[1] |
Ajijah N, Fiodor A, Dziurzynski M, Stasiuk R, Pawlowska J, Dziewit L, Pranaw K. 2023. Biocontrol potential of Pseudomonas protegens ML15 against Botrytis cinerea causing gray mold on postharvest tomato(Solanum lycopersicum var. cerasiforme). Frontiers in Plant Science,14:1288408.
|
[2] |
Biniarz P, Coutte F, Gancel F, Łukaszewicz M. 2018. High-throughput optimization of medium components and culture conditions for the efficient production of a lipopeptide pseudofactin by Pseudomonas fluorescens BD5. Microbial Cell Factories,17:1-18.
|
[3] |
Brodhagen M, Henkels M D, Loper J E. 2004. Positive autoregulation and signaling properties of pyoluteorin,an antibiotic produced by the biological control organism Pseudomonas fluorescens Pf-5. Applied and Environmental Microbiology, 70 (3):1758-1766.
doi: 10.1128/AEM.70.3.1758-1766.2004
pmid: 15006802
|
[4] |
Chang Lin, Li Qian, Tong Yunhui, Xu Jingyou, Zhang Qingxia. 2011. Identification of the biocontrol bacterial strain FD6 and antimicrobial study of this bacterium against tomato grey mold pathogen Botrytis cinerea. Journal of Plant Protection, 38 (6):487-492. (in Chinese)
|
|
常琳, 李倩, 童蕴慧, 徐敬友, 张清霞. 2011. 生防细菌FD6的鉴定及其对番茄灰霉病菌的作用机制. 植物保护学报, 38 (6):487-492.
|
[5] |
Chang Lin, Xiao Qi, Tong Yunhui, Xu Jingyou, Zhang Qingxia. 2014. Functional analysis of the gacS gene in a tomato grey mould suppressive bacterium Pseudomonas fluorescens FD6. Acta Horticulturae Sinica, 41 (4):681-686. (in Chinese)
|
|
常琳, 肖琦, 童蕴慧, 徐敬友, 张清霞. 2014. gacS基因在荧光假单胞菌FD6防治番茄灰霉病中的功能分析. 园艺学报, 41 (4):681-686.
|
[6] |
Dong Xiaonan, Lü Hongmei, Zhao Liqun, He Bingqing, Zhang Jiaojiao, Zhao Bing, Guo Yangdong, Zhang Na. 2024. SlMAPKKK43 regulates tomato resistance to gray mold. Acta Horticulturae Sinica, 51 (2):309-320. (in Chinese)
|
|
董晓南, 吕红梅, 赵立群, 何秉青, 张姣姣, 赵冰, 郭仰东, 张娜. 2024. SlMAPKKK43调控番茄对灰霉病的抗性. 园艺学报, 51 (2):309-320.
|
[7] |
Duan Junna, Huang Hai, Luo Jin, Zhang Xin, Zhai Feng, An Derong. 2014. The control effecacy of Peanibacillus peoriae BC-39 to tomato gray mold and its bioantisepsis-preservation on tomato fruits. Journal of Plant Protection, 41 (1):61-66. (in Chinese)
|
|
段军娜, 黄海, 罗晶, 张鑫, 翟枫, 安德荣. 2014. 皮尔瑞俄类芽胞杆菌BC-39对番茄灰霉病的防治效果及防腐保鲜作用. 植物保护学报, 41 (1):61-66.
|
[8] |
Elad Y, Williamson B, Tudzynski P, Delen N. 2007. Botrytis spp. and diseases they cause in agricultural systems-an introduction// Botrytis:Biology, Pathology and Control,The Netherlands:Springer:412.
|
[9] |
Kang Lijuan, Zhang Xiaofeng, Wang Wenqiao, Ma Zhiqiang, Ma Zhenguo. 2000. Estimation of fungicide-resistance and fitness of Botrytis cinerea. Journal of Pesticide Science,(3):39-42. (in Chinese)
|
|
康立娟, 张小风, 王文桥, 马志强, 马振国. 2000. 灰霉菌的抗药性与适合度测定. 农药学学报,(3):39-42.
|
[10] |
Lü F, Zhan Y, Lu W, Ke X, Shao Y, Ma Y, Zheng J, Yang Z, Jiang S, Shang L, Ma Y, Cheng L, Elmerich C, Yan Y, Lin M. 2022. Regulation of hierarchical carbon substrate utilization,nitrogen fixation,and root colonization by the Hfq/Crc/CrcZY genes in Pseudomonas stutzeri. iScience, 25 (12):105663.
|
[11] |
Ramette A, Frapolli M, Fischer-Le Saux M, Gruffaz C, Meyer J M, Défago G, Sutra L, Moënne-Loccoz Y. 2011. Pseudomonas protegens sp. nov.,widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin. Systematic and Applied Microbiology, 34 (3):180-188.
doi: 10.1016/j.syapm.2010.10.005
pmid: 21392918
|
[12] |
Rojo F. 2010. Carbon catabolite repression in Pseudomonas:optimizing metabolic versatility and interactions with the environment. FEMS Microbiology Reviews, 34 (5):658-684.
|
[13] |
Shahid I, Malik K A, Mehnaz S. 2018. A decade of understanding secondary metabolism in Pseudomonas spp. for sustainable agriculture and pharmaceutical applications. Environmental Sustainability,1:3-17.
|
[14] |
Shanahan P, O'Sullivan D J, Simpson P, Glennon J D, O'Gara F. 1992. Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Applied and Environmental Microbiology, 58 (1):353-358.
doi: 10.1128/aem.58.1.353-358.1992
pmid: 16348633
|
[15] |
Singh B P, Rateb M E, Rodriguez-Couto S, Polizeli M L T M, Li W J. 2019. Editorial:microbial secondary metabolites:recent developments and technological challenges. Frontiers in Microbiology,10:914.
|
[16] |
Song Xioaya, Mao Ziyue, Wen Deyu, Zhu Yuxin, Zhang Qingxia. 2024. Study on biocontrol potential of biocontrol bacteria QZ-1 against tomato gray mold. Journal of Yangzhou University(Agricultural and Life Science Edition), 45 (2):93-101. (in Chinese)
|
|
宋晓雅, 毛子玥, 温德宇, 朱宇昕, 张清霞. 2024. 番茄灰霉病生防细菌QZ-1生防潜力研究. 扬州大学学报(农业与生命科学版), 45 (2):93-101.
|
[17] |
Sun X, Xu Y, Chen L, Jin X, Ni H. 2021. The salt-tolerant phenazine-1-carboxamide-producing bacterium Pseudomonas aeruginosa NF011 isolated from wheat rhizosphere soil in dry farmland with antagonism against Fusarium graminearum. Microbiological Research,245:126673.
|
[18] |
Toral L, Rodríguez M, Béjar V, Sampedro I. 2020. Crop protection against Botrytis cinerea by rhizhosphere biological control agent Bacillus velezensis XT1. Microorganisms, 8 (7):992.
|
[19] |
Wen D, Hu J Y, Gao Z Y, Xing C L, Xiao Y, Wu T, Wu X G, Zhang Q X. 2024. Pleiotropic regulatory function of the RNA chaperone Hfq in the Pseudomonas protegens FD6. Phytopathology Research, 6 (1):61.
|
[20] |
Yuan Z, Cang S, Matsufuji M, Nakata K, Nagamatsu Y, Yoshimoto A. 1998. High production of pyoluteorin and 2,4-diacetylphloroglucinol by Pseudomonas fluorescens S 272 grown on ethanol as a sole carbon source. Journal of Fermentation and Bioengineering, 86 (6):559-563
|
[21] |
Zhang J F, Wang W, Lu X H, Xu Y Q, Zhang X H. 2010. The stability and degradation of a new biological pesticide,pyoluteorin. Pest Management Science:formerly Pesticide Science, 66 (3):248-252.
|
[22] |
Zhang Q X, Kong X W, Li S Y, Chen X J, Chen X J. 2020. Antibiotics of Pseudomonas protegens FD 6 are essential for biocontrol activity. Australasian Plant Pathology,49:307-317.
|
[23] |
Zhang Q X, Liu Y Y, Harvey P R, Stummer B E, Yang J L, Ji Z L. 2023. Wheat rhizosphere colonization by Bacillus amyloliquefaciens W10 and Pseudomonas protegens FD 6 suppress soil and in planta abundance of the sharp eyespot pathogen Rhizoctonia cerealis. Journal of Applied Microbiology, 134 (5):lxad101.
|
[24] |
Zhou Jie, Li Tianzhu, Liu Ruyi, Li Chenhao, Yuan Zenan, Li Jianming. 2023. Effects of air humidity and soil water content coupling on tomato gray mold. Acta Horticulturae Sinica, 50 (8):1779-1792. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2022-0418
|
|
周洁, 李甜竹, 刘汝懿, 李陈浩, 袁泽南, 李建明. 2023. 空气湿度与土壤含水量耦合对番茄灰霉病的影响. 园艺学报, 50 (8):1779-1792.
|
[25] |
Zhang Wenjing, Xu Dayong, Wu Qianlin, Yang Fo, Xin Bingyue, Zeng Xin, Li Feng. 2024. Genome analysis of Bacillus velezensis XDY66,an antagonist of tomato Botrytis cinerea. Acta Horticulturae Sinica, 51 (6):1413-1425. (in Chinese)
|
|
张文静, 徐大勇, 吴倩琳, 杨佛, 信丙越, 曾昕, 李峰. 2024. 拮抗番茄灰霉病的贝莱斯芽孢杆菌XDY66基因组分析. 园艺学报, 51 (6):1413-1425.
|
[26] |
Zhang Yan, Zhang Yang, Zhang Bo, Wu Xiagang, Zhang Liqun. 2018. Effect of carbon sources on production of 2,4-diacetylphoroglucinol in Pseudomonas fluorescens 2P24. Acta Microbiologica Sinica, 58 (7):1202-1212. (in Chinese)
|
|
张燕, 张阳, 张博, 吴小刚, 张力群. 2018. 不同碳源对生防荧光假单胞菌2P24产抗生素2,4-二乙酰基间苯三酚的影响. 微生物学报, 58 (7):1202-1212.
|
[27] |
Zhang Yuxun, Li Guang, Zhang GuangMing. 2000. Colonization of antagonistic bacteria in greenhouse tomato leaves and its control effect on gray mold disease. Acta Phytopathologica Sinica,(1):91. (in Chinese)
|
|
张玉勋, 李光, 张光明. 2000. 拮抗细菌在大棚温室番茄叶片定殖及对灰霉病害的控制效果. 植物病理学报,(1):91.
|