Acta Horticulturae Sinica ›› 2025, Vol. 52 ›› Issue (2): 453-466.doi: 10.16420/j.issn.0513-353x.2024-0254
• Cultivation·Physiology & Biochemistry • Previous Articles Next Articles
ZHOU Jinhua1,2, BAI Lei1, ZHANG Rui1, GUO Huachun1,*()
Received:
2024-09-03
Revised:
2024-11-09
Online:
2025-02-25
Published:
2025-02-23
Contact:
GUO Huachun
ZHOU Jinhua, BAI Lei, ZHANG Rui, GUO Huachun. The Effect of Reducing Soil Temperature with Straw Mulching Cultivation on Potato Growth[J]. Acta Horticulturae Sinica, 2025, 52(2): 453-466.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2024-0254
试验时间 Experiment time | 栽培方式 Cultivation method | 单株产量/kg Yield per plant | 产量/(kg • hm-2) Yield | 商品薯率/% Marketable tuber weight percentage |
---|---|---|---|---|
2020夏Summer | 秸秆覆盖Straw mulching(SM) | 0.43 ± 0.04 a | 20 698 ± 2 128 a | 78.47 ± 4.60 a |
无秸秆覆盖No straw mulching(NSM) | 0.15 ± 0.01 b | 6 311 ± 587 b | 45.76 ± 10.63 b | |
2021夏Summer | 秸秆覆盖Straw mulching | 0.43 ± 0.07 a | 17 689 ± 5 308 a | 85.87 ± 0.80 a |
无秸秆覆盖No straw mulching | 0.26 ± 0.02 b | 10 169 ± 1 087 ab | 79.79 ± 1.78 ab | |
间作秸秆覆盖Intercropping & SM | 0.14 ± 0.02 c | 6 566 ± 821 b | 58.99 ± 13.26 bc | |
间作无秸秆覆盖Intercropping & NSM | 0.12 ± 0.02 c | 4 444 ± 765 b | 54.18 ± 15.28 c | |
2022春Spring | 秸秆覆盖Straw mulching | 1.03 ± 0.17 a | 45 851 ± 11 311 a | 88.94 ± 3.68 a |
无秸秆覆盖No straw mulching | 0.83 ± 0.10 b | 39 672 ± 5 705 a | 88.87 ± 3.82 a | |
2022夏Summer | 秸秆覆盖Straw mulching | 0.54 ± 0.08 a | 22 321 ± 5 932 a | 85.60 ± 2.66 a |
无秸秆覆盖No straw mulching | 0.40 ± 0.04 b | 18 963 ± 2 498 a | 77.64 ± 7.38 a |
Table 1 Changes of tuber yield under different cultivation methods from 2020 to 2022
试验时间 Experiment time | 栽培方式 Cultivation method | 单株产量/kg Yield per plant | 产量/(kg • hm-2) Yield | 商品薯率/% Marketable tuber weight percentage |
---|---|---|---|---|
2020夏Summer | 秸秆覆盖Straw mulching(SM) | 0.43 ± 0.04 a | 20 698 ± 2 128 a | 78.47 ± 4.60 a |
无秸秆覆盖No straw mulching(NSM) | 0.15 ± 0.01 b | 6 311 ± 587 b | 45.76 ± 10.63 b | |
2021夏Summer | 秸秆覆盖Straw mulching | 0.43 ± 0.07 a | 17 689 ± 5 308 a | 85.87 ± 0.80 a |
无秸秆覆盖No straw mulching | 0.26 ± 0.02 b | 10 169 ± 1 087 ab | 79.79 ± 1.78 ab | |
间作秸秆覆盖Intercropping & SM | 0.14 ± 0.02 c | 6 566 ± 821 b | 58.99 ± 13.26 bc | |
间作无秸秆覆盖Intercropping & NSM | 0.12 ± 0.02 c | 4 444 ± 765 b | 54.18 ± 15.28 c | |
2022春Spring | 秸秆覆盖Straw mulching | 1.03 ± 0.17 a | 45 851 ± 11 311 a | 88.94 ± 3.68 a |
无秸秆覆盖No straw mulching | 0.83 ± 0.10 b | 39 672 ± 5 705 a | 88.87 ± 3.82 a | |
2022夏Summer | 秸秆覆盖Straw mulching | 0.54 ± 0.08 a | 22 321 ± 5 932 a | 85.60 ± 2.66 a |
无秸秆覆盖No straw mulching | 0.40 ± 0.04 b | 18 963 ± 2 498 a | 77.64 ± 7.38 a |
试验时间 Experiment time | 栽培方式 Cultivation method | 土壤温度Soil temperature | 冠层气温Canopy air temperature | |||||
---|---|---|---|---|---|---|---|---|
最高值 Maximum | 平均值 Average | 最低值 Minimum | 最高值 Maximum | 平均值 Average | 最低值 Minimum | |||
2020夏 Summer | 秸秆覆盖 Straw mulching(SM) | 23.81 ± 0.24 b | 20.54 ± 0.87 a | 18.87 ± 0.14 a | 33.85 ± 0.97 a | 21.32 ± 4.45 a | 14.47 ± 0.06 a | |
无秸秆覆盖 No straw mulching(NSM) | 30.44 ± 1.37 a | 22.01 ± 2.90 a | 16.66 ± 1.10 a | 34.24 ± 1.20 a | 21.15 ± 4.04 a | 14.48 ± 0.05 a | ||
2021夏 Summer | 秸秆覆盖 Straw mulching | 23.80 ± 0.53 b | 20.10 ± 1.10 a | 17.35 ± 0.09 a | 38.82 ± 2.42 a | 20.95 ± 4.98 a | 10.84 ± 0.07 a | |
无秸秆覆盖 No straw mulching | 32.64 ± 1.31 a | 21.36 ± 2.46 a | 17.34 ± 0.19 a | 39.13 ± 1.64 a | 21.03 ± 4.32 a | 10.99 ± 0.09 a | ||
间作秸秆覆盖 Intercropping & SM | 22.78 ± 1.31 b | 20.35 ± 0.83 a | 17.23 ± 0.24 a | 39.25 ± 1.82 a | 20.63 ± 4.63 a | 11.96 ± 0.29 a | ||
间作无秸秆覆盖 Intercropping & NSM | 32.71 ± 0.73 a | 21.21 ± 2.46 a | 17.44 ± 0.04 a | 38.91 ± 2.21 a | 20.71 ± 4.45 a | 12.52 ± 0.35 a | ||
2022春 Spring | 秸秆覆盖 Straw mulching | 23.51 ± 0.63 a | 18.04 ± 2.28 a | 12.72 ± 0.26 a | 35.04 ± 1.34 a | 19.15 ± 5.76 a | 4.08 ± 0.02 a | |
无秸秆覆盖 No straw mulching | 24.17 ± 0.37 a | 18.41 ± 2.05 a | 12.40 ± 0.58 a | 35.92 ± 0.75 a | 19.22 ± 5.81 a | 4.20 ± 0.04 a | ||
2022夏 Summer | 秸秆覆盖 Straw mulching | 24.70 ± 0.13 b | 20.28 ± 1.17 a | 17.70 ± 0.02 a | 35.65 ± 0.64 a | 20.45 ± 4.84 a | 10.55 ± 0.06 a | |
无秸秆覆盖 No straw mulching | 29.84 ± 1.26 a | 20.74 ± 2.10 a | 16.63 ± 0.08 a | 36.44 ± 1.02 a | 20.36 ± 4.75 a | 10.60 ± 0.02 a |
Table 2 Changes of soil and canopy temperature under different cultivation methods from 2020 to 2022 ℃
试验时间 Experiment time | 栽培方式 Cultivation method | 土壤温度Soil temperature | 冠层气温Canopy air temperature | |||||
---|---|---|---|---|---|---|---|---|
最高值 Maximum | 平均值 Average | 最低值 Minimum | 最高值 Maximum | 平均值 Average | 最低值 Minimum | |||
2020夏 Summer | 秸秆覆盖 Straw mulching(SM) | 23.81 ± 0.24 b | 20.54 ± 0.87 a | 18.87 ± 0.14 a | 33.85 ± 0.97 a | 21.32 ± 4.45 a | 14.47 ± 0.06 a | |
无秸秆覆盖 No straw mulching(NSM) | 30.44 ± 1.37 a | 22.01 ± 2.90 a | 16.66 ± 1.10 a | 34.24 ± 1.20 a | 21.15 ± 4.04 a | 14.48 ± 0.05 a | ||
2021夏 Summer | 秸秆覆盖 Straw mulching | 23.80 ± 0.53 b | 20.10 ± 1.10 a | 17.35 ± 0.09 a | 38.82 ± 2.42 a | 20.95 ± 4.98 a | 10.84 ± 0.07 a | |
无秸秆覆盖 No straw mulching | 32.64 ± 1.31 a | 21.36 ± 2.46 a | 17.34 ± 0.19 a | 39.13 ± 1.64 a | 21.03 ± 4.32 a | 10.99 ± 0.09 a | ||
间作秸秆覆盖 Intercropping & SM | 22.78 ± 1.31 b | 20.35 ± 0.83 a | 17.23 ± 0.24 a | 39.25 ± 1.82 a | 20.63 ± 4.63 a | 11.96 ± 0.29 a | ||
间作无秸秆覆盖 Intercropping & NSM | 32.71 ± 0.73 a | 21.21 ± 2.46 a | 17.44 ± 0.04 a | 38.91 ± 2.21 a | 20.71 ± 4.45 a | 12.52 ± 0.35 a | ||
2022春 Spring | 秸秆覆盖 Straw mulching | 23.51 ± 0.63 a | 18.04 ± 2.28 a | 12.72 ± 0.26 a | 35.04 ± 1.34 a | 19.15 ± 5.76 a | 4.08 ± 0.02 a | |
无秸秆覆盖 No straw mulching | 24.17 ± 0.37 a | 18.41 ± 2.05 a | 12.40 ± 0.58 a | 35.92 ± 0.75 a | 19.22 ± 5.81 a | 4.20 ± 0.04 a | ||
2022夏 Summer | 秸秆覆盖 Straw mulching | 24.70 ± 0.13 b | 20.28 ± 1.17 a | 17.70 ± 0.02 a | 35.65 ± 0.64 a | 20.45 ± 4.84 a | 10.55 ± 0.06 a | |
无秸秆覆盖 No straw mulching | 29.84 ± 1.26 a | 20.74 ± 2.10 a | 16.63 ± 0.08 a | 36.44 ± 1.02 a | 20.36 ± 4.75 a | 10.60 ± 0.02 a |
试验时间 Experiment time | 栽培方式 Cultivation method | 播种至各发育阶段的天数The days from sowing to each development stage | ||||
---|---|---|---|---|---|---|
出苗 Emergence | 封行 Crop closure | 现蕾 Squaring | 成熟 Maturation | 地上部存活时间 Above-ground survival time | ||
2021夏 Summer | 秸秆覆盖Straw mulching(SM) | 25 | 36 | 51 | 99 | 74 |
无秸秆覆盖No straw mulching(NSM) | 19 | 36 | 51 | 94 | 75 | |
间作秸秆覆盖Intercropping & SM | 25 | 36 | 51 | 83 | 58 | |
间作无秸秆覆盖Intercropping & NSM | 19 | 36 | 51 | 75 | 56 | |
2022春 Spring | 秸秆覆盖Straw mulching | 35 | 51 | 56 | 130 | 95 |
无秸秆覆盖No straw mulching | 28 | 51 | 56 | 121 | 93 | |
2022夏 Summer | 秸秆覆盖Straw mulching | 22 | 36 | 48 | 96 | 74 |
无秸秆覆盖No straw mulching | 18 | 36 | 48 | 89 | 71 |
Table 3 The time from sowing to each developmental stage in potato under different cultivation methods d
试验时间 Experiment time | 栽培方式 Cultivation method | 播种至各发育阶段的天数The days from sowing to each development stage | ||||
---|---|---|---|---|---|---|
出苗 Emergence | 封行 Crop closure | 现蕾 Squaring | 成熟 Maturation | 地上部存活时间 Above-ground survival time | ||
2021夏 Summer | 秸秆覆盖Straw mulching(SM) | 25 | 36 | 51 | 99 | 74 |
无秸秆覆盖No straw mulching(NSM) | 19 | 36 | 51 | 94 | 75 | |
间作秸秆覆盖Intercropping & SM | 25 | 36 | 51 | 83 | 58 | |
间作无秸秆覆盖Intercropping & NSM | 19 | 36 | 51 | 75 | 56 | |
2022春 Spring | 秸秆覆盖Straw mulching | 35 | 51 | 56 | 130 | 95 |
无秸秆覆盖No straw mulching | 28 | 51 | 56 | 121 | 93 | |
2022夏 Summer | 秸秆覆盖Straw mulching | 22 | 36 | 48 | 96 | 74 |
无秸秆覆盖No straw mulching | 18 | 36 | 48 | 89 | 71 |
测定指标 Measurement parameter | 春作 Spring planting | 夏作 Summer planting | |||
---|---|---|---|---|---|
秸秆覆盖 Straw mulching | 无秸秆覆盖 No straw mulching | 秸秆覆盖 Straw mulching | 无秸秆覆盖 No straw mulching | ||
出苗率/% Emergence rate | 91.67 ± 10.91 | 97.80 ± 5.38 | 97.71 ± 3.62 | 98.81 ± 2.92 | |
株高/cm Plant height | 86.37 ± 11.87 | 90.35 ± 4.73 | 82.67 ± 6.47 | 85.10 ± 5.20 | |
茎粗/mm Stem diameter | 9.77 ± 0.88 | 9.41 ± 1.01 | 8.97 ± 0.43 | 8.29 ± 0.61 | |
节数 Number of pitch | 19.36 ± 1.87 | 19.30 ± 1.10 | 19.10 ± 1.14 | 18.40 ± 0.92 | |
节间长/cm Internode length | 4.47 ± 0.51 | 4.69 ± 0.32 | 4.34 ± 0.35 | 4.64 ± 0.41 | |
主茎数 Number of main stems | 1.64 ± 0.48 | 2.50 ± 0.96 | 3.00 ± 0.63 | 4.00 ± 1.18 | |
叶面积/cm2 Blade area | 33.41 ± 4.56 | 27.63 ± 2.70 | 28.39 ± 4.11 | 30.04 ± 3.36 | |
单株生物量(干)/g Biomass per plant(DW) | 79.86 ± 16.61 | 86.11 ± 14.76 | 58.41 ± 9.90 | 57.49 ± 18.37 | |
整株干物质含量/% Dry matter content of the whole plant | 8.69 ± 1.00 | 10.02 ± 0.46 | 8.31 ± 1.27 | 8.34 ± 0.38 | |
净光合速率/(μmol ∙ m-2 ∙ s-1)Pn | 25.70 ± 1.59 | 24.08 ± 2.20 | 26.43 ± 1.85 | 25.77 ± 2.69 | |
干物质含量/% Dry matter content | 19.77 ± 0.40 | 19.78 ± 0.75 | 19.39 ± 0.21 | 18.81 ± 0.76 | |
淀粉含量/% Starch content | 13.20 ± 0.39 | 13.23 ± 1.19 | 14.20 ± 0.11 | 13.95 ± 1.10 |
Table 4 Emergence rate,morphological characteristics,photosynthetic characteristics and tuber quality of potato under different cultivation methods(2022)
测定指标 Measurement parameter | 春作 Spring planting | 夏作 Summer planting | |||
---|---|---|---|---|---|
秸秆覆盖 Straw mulching | 无秸秆覆盖 No straw mulching | 秸秆覆盖 Straw mulching | 无秸秆覆盖 No straw mulching | ||
出苗率/% Emergence rate | 91.67 ± 10.91 | 97.80 ± 5.38 | 97.71 ± 3.62 | 98.81 ± 2.92 | |
株高/cm Plant height | 86.37 ± 11.87 | 90.35 ± 4.73 | 82.67 ± 6.47 | 85.10 ± 5.20 | |
茎粗/mm Stem diameter | 9.77 ± 0.88 | 9.41 ± 1.01 | 8.97 ± 0.43 | 8.29 ± 0.61 | |
节数 Number of pitch | 19.36 ± 1.87 | 19.30 ± 1.10 | 19.10 ± 1.14 | 18.40 ± 0.92 | |
节间长/cm Internode length | 4.47 ± 0.51 | 4.69 ± 0.32 | 4.34 ± 0.35 | 4.64 ± 0.41 | |
主茎数 Number of main stems | 1.64 ± 0.48 | 2.50 ± 0.96 | 3.00 ± 0.63 | 4.00 ± 1.18 | |
叶面积/cm2 Blade area | 33.41 ± 4.56 | 27.63 ± 2.70 | 28.39 ± 4.11 | 30.04 ± 3.36 | |
单株生物量(干)/g Biomass per plant(DW) | 79.86 ± 16.61 | 86.11 ± 14.76 | 58.41 ± 9.90 | 57.49 ± 18.37 | |
整株干物质含量/% Dry matter content of the whole plant | 8.69 ± 1.00 | 10.02 ± 0.46 | 8.31 ± 1.27 | 8.34 ± 0.38 | |
净光合速率/(μmol ∙ m-2 ∙ s-1)Pn | 25.70 ± 1.59 | 24.08 ± 2.20 | 26.43 ± 1.85 | 25.77 ± 2.69 | |
干物质含量/% Dry matter content | 19.77 ± 0.40 | 19.78 ± 0.75 | 19.39 ± 0.21 | 18.81 ± 0.76 | |
淀粉含量/% Starch content | 13.20 ± 0.39 | 13.23 ± 1.19 | 14.20 ± 0.11 | 13.95 ± 1.10 |
[1] |
|
[2] |
|
卜玉山, 苗果园, 周乃健, 邵海林, 王建程. 2006. 地膜和秸秆覆盖土壤肥力效应分析比较. 中国农业科学, 39 (5):1069-1075.
|
|
[3] |
|
[4] |
|
陈继康, 李素娟, 张宇, 陈阜, 张海林. 2009. 不同耕作方式麦田土壤温度及其对气温的响应特征—土壤温度日变化及其对气温的响应. 中国农业科学, 42 (7):2592-2600.
doi: 10.3864/j.issn.0578-1752.2009.07.042 |
|
[5] |
|
陈素英, 张喜英, 刘孟雨. 2002. 玉米秸秆覆盖麦田下的土壤温度和土壤水分动态规律. 中国农业气象, 23 (4):34-37.
|
|
[6] |
|
陈鑫昊, 董文, 陈铭, 刘蕾, 叶亦心, 秦玉芝, 周华兰, 熊兴耀, 胡新喜. 2022. 覆盖方式对春马铃薯生长与块茎品质的影响. 湖南农业大学学报(自然科学版), 48 (3):289-293.
|
|
[7] |
|
党占平, 刘文国, 周济铭, 强秦, 曹卫贤, 高亚军, 李生秀. 2007. 渭北旱地冬小麦不同覆盖模式增温效应研究. 西北农业学报, 16 (2):24-27.
|
|
[8] |
|
高虹, 常磊, 王仕娥, 柴守玺, 程宏波, 韩凡香. 2021. 不同覆盖方式对旱地马铃薯叶片抗氧化生理及产量的影响. 分子植物育种, 19 (4):1373-1382.
|
|
[9] |
|
巩杰, 黄高宝, 陈利顶, 傅伯杰. 2003. 旱作麦田秸秆覆盖的生态综合效应研究. 干旱地区农业研究, 21 (3):69-73.
|
|
[10] |
|
韩凡香. 2018. 旱地覆盖种植对夏秋作物土壤水热环境及生长的影响[博士论文]. 兰州: 甘肃农业大学.
|
|
[11] |
|
韩凡香, 常磊, 柴守玺, 杨长刚, 程宏波, 杨德龙, 李辉, 李博文, 李守蕾, 宋亚丽, 兰雪梅. 2016. 半干旱雨养区秸秆带状覆盖种植对土壤水分及马铃薯产量的影响. 中国生态农业学报, 24 (7):874-882.
|
|
[12] |
|
[13] |
|
纪晓玲, 张静, 乔文远, 刘建华, 雷锦银, 张雄. 2016. 不同覆盖方式对旱地马铃薯产量和水分利用效率的影响. 干旱地区农业研究, 34 (6):58-62.
|
|
[14] |
|
纪晓玲, 张雄, 张静, 王雯. 2018. 不同覆盖方式对马铃薯光合特性及产量的影响. 西北农业学报, 27 (6):819-825.
|
|
[15] |
|
姜晓芳. 2016. 马铃薯稻草包芯栽培根际土壤微生物多样性分析[博士论文]. 福州: 福建农林大学.
|
|
[16] |
|
[17] |
|
李合生. 2000. 植物生理生化实验原理和技术. 北京:高等教育出版社:102-135.
|
|
[18] |
|
李倩, 张睿, 贾志宽. 2009. 玉米旱作栽培条件下不同秸秆覆盖量对土壤酶活性的影响. 干旱地区农业研究, 27 (4):152-154.
|
|
[19] |
|
李荣, 侯贤清. 2015. 深松条件下不同地表覆盖对马铃薯产量及水分利用效率的影响. 农业工程学报, 31 (20):115-123.
|
|
[20] |
doi: 10.11924/j.issn.1000-6850.casb2020-0544 |
李思梦, 李凯峰, 李茂兴, 郭华春, 王琼. 2021. 冬作马铃薯新品种(系)块茎营养品质综合评价. 中国农学通报, 37 (22):22-27.
doi: 10.11924/j.issn.1000-6850.casb2020-0544 |
|
[21] |
|
[22] |
|
吕凯, 吴伯志. 2019. 秸秆覆盖对坡耕地土壤侵蚀及烤烟经济性状的影响. 土壤通报, 50 (4):920-925.
|
|
[23] |
|
马建涛, 程宏波, 陈玉章, 李亚伟, 兰雪梅, 李瑞, 柴雨葳, 常磊, 柴守玺. 2020. 不同覆盖方式对旱地马铃薯耗水特性和产量的影响. 生态学杂志, 39 (7):2242-2250.
|
|
[24] |
|
[25] |
|
[26] |
National Health and Family Planning Commission of the People's Republic of China. 2016. National food safety standards-determination of moisture in food: China,GB 5009.3-2016. (in Chinese)
|
中华人民共和国国家卫生和计划生育委员会. 2016. 食品安全国家标准食品中水分的测定: 中国,GB 5009.3-2016.
|
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
pmid: 25898619 |
苏旺, 张艳平, 屈洋, 李翠, 妙佳源, 高小丽, 刘建华, 冯佰利. 2014. 不同覆盖方式对黄土高原旱地土壤水分及糜子生长、光合特性和产量的影响. 应用生态学报, 25 (11):3215-3222.
pmid: 25898619 |
|
[33] |
|
汤瑛芳, 高世铭, 王亚红, 张绪成. 2013. 旱地马铃薯不同覆盖种植方式的土壤水热效应及其对产量的影响. 干旱地区农业研究, 31 (1):1-7.
|
|
[34] |
|
王贺正, 张均, 徐国伟, 马超, 黄明, 李友军, 陈明灿, 付国占. 2018. 不同秸秆覆盖量对旱地小麦生理生化特性的影响. 干旱地区农业研究, 36 (6):131-137.
|
|
[35] |
|
[36] |
|
[37] |
|
王友生, 王多尧. 2017. 不同覆盖种植模式对马铃薯土壤温度、水分及产量的影响. 干旱地区农业研究, 35 (6):59-64.
|
|
[38] |
doi: 10.11924/j.issn.1000-6850.casb2020-0333 |
许国春, 罗文彬, 李华伟, 许泳清, 纪荣昌, 汤浩. 2021. 地膜与稻秸覆盖对冬作马铃薯产量和品质的影响及其抑草效应. 中国农学通报, 37 (4):13-18.
doi: 10.11924/j.issn.1000-6850.casb2020-0333 |
|
[39] |
|
杨鑫, 樊吴静, 唐洲萍, 何虎翼, 李丽淑. 2021. 不同覆盖栽培对马铃薯根际土壤细菌多样性、酶活性及化学性状的影响. 核农学报, 35 (9):2145-2153.
doi: 10.11869/j.issn.100-8551.2021.09.2145 |
|
[40] |
|
赵雯馨, 黄明, 李友军, 吴金芝, 赵凯男, 张军, 李淑靖, 汪洪涛, 黄修利, 李爽, 李文娜. 2023. 夏闲季不同耕作方式对豫西旱地小麦旗叶生理特性和产量的影响. 干旱地区农业研究, 41 (5):175-185.
|
|
[41] |
|
[42] |
doi: 10.11924/j.issn.1000-6850.2010-2359 |
郑曙峰, 王维, 徐道青, 屈磊. 2011. 覆盖免耕对棉田土壤物理性质及棉花生理特性的影响. 中国农学通报, 27 (7):83-87.
|
|
[43] |
|
[44] |
|
周进华, 李有涵, 张兴, 胡荣海, 郭华春. 2023. 高温胁迫对不同耐热型马铃薯块茎形成期生长和光合特性的影响. 中国生态农业学报(中英文), 31 (5):750-764.
|
|
[45] |
|
邹聪明, 王国鑫, 胡小东, 张云兰, 薛兰兰,
|
[1] | LI Rui, WANG Wen, DU Minghui, LIU Genzhong, MA Fangfang, BAO Zhilong. Mechanistic Studies on SlBON1-Regulated Plant Vegetative Growth in Tomato [J]. Acta Horticulturae Sinica, 2025, 52(1): 73-87. |
[2] | HUANG Xun, LIU Xia, DENG Linmei, WANG Xingguo, XU Yajin, YANG Yanli. Identification and Study on Its Biocontrol and Growth Promoting Properties of Bacillus velezensis 1X1Y Against Potato Common Scab [J]. Acta Horticulturae Sinica, 2025, 52(1): 229-246. |
[3] | ZHONG Yang, QIN Yazhi, LUO Shuai, JING Yuling, WANG Wanxing, LI Guangcun, HU Xinxi, QIN Yuzhi, CHENG Xu, XIONG Xingyao. Effects of Peat Soil and Mushroom Residue Application on the Potato Root-Associated Microbiome and Yield [J]. Acta Horticulturae Sinica, 2024, 51(9): 2143-2154. |
[4] | GONG Xiaoya, LI Xian, ZHOU Xingang, WU Fengzhi. Effect of Rhizosphere Microorganisms Induced by Potato-Onion on Tomato Root-Knot Nematode Disease [J]. Acta Horticulturae Sinica, 2024, 51(8): 1913-1926. |
[5] | LI Yadi, WANG Hanxiang, HU Baigeng, YANG Hui, HU Xinxi, XIONG Xingyao, WANG Wanxing. Research Progress on Plant Growth Promoting Rhizobacteria to Alleviate Abiotic Stress Tolerance of Horticultural Crops [J]. Acta Horticulturae Sinica, 2024, 51(8): 1964-1976. |
[6] | LI Yachen, ZHENG Yanmei, SONG Wenpei, LI Dawei, LIANG Hong, ZHANG Xianzhi. Research Progress on the Role of Hydrogen-Rich Water in Plant Growth and Development and Stress Response [J]. Acta Horticulturae Sinica, 2024, 51(7): 1489-1500. |
[7] | PENG Aihong, ZHANG Jingyun, CHEN Zhiyi, SU Juan, HE Yongrui, YAO Lixiao. Effects of Overexpression of CsEXPA8 on Growth and Canker Disease Resistance in‘Wanjincheng’Orange [J]. Acta Horticulturae Sinica, 2024, 51(5): 971-981. |
[8] | FAN Guoquan, YU Jiang, GAO Yanling, LI Qingquan, ZHANG Shu, YU Zhenhua. Effects of Sprouting,Cutting and Coating of Potato Seed on the Occurrence of Rhizoctonia solani Disease [J]. Acta Horticulturae Sinica, 2024, 51(5): 1151-1161. |
[9] | QIANG Ran, ZHANG Dai, YANG Zhe, CHEN Mingyue, ZHAO Jing, ZHU Jiehua. Effects of Bacillus amyloliquefaciens‘L19’on Fusarium oxysporum Inhibition and Plants Growth Promotion in Potato [J]. Acta Horticulturae Sinica, 2024, 51(4): 875-892. |
[10] | ZHAO Ruoyu, GUO Xiaoxue, ZHU Wenhui, LI Ruimei, ZHAO Jiaxue, DU Dan, DAI Li, LIU Zhiguo, WANG Lixin, LIU Mengjun. Induction and Cultivation of 77 Jujube Cultivars Pulp Callus [J]. Acta Horticulturae Sinica, 2024, 51(4): 903-914. |
[11] | GE Hang, LI Xiaoying, WANG Zhixuan, ZHU Qixuan, CHEN Junwei, XU Hongxia. Evaluation of Freezing Tolerance in Loquat Young Fruit Based on the Survival Percentage of Fruit Clusters After Cold Spell [J]. Acta Horticulturae Sinica, 2024, 51(12): 2895-2912. |
[12] | ZHANG Jie, WEN Haoyu, MA Lixin, ZHU Qingchao, LIU Long, JIANG Jing, and LIU Guifeng. Preliminary Analysis and Selection of Parental Combining Ability of Hybrid Progenies of Betula pendula‘Purple Rain’ [J]. Acta Horticulturae Sinica, 2024, 51(11): 2565-2574. |
[13] | LU Jianzeng, ZHOU Liyan, HUANG Xinyi, WU Fengzhi, GAO Danmei. Effects of Carbon Pool Strength on Plant Growth and Potassium Uptake of Tomato Intercropped with Potato-Onion [J]. Acta Horticulturae Sinica, 2024, 51(11): 2620-2632. |
[14] | LI Shuang, LIN Yongxin, QIN Junhong, LI Guangcun, JIN Liping, LIU Jiangang, BIAN Chunsong. Research Progress in Potato Nitrogen Diagnosis [J]. Acta Horticulturae Sinica, 2024, 51(10): 2449-2468. |
[15] | JIN Tian, XU Yuemei, KUANG Guanling, LIU Guidong. Effect of Boron Deficiency on the Root Growth and Mitochondrial Function of Trifoliate Orange Seedlings [J]. Acta Horticulturae Sinica, 2024, 51(1): 121-132. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd