Acta Horticulturae Sinica ›› 2023, Vol. 50 ›› Issue (4): 885-895.doi: 10.16420/j.issn.0513-353x.2021-1264
• Reviews • Previous Articles Next Articles
TIAN Xiaocheng, ZHU Lingcheng, ZOU Hui, LI Baiyun, MA Fengwang, LI Mingjun()
Received:
2022-08-31
Revised:
2022-11-05
Online:
2023-04-25
Published:
2023-04-27
Contact:
*(E-mail:limingjun@nwsuaf.edu.cn)
E-mail:limingjun@nwsuaf.edu.cn
CLC Number:
TIAN Xiaocheng, ZHU Lingcheng, ZOU Hui, LI Baiyun, MA Fengwang, LI Mingjun. Research Progress on Accumulation Pattern and Regulation of Soluble Sugar in Fruit[J]. Acta Horticulturae Sinica, 2023, 50(4): 885-895.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-1264
积累类型Types of sugar accumulation | 积累形式 Forms of sugar accumulation in fruit | 代表植物Delegate | 积累特点 Characteristics of sugar accumulation |
---|---|---|---|
直接积累型(多为非呼吸跃变型) Direct sugar accumulation type(mostly non-climacteric) | 生长发育早期少量积累淀粉;其他时期积累可溶性糖 In the early stage of fruit growth and development:a small amount of starch accumulates;the rest of the period:accumulation in the form of soluble sugar | 柑橘;葡萄;草莓 Citrus reticulata; Vitis vinifera; Fragaria ananassa | 淀粉合成能力弱,葡萄糖和果糖主要来源于蔗糖的裂解,相关酶有CWINV、INV、AINV、SUSY The starch synthesis ability is weak,the accumulation of glucose and fructose mainly comes from the cleavage of sucrose,and the related enzymes are CWINV,INV,AINV,SUSY |
淀粉转化型 (多为呼吸跃变型) Starch invert(mostly climacteric | 生长发育和成熟期积累淀粉;采后淀粉转化可溶性糖积累 Fruit growth and maturity:starch;postharvest:starch conversion to soluble sugar accumulation | 猕猴桃;杧果;香蕉 Actinidia deliciosa; Mangifera indica; Musa acuminata | 可溶性糖积累受乙烯诱导 The accumulation of soluble sugar in fruit was induced by ethylene |
“淀粉—糖”中间积累型(多为蔷薇科呼吸跃变型)“Starch-sugar”intermediate accumulation type;mostly Rosaceae fruit trees,and mostly climacteric type | 生长发育早期积累淀粉;后期可溶性糖直接积累或淀粉转化可溶性糖积累 Starch accumulation in the early stage of growth and development;direct accumulation of soluble sugars or accumulation of soluble sugars from starch conversion in the later stage | 苹果;桃;李;山楂; 梨 Malus domestica; Amygdalus persica; Prunus spp.; Crataegus pinnatifida; Pyrus spp. | 韧皮部汁液中主要为山梨醇,其次是蔗糖。山梨醇在果实中卸载后被SDH催化生成果糖或葡萄糖;多数果树为己糖高度积累型 Sorbitol was the main component in phloem sap,followed by sucrose. Sorbitol was catalyzed to fructose or glucose by SDH after unloading in fruit. Most fruit trees are highly hexose accumulated |
Table 1 Types and characteristics of sugar accumulation in fruits
积累类型Types of sugar accumulation | 积累形式 Forms of sugar accumulation in fruit | 代表植物Delegate | 积累特点 Characteristics of sugar accumulation |
---|---|---|---|
直接积累型(多为非呼吸跃变型) Direct sugar accumulation type(mostly non-climacteric) | 生长发育早期少量积累淀粉;其他时期积累可溶性糖 In the early stage of fruit growth and development:a small amount of starch accumulates;the rest of the period:accumulation in the form of soluble sugar | 柑橘;葡萄;草莓 Citrus reticulata; Vitis vinifera; Fragaria ananassa | 淀粉合成能力弱,葡萄糖和果糖主要来源于蔗糖的裂解,相关酶有CWINV、INV、AINV、SUSY The starch synthesis ability is weak,the accumulation of glucose and fructose mainly comes from the cleavage of sucrose,and the related enzymes are CWINV,INV,AINV,SUSY |
淀粉转化型 (多为呼吸跃变型) Starch invert(mostly climacteric | 生长发育和成熟期积累淀粉;采后淀粉转化可溶性糖积累 Fruit growth and maturity:starch;postharvest:starch conversion to soluble sugar accumulation | 猕猴桃;杧果;香蕉 Actinidia deliciosa; Mangifera indica; Musa acuminata | 可溶性糖积累受乙烯诱导 The accumulation of soluble sugar in fruit was induced by ethylene |
“淀粉—糖”中间积累型(多为蔷薇科呼吸跃变型)“Starch-sugar”intermediate accumulation type;mostly Rosaceae fruit trees,and mostly climacteric type | 生长发育早期积累淀粉;后期可溶性糖直接积累或淀粉转化可溶性糖积累 Starch accumulation in the early stage of growth and development;direct accumulation of soluble sugars or accumulation of soluble sugars from starch conversion in the later stage | 苹果;桃;李;山楂; 梨 Malus domestica; Amygdalus persica; Prunus spp.; Crataegus pinnatifida; Pyrus spp. | 韧皮部汁液中主要为山梨醇,其次是蔗糖。山梨醇在果实中卸载后被SDH催化生成果糖或葡萄糖;多数果树为己糖高度积累型 Sorbitol was the main component in phloem sap,followed by sucrose. Sorbitol was catalyzed to fructose or glucose by SDH after unloading in fruit. Most fruit trees are highly hexose accumulated |
[1] |
Ackermann J, Fischer M, Amado R. 1992. Changes in sugars,acids,and amino acids during ripening and storage of apples(cv. Glockenapfel). Journal of Agricultural and Food Chemistry, 40:1131-1134.
doi: 10.1021/jf00019a008 URL |
[2] |
Afoufa-Bastien D, Medici A, Jeauffre J, Coutos-Thévenot P, Lemoine R, Atanassova R, Laloi M. 2010. The Vitis vinifera sugar transporter gene family:phylogenetic overview and macroarray expression profiling. BMC Plant Biology, 10:245.
doi: 10.1186/1471-2229-10-245 pmid: 21073695 |
[3] |
Atkinson R G, Gunaseelan K, Wang M Y, Luo L, Wang T, Norling C L, Johnston S L, Maddumage R, Schröder R, Schaffer R J. 2011. Dissecting the role of climacteric ethylene in kiwifruit(Actinidia chinensis)ripening using a 1-aminocyclopropane-1-carboxylic acid oxidase knockdown line. Journal of Experimental Botany, 62 (11):3821-3835.
doi: 10.1093/jxb/err063 pmid: 21511911 |
[4] |
Beatriz R C, João R O, Victor C C A, Eduardo P, João P F, Fernanda H G. 2019. The starch is(Not)just another brick in the wall:the primary metabolism of sugars during banana ripening. Frontiers in Plant Science,doi:10.3389/fpls.2019.00391.
doi: 10.3389/fpls.2019.00391 |
[5] |
Berüter J, Feusi M E S. 1995. Comparison of sorbitol transport in excised tissue discs and cortex tissue of intact apple fruit. Journal of Plant Physiology, 146:95-102.
doi: 10.1016/S0176-1617(11)81973-5 URL |
[6] | Chen Junwei, Zhang Shanglong, Zhang Liangcheng. 2004. Transport,metabolism and accumulation of sugar in fruit and their regulation. Journal of Plant Physiology and Molecular Biology,(3):1-10. (in Chinese) |
陈俊伟, 张上隆, 张良诚. 2004. 果实中的糖的运输、代谢与积累及其调控. 植物生理与分子生物学学报,(3):1-10. | |
[7] |
Cheng J, Wen S, Xiao S, Lu B, Ma M, Bie Z. 2018. Overexpression of the tonoplast sugar transporter CmTST2 in melon fruit increases sugar accumulation. Journal of Experimental Botany, 69:511-523.
doi: 10.1093/jxb/erx440 pmid: 29309616 |
[8] |
Cheng L, Zhou R, Reidel E J, Sharkey T D, Dandekar A M. 2005. Antisense inhibition of sorbitol synthesis leads to up-regulation of starch synthesis without altering CO2 assimilation in apple leaves. Planta, 220 (5):767-776.
doi: 10.1007/s00425-004-1384-5 URL |
[9] |
Cheng R, Zhang H P, Cheng Y S, Wang Y Z, Wang G M, Zhang S L. 2017. In silico and expression analysis of the tonoplast monosaccharide transporter(TMT)gene family in Pyrus bretschneideri. The Journal of Horticultural Science and Biotechnology, 93:366-376.
doi: 10.1080/14620316.2017.1373603 URL |
[10] |
Chong J, PironI M C, Meyer S, Merdinoglu D, Bertsch C, Mestre P. 2014. The SWEET family of sugar transporters in grapevine:VvSWEET 4 is involved in the interaction with Botrytis cinerea. Journal of Experimental Botany, 65 (22):6589-6601.
doi: 10.1093/jxb/eru375 URL |
[11] |
Coleman H D, Yan J, Mansfield S D. 2009. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc Natl Acad Sci USA, 106 (31):13118-13123.
doi: 10.1073/pnas.0900188106 pmid: 19625620 |
[12] |
Dai N, Cohen S, Portnoy V, Tzuri G, Harel-Beja R, Pompan-Lotan M, Carmi N, Zhang G, Diber A, Pollock S, Karchi H, Yeselson Y, Petreikov M, Shen S, Sahar U, Hovav R, Lewinsohn E, Tadmor Y, Granot D, Ophir R, Sherman A, Fei Z, Giovannoni J, Burger Y, Katzir N, Schaffer A A. 2011. Metabolism of soluble sugars in developing melon fruit:a global transcriptional view of the metabolic transition to sucrose accumulation. Plant Molecular Biology, 76 (1-2):1-18.
doi: 10.1007/s11103-011-9757-1 URL |
[13] |
Do Nascimento J R O, Júnior A V, Bassinello P Z, Cordenunsi B R, Mainardi J A, Purgatto E, Lajolo F M. 2006. β-amylase expression and starch degradation during banana ripening. Postharvest Biology and Technology, 40:41-47.
doi: 10.1016/j.postharvbio.2005.11.008 URL |
[14] | Doty T E. 1976. Fructose sweetness:a new dimension. Cereal Foods World, 21:62-63. |
[15] |
Echeverria E, Valich J. 1988. Carbohydrate and enzyme distribution in protoplasts from valencia orange juice sacs. Phytochemistry, 27:73-76.
doi: 10.1016/0031-9422(88)80593-4 URL |
[16] |
Ferrandino A, Lovisolo C. 2014. Abiotic stress effects on grapevine(Vitis vinifera L.):Focus on abscisic acid-mediated consequences on secondary metabolism and berry quality. Environmental and Experimental Botany, 103:138-147.
doi: 10.1016/j.envexpbot.2013.10.012 URL |
[17] |
Fujii S, Hayashi T, Mizuno K. 2010. Sucrose synthase is an integral component of the cellulose synthesis machinery. Plant Cell Physiology, 51 (2):294-301.
doi: 10.1093/pcp/pcp190 URL |
[18] |
Geng Yanqiu, Dong Xiaochang, Zhang Chunmei. 2021. Recent progress of sugar transporter in horticultural crops. Acta Horticulturae Sinica, 48 (4):676-688. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2020-0412 URL |
耿艳秋, 董肖昌, 张春梅. 2021. 园艺作物糖转运蛋白研究进展. 园艺学报, 48 (4):676-688.
doi: 10.16420/j.issn.0513-353x.2020-0412 URL |
|
[19] |
Islam M Z, Jin L F, Shi C Y, Liu Y Z, Peng S A. 2015. Citrus sucrose transporter genes:genome-wide identification and transcript analysis in ripening and ABA-injected fruits. Tree Genetics and Genomes, 11:1-9.
doi: 10.1007/s11295-014-0804-3 URL |
[20] |
Jiang H, Ma Q J, Zhong M S, Gao H N, Li Y Y, Hao Y J. 2021. The apple palmitoyltransferase MdPAT 16 influences sugar content and salt tolerance via an MdCBL1-MdCIPK13-MdSUT2.2 pathway. The Plant Journal, 106 (3):689-705.
doi: 10.1111/tpj.v106.3 URL |
[21] |
Katz E, Boo K H, Kim H Y. 2011. Label-free shotgun proteomics and metabolite analysis reveal a significant metabolic shift during citrus fruit development. Journal of Experimental Botany, 62 (15):5367-5384.
doi: 10.1093/jxb/err197 pmid: 21841177 |
[22] |
Komatsu A, Takanokura Y, Moriguchi T. 1999. Differential expression of three sucrose-phosphate synthase isoforms during accumulation in citrus fruit(Citrus unshiu Marc). Plant Science, 140:169-178.
doi: 10.1016/S0168-9452(98)00217-9 URL |
[23] |
Kroger M, Meister K, Kava R. 2006. Low-calorie sweeteners and other sugar substitutes:a review of the safety issues. Compr Rev Food Sci Food Saf, 5:35-47
doi: 10.1111/crfs.2006.5.issue-2 URL |
[24] |
Li M, Feng F, Cheng L. 2012. Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development. PLoS One, 7 (3):e33055.
doi: 10.1371/journal.pone.0033055 URL |
[25] |
Li M, Li D, Feng F, Zhang S, Ma F, Cheng L. 2016. Proteomic analysis reveals dynamic regulation of fruit development and sugar and acid accumulation in apple. Journal of Experimental Botany, 67 (17):5145-5157.
doi: 10.1093/jxb/erw277 pmid: 27535992 |
[26] |
Lingle S E, Dunlap J R. 1987. Sucrose metabolism in netted muskmelon fruit during development. Plant Physiology, 84:386-389.
doi: 10.1104/pp.84.2.386 pmid: 16665448 |
[27] |
Ma Q, Sun M, Lu J, Liu Y, Hu D, Hao Y. 2017. Transcription factor AREB2 is involved in soluble sugar accumulation by activating sugar transporter and amylase genes. Plant Physiology, 174:2348-2362.
doi: 10.1104/pp.17.00502 URL |
[28] |
Ma Q J, Sun M H, Lu J, Kang H, You C X, Hao Y J. 2019. An apple sucrose transporter MdSUT2.2 is a phosphorylation target for protein kinase MdCIPK 22 in response to drought. Plant Biotechnology Journal, 17 (3):625-637.
doi: 10.1111/pbi.2019.17.issue-3 URL |
[29] |
Macrae E, Quick W P, Benker C, Stitt M. 1992. Carbohydrate metabolism during postharvest ripening in kiwifruit. Planta, 188 (3):314-223.
doi: 10.1007/BF00192797 pmid: 24178320 |
[30] |
Maruyama K, Takeda M, Kidokoro S, Yamada K, Sakuma Y, Urano K, Fujita M, Yoshiwara K, Matsukura S, Morishita Y, Sasaki R, Suzuki H, Saito K, Shibata D, Shinozaki K, Yamaguchi S K. 2009. Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiology, 150 (4):1972-1980.
doi: 10.1104/pp.109.135327 pmid: 19502356 |
[31] |
Mitchell D E, Gadus M V, Madore M A. 1992. Patterns of assimilate production and translocation in muskmelon(Cucumis melo L.):I. Diurnal patterns. Plant Physiology, 99:959-965.
doi: 10.1104/pp.99.3.959 pmid: 16669025 |
[32] | Mota R, Lajolo F, Cordenunsi B. 1997. Composition of carbohydrates from banana cultivars(Musa spp.)during ripening. Journal of Food Science and Technology, 17:94-97. |
[33] |
Nardozza S, Boldingh H L, Osorio S, Höhne M, Wohlers M, Gleave A P, MacRae E A, Richardson A C, Atkinson R G, Sulpice R. 2013. Metabolic analysis of kiwifruit(Actinidia deliciosa)berries from extreme genotypes reveals hallmarks for fruit starch metabolism. Journal of Experimental Botany, 64:5049-5063.
doi: 10.1093/jxb/ert293 pmid: 24058160 |
[34] |
Ntagkas N, Woltering E, Bouras S, De V R C, Dieleman J A, Nicole C, Labrie C, Marcelis L F. 2019. Light-induced vitamin C accumulation in tomato fruits is independent of carbohydrate availability. Plants, 8 (4):86.
doi: 10.3390/plants8040086 URL |
[35] |
Pangborn R M. 2006. Relative taste intensities of selected sugars and organic acids. Journal of Food Science, 28:726-733.
doi: 10.1111/jfds.1963.28.issue-6 URL |
[36] |
Patrick J W, Offler C E. 1995. Post-sieve element transport of photoassimilates in sink regions. Journal of Experimental Botany, 47:1165-1177.
doi: 10.1093/jxb/47.Special_Issue.1165 URL |
[37] |
Peng Q, Cai Y, Lai E, Ogutu C, Cherono S, Han Y. 2020a. The sucrose transporter MdSUT4.1 participates in the regulation of fruit sugar accumulation in apple. BMC Plant Biology, 20:191.
doi: 10.1186/s12870-020-02406-3 |
[38] |
Peng Q, Wang L, Ogutu C, Liu J, Liu L, Mollah M D A, Han Y. 2020b. Functional analysis reveals the regulatory role of PpTST 1 encoding tonoplast sugar transporter in sugar accumulation of peach fruit. International Journal of Molecular Science, 21:1112.
doi: 10.3390/ijms21031112 URL |
[39] |
Ren Y, Guo S, Zhang J, He H, Sun H, Tian S, Gong G, Zhang H, Levi A, Tadmor Y, Xu Y. 2018. A tonoplast sugar transporter underlies a sugar accumulation QTL in watermelon. Plant Physiology, 176 (1):836-850.
doi: 10.1104/pp.17.01290 pmid: 29118248 |
[40] |
Ren Y, Li M, Guo S, Sun H, Zhao J, Zhang J, Liu G, He H, Tian S, Yu Y, Gong G, Zhang H, Zhang X, Alseekh S, Fernie A R, Scheller H V, Xu Y. 2021. Evolutionary gain of oligosaccharide hydrolysis and sugar transport enhanced carbohydrate partitioning in sweet watermelon fruits. Plant Cell, 33 (5):1554-1573.
doi: 10.1093/plcell/koab055 URL |
[41] |
Ren Y, Sun H, Zong M, Guo S, Ren Z, Zhao J, Li M, Zhang J, Tian S, Wang J, Xu Y. 2020. Localization shift of a sugar transporter contributes to phloem unloading in sweet watermelons. New Phytologist, 227 (6):1858-1871.
doi: 10.1111/nph.v227.6 URL |
[42] |
Rolland F, Baena-Gonzalez E, Sheen J. 2006. Sugar sensing and signaling in plants:conserved and novel mechanisms. Annual Review of Plant Biology, 57:675-709.
pmid: 16669778 |
[43] |
Ruan Y L. 2014. Sucrose metabolism:gateway to diverse carbon use and sugar signaling. Annual Review of Plant Biology, 65:33-67.
doi: 10.1146/arplant.2014.65.issue-1 URL |
[44] |
Ruan Y L, Jin Y, Yang Y J, Li G J, Boyer J S. 2010. Sugar input,metabolism,and signaling mediated by invertase:roles in development,yield potential,and response to drought and heat. Molecular Plant, 3 (6):942-955.
doi: 10.1093/mp/ssq044 URL |
[45] |
Saraiva L A, Castelan F P, Gomes B L, Purgatto E, Cordenunsi-Lysenko B R. 2018. Thap Maeo bananas:Fast ripening and full ethylene perception at low doses. Food Research International, 105:384-392.
doi: 10.1016/j.foodres.2017.11.007 URL |
[46] |
Shiga T M, Soares C A, Nascimento J R, Purgatto E, Lajolo F M, Cordenunsi B R. 2011. Ripening-associated changes in the amounts of starch and non-starch polysaccharides and their contributions to fruit softening in three banana cultivars. Journal of the Science of Food and Agriculture, 91(8):1511-1516.
doi: 10.1002/jsfa.4342 pmid: 21445854 |
[47] |
Shiraishi M, Fujishima H, Chijiwa H. 2010. Evaluation of table grape genetic resources for sugar,organic acid,and amino acid composition of berries. Euphytica, 174:1-13
doi: 10.1007/s10681-009-0084-4 URL |
[48] |
Sornkanok V, Zheng H, Peng Q, Jiang Q, Wang H, Fang T, Liao L, Wang L, He H, Han Y. 2016. Assessment of sugar components and genes involved in the regulation of sucrose accumulation in peach fruit. Journal of Agricultural and Food Chemistry, 64 (35):6723-6729.
doi: 10.1021/acs.jafc.6b02159 pmid: 27537219 |
[49] |
Su J, Zhang C, Zhu L, Yang N, Yang J, Ma B, Ma F, Li M. 2021. MdFRK2-mediated sugar metabolism accelerates cellulose accumulation in apple and poplar. Biotechnology for Biofuels, 14 (1):137.
doi: 10.1186/s13068-021-01989-9 pmid: 34130710 |
[50] |
Tang T, Xie H, Wang Y, Lü B, Liang J. 2009. The effect of sucrose and abscisic acid interaction on sucrose synthase and its relationship to grain filling of rice(Oryza sativa L.). Journal of Experimental Botany, 60 (9):2641-2652.
doi: 10.1093/jxb/erp114 pmid: 19401410 |
[51] |
Tian X, Zhu L, Yang N, Song J, Zhao H, Zhang J, Ma F, Li M. 2021. Proteomics and metabolomics reveal the regulatory pathways of ripening and quality in post-harvest kiwifruits. Journal of Agricultural and Food Chemistry, 69 (2):824-835.
doi: 10.1021/acs.jafc.0c05492 pmid: 33410682 |
[52] |
Vignault C, Vachaud M, Cakir B, Glissant D, Dédaldéchamp F, Büttner M, Atanassova R, Fleurat-Lessard P, Lemoine R, Delrot S. 2005. VvHT 1 encodes a monosaccharide transporter expressed in the conducting complex of the grape berry phloem. Journal of Experimental Botany, 56:1409-1418.
pmid: 15809282 |
[53] |
Vimolmangkang S, Zheng H, Peng Q, Jiang Q, Wang H, Fang T, Liao L, Wang L, He H, Han Y. 2016. Assessment of sugar components and genes involved in the regulation of sucrose accumulation in peach fruit. Journal of Agricultural and Food Chemistry, 64 (35):6723-6729.
doi: 10.1021/acs.jafc.6b02159 pmid: 27537219 |
[54] |
Wang T, Wright D, Xu H, Yang Y, Zheng R, Shi J, Wang L. 2019a. Expression patterns,activities and sugar metabolism regulation of sucrose phosphate synthase,sucrose synthase,neutral invertase and soluble acid invertase in different Goji cultivars during fruit development. Russian Journal of Plant Physiology, 66 (1):29-40.
doi: 10.1134/S1021443719010199 |
[55] |
Wang Y, Liu L, Wang Y, Tao H, Fan J, Zhao Z, Guo Y. 2019b. Effects of soil water stress on fruit yield,quality and their relationship with sugar metabolism in‘Gala’apple. Scientia Horticulturae, 258:108753.
doi: 10.1016/j.scienta.2019.108753 URL |
[56] |
Wang Z, Ma B, Yang N, Jin L, Wang L, Ma S, Ruan YL, Ma F, Li M. 2021. Variation in the promoter of the sorbitol dehydrogenase gene MdSDH2 affects binding of the transcription factor MdABI3 and alters fructose content in apple fruit. The Plant Journal,doi:10.1111/tpj.15624.
doi: 10.1111/tpj.15624 |
[57] |
Wang Z, Wei X, Yang J, Li H, Ma B, Zhang K, Zhang Y, Cheng L, Ma F, Li M. 2020. Heterologous expression of the apple hexose transporter MdHT 2.2 altered sugar concentration with increasing cell wall invertase activity in tomato fruit. Plant Biotechnology Journal, 18:540-552.
doi: 10.1111/pbi.v18.2 URL |
[58] | Wei X, Liu F, Chen C, Ma F, Li M. 2014. The Malus domestica sugar transporter gene family:identifications based on genome and expression profiling related to the accumulation of fruit sugars. Frontiers in Plant Science, 5:569. |
[59] |
Wu J, Gao H, Zhao L, Liao X, Chen F, Wang Z, Hu X. 2007. Chemical compositional characterization of some apple cultivars. Food Chemistry, 103:88-93.
doi: 10.1016/j.foodchem.2006.07.030 URL |
[60] |
Xu Hai-feng, Liu Jing-xuan, Wang Yi-cheng, Zuo Wei-fang, Qu Chang-zhi, Wang De-yun, Zhang Jing, Jiang Sheng-hui, Wang Nan, Chen Xue-sen. 2016. Isolation and expression analysis of a vacuolar glucose transporter gene MdVGT1 in apple. Scientia Agricultura Sinica, 49 (23):4584-4592. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.23.011 |
许海峰, 刘静轩, 王意程, 左卫芳, 曲常志, 王得云, 张静, 姜生辉, 王楠, 陈学森. 2016. 苹果液泡膜葡萄糖转运蛋白基因MdVGT1的克隆与表达分析. 中国农业科学, 49 (23):4584-4592.
doi: 10.3864/j.issn.0578-1752.2016.23.011 |
|
[61] |
Xu Haifeng, Qu Changzhi, Liu Jingxuan, Wang Yicheng, Wang Deyun, Zuo Weifang, Jiang Shenghui, Wang Nan, Zhang Zongying, Chen Xuesen. 2017. Expression analysis and functional identification of a vacuolar sucrose transporter gene MdSUT4in apple. Acta Horticulturae Sinica, 44 (7):1235-1243. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2016-0726 |
许海峰, 曲常志, 刘静轩, 王意程, 王得云, 左卫芳, 姜生辉, 王楠, 张宗营, 陈学森. 2017. 苹果液泡膜蔗糖转运蛋白基因MdSUT4的表达分析与功能鉴定. 园艺学报, 44 (7):1235-1243.
doi: 10.16420/j.issn.0513-353x.2016-0726 |
|
[62] |
Yang G, Xu H, Zou Q, Zhang J, Jiang S, Fang H, Wang Y C, Su M Y, Wang N, Chen X. 2020. The vacuolar membrane sucrose transporter MdSWEET 16 plays essential roles in the cold tolerance of apple. Plant Cell Tissue and Organ Culture, 140 (1):129-142.
doi: 10.1007/s11240-019-01717-0 |
[63] | Yang Zhao-qu, Xia Yun-bin, Liu Cai-bao, Wang Wei- li, Xu You-gen, Ding Xiu-qing. 2009. Effects of fruit thinning and bagging on sugar and acid content of loquat fruit. Zhejiang Agricultural Science,(2):279-281. (in Chinese) |
杨照渠, 夏鋆彬, 刘才宝, 王卫利, 徐友根, 丁秀清. 2009. 疏果套袋对枇杷果实糖酸含量的影响. 浙江农业科学,(2):279-281. | |
[64] |
Yu Y, Guan J, Xu Y, Ren F, Zhang Z, Yan J, Fu J, Guo J, Shen Z, Zhao J, Jiang Q, Wei J, Xie H. 2021. Population-scale peach genome analyses unravel selection patterns and biochemical basis underlying fruit flavor. Nature Communications, 12:3604.
doi: 10.1038/s41467-021-23879-2 pmid: 34127667 |
[65] |
Zhang L Y, Peng Y B, Pelleschi-Travier S, Fan Y, Lu Y F, Lu YM, Gao X P, Shen Y Y, Delrot S, Zhang D P. 2004. Evidence for apoplasmic phloem unloading in developing apple fruit. Plant Physiology, 135 (1):574-586.
doi: 10.1104/pp.103.036632 URL |
[66] |
Zhang H P, Wu J Y, Qin G H. 2014. The role of sucrose-metabolizing enzymes in pear fruit that differ in sucrose accumulation. Acta Physiologiae Plantarum, 36:71-77.
doi: 10.1007/s11738-013-1387-6 URL |
[67] |
Zhang Z K, Xing M Y, Ramakrishnan M, Chen C B, Xie F F, Hua Q Z, Chen J Y, Zhang R, Zhao J T, Hu G B, Qin Y H. 2022. Transcriptomics-based identification and characterization of genes related to sugar metabolism in‘Hongshuijing’pitaya. Horticultural Plant Journal, 8 (4):450-460.
doi: 10.1016/j.hpj.2021.06.004 URL |
[68] | Zheng Q M, Tang Z, Xu Q. 2014. Isolation,phylogenetic relationship and expression profiling of sugar transporter genes in sweet orange(Citrus sinensis). Plant Cell,Tissue and Organ Culture(PCTOC), 119:609-624. |
[69] | Zhu L, Li B, Wu L, Li H, Wang Z, Wei X, Ma B, Zhang Y, Ma F, Ruan Y L, Li M. 2021. MdERDL6-mediated glucose efflux to the cytosol promotes sugar accumulation in the vacuole through up-regulating TSTs in apple and tomato. Proc Natl Acad Sci USA, 118 (1):e2022788118. |
[1] | KAN Liping, SHI Xiaoqian, YANG Han, JIN Yumeng, CHEN Liyan, ZHANG Lijuan, XU Yangchun, SHEN Qirong, DONG Caixia. Cloning and Function Identification of a Potassium Transporter Gene PbKT12 in Pear Fruit [J]. Acta Horticulturae Sinica, 2023, 50(4): 713-723. |
[2] | TANG Haixia, PEI Guangying, ZHANG Qiong, WANG Zhongtang. Location and Analysis of Quantitative Trait Loci in Chinese Jujube Fruit [J]. Acta Horticulturae Sinica, 2023, 50(4): 754-764. |
[3] | CHANG Xiaoxiao, GUO Xinbo, YE Yutong, PENG Cheng, CHEN Huiqiong, PAN Jianping, QIU Jishui, LU Yusheng. Differential Analysis of Sugar,Acid,Polyphenolics and Antioxidant Activities in Fruits of‘Zaofeng’and‘Jixin’Wampee(Clausena lansium) [J]. Acta Horticulturae Sinica, 2023, 50(4): 778-790. |
[4] | YUAN Huazhao, PANG Fuhua, WANG Jing, CAI Weijian, XIA Jin, ZHAO Mizhen. Identification of Anthocyanin Compositions and Expression Analysis of Key Related Genes in Fragaria × ananassa [J]. Acta Horticulturae Sinica, 2023, 50(4): 791-801. |
[5] | XU Yue, LI Zixiong, CHEN Jie, SUN Liang. Transcriptional Bases of the Regulation of 2,4-D on Tomato Fruit Shape [J]. Acta Horticulturae Sinica, 2023, 50(4): 802-814. |
[6] | LI Yumei, LOU Yusui, WANG Xiaolong, MA Yuquan, WANG Haibo, LÜ Zhongwei. Research on Nutritional Diagnosis of Leaves and Soil in High Quality Grape Orchard of‘Summer Black’ [J]. Acta Horticulturae Sinica, 2023, 50(4): 864-874. |
[7] | LAI Hengxin, LI Wenguang, PENG Liangzhi, HE Yizhong, ZHU Panpan, YANG Wanyun, LING Lili, FU Xingzheng, CHUN Changpin, CAO Li. Quality Changes of On-tree Storage Fruit of Orah Mandarin(Citrus reticulata Blanco)During Spring and Summer Seasons [J]. Acta Horticulturae Sinica, 2023, 50(3): 485-494. |
[8] | MA Shuaihui, HE Guangqi, CHENG Yizhe, GUO Dalong. Analysis of Alternative Splicing at Different Developmental Stages of Kyoho Grapes with 5-azaC Treatment [J]. Acta Horticulturae Sinica, 2023, 50(3): 523-533. |
[9] | MAO Kexin, AN Miao, WANG Hairong, WANG Shijin, LÜ Wei, GUO Yingtian, LI Jian, LI Guotian. Identification and Low Temperature Expression Analysis of MYB Transcription Factor Family in Kiwifruit [J]. Acta Horticulturae Sinica, 2023, 50(3): 534-548. |
[10] | XUE Yuqian, LIU Zhiyong, SUN Kairong, ZHANG Xiuxin, LÜ Yingmin, XUE Jingqi. The Mechanism of Sugar Signal Involved in Regulating Re-flowering of Tree Peony Under Forcing Culture [J]. Acta Horticulturae Sinica, 2023, 50(3): 596-606. |
[11] | YE Zimao, SHEN Wanxia, LIU Mengyu, WANG Tong, ZHANG Xiaonan, YU Xin, LIU Xiaofeng, ZHAO Xiaochun. Effect of R2R3-MYB Transcription Factor CitMYB21 on Flavonoids Biosynthesis in Citrus [J]. Acta Horticulturae Sinica, 2023, 50(2): 250-264. |
[12] | ZHENG Qingbo, BAO Zeyang, LAN Qingqing, ZHOU Yuwen, ZHOU Yufei, ZHENG Caixia, LI Xu. Advances in Studies on Adventitious Root Formation by Juvenile- and Auxin-determined [J]. Acta Horticulturae Sinica, 2023, 50(2): 441-450. |
[13] | YANG Zhi, ZHANG Chuanjiang, YANG Xinfang, DONG Mengyi, WANG Zhenlei, YAN Fenfen, WU Cuiyun, WANG Jiurui, LIU Mengjun, LIN Minjuan. Analysis of Fruit Genetic Tendency and Mixed Inheritance in Hybrid Progeny of Jujube and Wild Jujube [J]. Acta Horticulturae Sinica, 2023, 50(1): 36-52. |
[14] | YUAN Xin, XU Yunhe, ZHANG Yupei, SHAN Nan, CHEN Chuying, WAN Chunpeng, KAI Wenbin, ZHAI Xiawan, CHEN Jinyin, GAN Zengyu. Studies on AcAREB1 Regulating the Expression of AcGH3.1 During Postharvest Ripening of Kiwifruit [J]. Acta Horticulturae Sinica, 2023, 50(1): 53-64. |
[15] | SHAO Fengqing, LUO Xiurong, WANG Qi, ZHANG Xianzhi, WANG Wencai. Advances in Research of DNA Methylation Regulation During Fruit Ripening [J]. Acta Horticulturae Sinica, 2023, 50(1): 197-208. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd