https://www.ahs.ac.cn/images/0513-353X/images/top-banner1.jpg|#|苹果
https://www.ahs.ac.cn/images/0513-353X/images/top-banner2.jpg|#|甘蓝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner3.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner4.jpg|#|灵芝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner5.jpg|#|桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner6.jpg|#|黄瓜
https://www.ahs.ac.cn/images/0513-353X/images/top-banner7.jpg|#|蝴蝶兰
https://www.ahs.ac.cn/images/0513-353X/images/top-banner8.jpg|#|樱桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner9.jpg|#|观赏荷花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner10.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner11.jpg|#|月季
https://www.ahs.ac.cn/images/0513-353X/images/top-banner12.jpg|#|菊花

Acta Horticulturae Sinica ›› 2021, Vol. 48 ›› Issue (9): 1641-1652.doi: 10.16420/j.issn.0513-353x.2021-0580

• Research Papers •     Next Articles

Cloning and Functional Analysis of Squalene Synthase Gene in Citrus

WANG Fusheng, LIU Xiaona, XU Yuanyuan, LIU Xiaofeng, ZHU Shiping, ZHAO Xiaochun*()   

  1. Citrus Research Institute of Southwest University/Chinese Academy of Agricultural Sciences,National Citrus Engineering Research Center,Chongqing 400712,China
  • Received:2021-06-16 Revised:2021-08-27 Online:2021-09-25 Published:2021-09-30
  • Contact: ZHAO Xiaochun E-mail:zhaoxiaochun@cric.cn

Abstract:

A squalene synthase(SQS)gene was isolated from 18 citrus accessions,and its sequence and expression characteristics were analyzed. The roles in the biosynthesis of limonoids were identified by genetic transformation. The results showed that the full length of SQS ORF(open reading frame)in citrus is 1 242 bp,coding 413 amino acids except in the accessions of Rongan Kumquat(Fortunella classifalia)and Xiaoguo Kumquat(F. margarita). Clustal analysis showed that the deduced amino acids of SQS shared from 97.1% to 100% homology among the 18 citrus accessions. SQS in Xiaoguo kumquat,Rongan kumquat,and No.4 Ichang Papeda(Citrus ichangensis)shared a G/C nonsynonymous mutation at the fourteenth nucleotide of CDS region. Phylogenetic analysis result of SQS proteins showed that the SQS of those accessions clustered together. qRT-PCR analysis showed that the highest expression of SQS was observed in flower,followed by that in stem,root,leaf,and young fruit. The expression level of SQS gene is positively correlated with the limonoids contents in seeds of Guanxi Mi You(C. grandis)variety at different development stages. Four positive SQS interference transgenic citrus plants(SiN-1-SiN-4)were obtained via citrus genetic transformation. The expression levels of SQS gene in four transgenic lines were 61.00% to 79.00% of the control plants. Obvious deduction on limonin content was observed in all the four transgenic lines(about 35.83% to 81.56% of the control plants). The contents of nomilin in SiN-1 and SiN-2 lines were decreased to 80.11% and 94.94% of the control,respectively. However,the nomilin content increased by 52.76% and 35.30% in SiN-3 and SiN-4 lines,respectively. The expression levels of genes belonging to oxidosqualene cyclase(OSC)superfamily involved in triterpenoids and sterol biosynthesis were down-regulated in SQS interference transgenic citrus plants. This may due to the reduced supply of precursor for triterpenoids and sterol biosynthesis. This study indicated that SQS gene contributed greatly to the production of limonoids in citrus.

Key words: citrus, squalene synthase, limonoids, biosynthesis, RNA interference, SNP

CLC Number: