 枣AP2/ERF转录因子鉴定及其响应枣疯病植原体表达分析[J]. 园艺学报, 2020, 47(8): 1463-1474. |
[15] | 徐小迪1,2,李博强1,秦国政1,陈 彤1,张占全1,田世平1,2,*. 果实采后品质维持的分子基础与调控技术研究进展[J]. 园艺学报, 2020, 47(8): 1595-1609. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司