园艺学报 ›› 2024, Vol. 51 ›› Issue (1): 39-52.doi: 10.16420/j.issn.0513-353x.2023-0125
翟挺楷, 马湘玮, 陈燕, 张雪莹, 李卓蕴, 徐卢振, 傅卓然, 赖钟雄, 林玉玲*()
收稿日期:
2023-03-01
修回日期:
2023-07-24
出版日期:
2024-01-25
发布日期:
2024-01-16
通讯作者:
基金资助:
ZHAI Tingkai, MA Xiangwei, CHEN Yan, ZHANG Xueying, LI Zhuoyun, XÜ Luzhen, FU Zhuoran, LAI Zhongxiong, LIN Yuling*()
Received:
2023-03-01
Revised:
2023-07-24
Published:
2024-01-25
Online:
2024-01-16
摘要:
近年来,基于染色质免疫共沉淀技术(ChIP)与第二代测序技术结合的染色质免疫共沉淀测序技术(ChIP-seq)已被广泛用于研究DNA与蛋白质的相互作用,对解析园艺植物基因的表达与调控、靶基因筛选与定位、调控网络构建、染色质开放程度确认等方面具有较大的优势。本文综述了ChIP-seq技术的发展简史及其在园艺植物转录因子和组蛋白修饰中所取得的进展,以期为园艺植物DNA—蛋白互作研究提供参考。
翟挺楷, 马湘玮, 陈燕, 张雪莹, 李卓蕴, 徐卢振, 傅卓然, 赖钟雄, 林玉玲. 染色质免疫共沉淀测序技术及其在园艺植物中的应用研究进展[J]. 园艺学报, 2024, 51(1): 39-52.
ZHAI Tingkai, MA Xiangwei, CHEN Yan, ZHANG Xueying, LI Zhuoyun, XÜ Luzhen, FU Zhuoran, LAI Zhongxiong, LIN Yuling. Advances in Chromatin Immunoprecipitation Sequencing and Its Application in Horticultural Plants[J]. Acta Horticulturae Sinica, 2024, 51(1): 39-52.
发展阶段 Stage | 技术名称 Technical name | 细胞数 Number of cell | 新/优化技术 New/optimization technology | 优点 Advantage | 缺点 Disadvantage | 细胞/组织水平Cell/ tissue level | 参考文献 Reference |
---|---|---|---|---|---|---|---|
初 期 Initial (1984— 2010) | ChIP | 107 | 新技术 New technology | 有利于富集与蛋白相结合的DNA片段It’s good for enriching DNA fragments that bind to proteins | 交联效果差;样本需求量大Formaldehyde crosslinking effect is poor;High demand for samples | 组织 Tissue | Gilmour & Lis, |
ChIP-chip | 107 | 新技术 New technology | 基因组微阵列技术对DNA定位Genomic microarray technique for DNA localization | 试验重复性低 Low test repeatability | 组织 Tissue | Bernstein et al., | |
ChIP-seq | 107 | 新技术 New technology | 转录因子结合位点与组蛋白修饰区域定位Localization of transcription factor binding sites and histone modification regions | 样本需求量大;试验重复性低;易出现假阳性 Large sample demand; Low test repeatability; Prone to false positives | 组织 Tissue | Johnson et al., | |
探索发展 Explorative (2011— 2018) | ChIP-exo | 106 | 优化:酶切 Optimization:MNase cutting | 降低测序假阳性;提高单bp准确性Reduce false positive sequencing results; Improve the accuracy of single bp | 样本需求量大;对技术要求高Large sample demand; High technical requirements | 组织 Tissue | Rhee & Pugh, |
Nano- ChIP-seq | 104 | 优化:文库构建 Optimization:library construction | 抑制DNA中GC含量;降低样本需求量Inhibition of GC content in DNA; Lower the quantity of samples | 易出现假阳性 Prone to false positives | 组织 Tissue | Adli & Bernstein, | |
scChIP-seq | 单细胞 Single cell | 新技术 New technology | 高度集成化;实现单细胞测序Highly integrated; Single cell sequencing was realized | 成本昂贵;对技术要求高Expensive; High technical requirements | 单细胞 Single cell | Rotem et al., | |
ChIP-nexus | 106 | 优化:文库构建 Optimization: library construction | 降低文库构建的DNA需求量Reduce the DNA requirement for library construction | 样本需求量大 Large sample demand | 组织 Tissue | He et al., | |
ULI- NChIP | 103 | 优化:细胞分离 Optimization:cell separation | 降低样本需求量;无需甲醛交联Lower the quantity of samples;No formaldehyde crosslinking required | ChIP时损失DNA影响测序准确性DNA loss during ChIP affects the accuracy of subsequent sequencing results | 组织 Tissue | Brind’ Amour et al., | |
CUT&RUN | 102 ~ 103 | 新技术 New technology | 富集和染色质片段化同时进行;省去ChIP;降低背景噪音Enrichment occurs simultaneously with chromatin fragmentation; Omit ChIP; Reduce background noise | 易发生DNA损失 Prone to DNA loss | 组织 Tissue | Skene & Henikoff, | |
快速发展 Rapid (2019—) | ULI-CUT& RUN | 10 ~ 102 | 优化: CUT&RUN Optimization:CUT&RUN | 采用流式细胞分选实现极少数细胞测序Very few cells were sequenced by flow cytometry | 易发生DNA损失 Prone to DNA loss | 组织 Tissue | Hainer et al., |
CUT&Tag | 102 ~ 103 | 新技术 New technology | 靶向切割产物可以直接进行文库扩增 Targeted cleavage products can be directly amplified into the library | 易出现假阳性 Prone to false positives | 组织 Tissue | Kaya-Okur et al., | |
TAF-ChIP | 102 | 优化:细胞分离 Optimization:cell separation | 无需DNA纯化与文库构建;降低对样本需求量No DNA purification and library construction;Lower the quantity of samples | 易出现假阳性 Prone to false positives | 组织 Tissue | Akhtar et al., | |
MOW ChIP-seq | 102 ~ 104 | 优化:免疫共沉Optimization:ChIP | 降低对试剂消耗;便于自动化 Reduce the consumption of reagents; Facilitate automation | 对技术要求高High technical requirements | 组织 Tissue | Zhu et al., | |
快速发展 Rapid (2019—) | CoBATCH | 104 | 新技术 New technology | 实现不同样本高通量单细胞测序Achieve high throughput single cell sequencing of different samples | 无法直接在单细胞水平进行分析Samples cannot be analyzed directly at the single-cell level | 组织 Tissue | Wang et al., |
scCUT&Tag | 单细胞 Single cell | 优化:CUT&Tag Optimization: CUT&Tag | 单细胞水平测序;高信噪比 Single-cell level sequencing; High signal-to-noise ratio | 成本昂贵;对技术要求高Expensive; High technical requirements | 单细胞 Single cell | Bartosovic et al., | |
Greenscreen | 107 | 新技术 New technology | 提高样本间可重复性;消除假阳性Improve repeatability between samples; Eliminate false positives | 对数据处理技术要求高 High requirements on data processing technology | 组织 Tissue | Klasfeld et al., |
表1 ChIP-seq技术的发展历程
Table 1 Development of ChIP-seq technology
发展阶段 Stage | 技术名称 Technical name | 细胞数 Number of cell | 新/优化技术 New/optimization technology | 优点 Advantage | 缺点 Disadvantage | 细胞/组织水平Cell/ tissue level | 参考文献 Reference |
---|---|---|---|---|---|---|---|
初 期 Initial (1984— 2010) | ChIP | 107 | 新技术 New technology | 有利于富集与蛋白相结合的DNA片段It’s good for enriching DNA fragments that bind to proteins | 交联效果差;样本需求量大Formaldehyde crosslinking effect is poor;High demand for samples | 组织 Tissue | Gilmour & Lis, |
ChIP-chip | 107 | 新技术 New technology | 基因组微阵列技术对DNA定位Genomic microarray technique for DNA localization | 试验重复性低 Low test repeatability | 组织 Tissue | Bernstein et al., | |
ChIP-seq | 107 | 新技术 New technology | 转录因子结合位点与组蛋白修饰区域定位Localization of transcription factor binding sites and histone modification regions | 样本需求量大;试验重复性低;易出现假阳性 Large sample demand; Low test repeatability; Prone to false positives | 组织 Tissue | Johnson et al., | |
探索发展 Explorative (2011— 2018) | ChIP-exo | 106 | 优化:酶切 Optimization:MNase cutting | 降低测序假阳性;提高单bp准确性Reduce false positive sequencing results; Improve the accuracy of single bp | 样本需求量大;对技术要求高Large sample demand; High technical requirements | 组织 Tissue | Rhee & Pugh, |
Nano- ChIP-seq | 104 | 优化:文库构建 Optimization:library construction | 抑制DNA中GC含量;降低样本需求量Inhibition of GC content in DNA; Lower the quantity of samples | 易出现假阳性 Prone to false positives | 组织 Tissue | Adli & Bernstein, | |
scChIP-seq | 单细胞 Single cell | 新技术 New technology | 高度集成化;实现单细胞测序Highly integrated; Single cell sequencing was realized | 成本昂贵;对技术要求高Expensive; High technical requirements | 单细胞 Single cell | Rotem et al., | |
ChIP-nexus | 106 | 优化:文库构建 Optimization: library construction | 降低文库构建的DNA需求量Reduce the DNA requirement for library construction | 样本需求量大 Large sample demand | 组织 Tissue | He et al., | |
ULI- NChIP | 103 | 优化:细胞分离 Optimization:cell separation | 降低样本需求量;无需甲醛交联Lower the quantity of samples;No formaldehyde crosslinking required | ChIP时损失DNA影响测序准确性DNA loss during ChIP affects the accuracy of subsequent sequencing results | 组织 Tissue | Brind’ Amour et al., | |
CUT&RUN | 102 ~ 103 | 新技术 New technology | 富集和染色质片段化同时进行;省去ChIP;降低背景噪音Enrichment occurs simultaneously with chromatin fragmentation; Omit ChIP; Reduce background noise | 易发生DNA损失 Prone to DNA loss | 组织 Tissue | Skene & Henikoff, | |
快速发展 Rapid (2019—) | ULI-CUT& RUN | 10 ~ 102 | 优化: CUT&RUN Optimization:CUT&RUN | 采用流式细胞分选实现极少数细胞测序Very few cells were sequenced by flow cytometry | 易发生DNA损失 Prone to DNA loss | 组织 Tissue | Hainer et al., |
CUT&Tag | 102 ~ 103 | 新技术 New technology | 靶向切割产物可以直接进行文库扩增 Targeted cleavage products can be directly amplified into the library | 易出现假阳性 Prone to false positives | 组织 Tissue | Kaya-Okur et al., | |
TAF-ChIP | 102 | 优化:细胞分离 Optimization:cell separation | 无需DNA纯化与文库构建;降低对样本需求量No DNA purification and library construction;Lower the quantity of samples | 易出现假阳性 Prone to false positives | 组织 Tissue | Akhtar et al., | |
MOW ChIP-seq | 102 ~ 104 | 优化:免疫共沉Optimization:ChIP | 降低对试剂消耗;便于自动化 Reduce the consumption of reagents; Facilitate automation | 对技术要求高High technical requirements | 组织 Tissue | Zhu et al., | |
快速发展 Rapid (2019—) | CoBATCH | 104 | 新技术 New technology | 实现不同样本高通量单细胞测序Achieve high throughput single cell sequencing of different samples | 无法直接在单细胞水平进行分析Samples cannot be analyzed directly at the single-cell level | 组织 Tissue | Wang et al., |
scCUT&Tag | 单细胞 Single cell | 优化:CUT&Tag Optimization: CUT&Tag | 单细胞水平测序;高信噪比 Single-cell level sequencing; High signal-to-noise ratio | 成本昂贵;对技术要求高Expensive; High technical requirements | 单细胞 Single cell | Bartosovic et al., | |
Greenscreen | 107 | 新技术 New technology | 提高样本间可重复性;消除假阳性Improve repeatability between samples; Eliminate false positives | 对数据处理技术要求高 High requirements on data processing technology | 组织 Tissue | Klasfeld et al., |
物种 Species | 样品 Sample | 方法 Method | 应用方向 Application direction | 定位基因/定位组蛋白 Localization gene/ histone | 参考文献 Reference |
---|---|---|---|---|---|
龙眼 Dimocarpus longan | 胚性愈伤组织 Embryonic callus | X-ChIP | 组蛋白修饰 Histone modification | H3K4me1 | Ma et al., |
葡萄Vitis vinifera L. | 叶片Leaf | X-ChIP | 转录因子Transcription factor | VlbZIP30 | 涂明星, |
叶片Leaf | X-ChIP | 组蛋白修饰Histone modification | H3K4me1、H3K4me3、 H3K27ac | Schwope et al., | |
叶片Leaf | X-ChIP | 转录因子Transcription factor | VaMYB4a | 俞沁含, | |
柑橘Citrus reticulata | 叶片Leaf | X-ChIP | 转录因子Transcription factor | CsbZIP40 | 窦万福, |
叶片Leaf | X-ChIP | 转录因子Transcription factor | CsLOB1 | Zou et al., | |
苹果Malus × domestica | 叶片Leaf | X-ChIP | 转录因子Transcription factor | MdMYB88、MdMYB124 | Xie et al., |
根系Root | X-ChIP | 转录因子Transcription factor | MdMYB88、MdMYB124 | Geng et al., | |
叶片Leaf | X-ChIP | 转录因子Transcription factor | MdDof54 | Chen et al., | |
叶片Leaf | X-ChIP | 转录因子Transcription factor | B-BOX 7/CONSTANS-LIKE 9 (MdBBX7/MdCOL9) | Chen et al., | |
果实Fruit | X-ChIP | 转录因子Transcription factor | MdERF4 | Hu et al., | |
桃Amygdalus persica | 花蕾Flower bud | X-ChIP | 组蛋白修饰Histone modification | H3K4me3、H3K27me3 | Canton et al., |
杏Prunus | 花蕾Flower bud | X-ChIP | 转录因子Transcription factor | PmTCP4 | Iqbal et al., |
猕猴桃Actinidia | 叶片Leaf | X-ChIP | 转录因子Transcription factor | SHORT VEGETATIVE PHASE (SVP2) | Wu et al., |
香蕉Musa nana | 果实Fruit | X-ChIP | 转录因子Transcription factor | Dehydration-responsive element binding (MaDREB) | Kuang et al., |
梨Pyrus communis | 愈伤组织Callus | X-ChIP | 转录因子Transcription factor | PpDAM2、PpDAM3、 PpDAM4 | 杨锋, |
沙棘 Hippophae rhamnoides | 叶片Leaf | X-ChIP | 组蛋白修饰Histone modification | H3K9ac | 高国日 等, |
草莓Fragaria ananassa | 果实Fruit | N-ChIP | 组蛋白修饰Histone modification | H3K27me3 | 黄晓荣, |
果实Fruit | N-ChIP | 组蛋白修饰Histone modification | H3K9me2、H3K27me3 | 林莹, | |
黄瓜Cucumis sativus | 卷须Tendril | X-ChIP | 转录因子Transcription factor | TCP(TEN) | 许梦楠, |
果实Fruit | X-ChIP | 组蛋白修饰Histone modification | HDAC(SF2) | 张震, | |
油菜Brassica napus | 种子Seed | X-ChIP | 转录因子Transcription factor | SHORT HYPOCOTYL UNDER BLUE1 (SHB1) | Zhang et al., |
叶、根、花芽、角果 Leaf,root,flower bud,horn fruit | X-ChIP | 组蛋白修饰 Histone modification | H3K4me1、H3K27me3 | Zhang et al., | |
叶片Leaf | eChIP | 组蛋白修饰Histone modification | H3K4me1、H3K27me3 | 章清, | |
番茄 | 叶片Leaf | X-ChIP | 转录因子Transcription factor | SlMYC2 | Du et al., |
Solanum lycopersicum | 果实Fruit | X-ChIP | 转录因子Transcription factor | Constans-like4 (SlCOL4) | 吴琼, |
果实Fruit | X-ChIP | 转录因子Transcription factor | SNAC4-9 | 冯炎春, | |
果实Fruit | X-ChIP | 转录因子Transcription factor | BEL1-LIKE HOMEODOMAIN4(SlBL4) | Yan et al., | |
果实Fruit | X-ChIP | 转录因子Transcription factor | SlGRAS4 | Liu et al., | |
果皮Pericarp | X-ChIP | 组蛋白修饰Histone modification | H3K27me3 | Li et al., | |
花序原基 Inflorescence primordium | X-ChIP | 转录因子 Transcription factor | SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1)、 SISTER OF TM3 (STM3) | 王晓甜, | |
叶片Leaf | X-ChIP | 组蛋白修饰Histone modification | H3K4me3 | Liu et al., | |
果皮Pericarp | X-ChIP | 组蛋白修饰Histone modification | H3K4me3 | Ding et al., | |
莲藕Nelumbo nucifera | 叶片Leaf | N-ChIP | 组蛋白修饰Histone modification | NnCenH3 | 朱之轩, |
莴苣 Lactuca sativa var. ramosa | 叶片Leaf | X-ChIP | 转录因子Transcription factor | LsSAW1 | 安光辉, |
茄子Solanum melongena | 根系Root | X-ChIP | 转录因子Transcription factor | SmTCP7a | Xiao et al., |
甜菜Beta vulgaris | 叶片Leaf | N-ChIP | 组蛋白修饰Histone modification | H3K9me2 | Kowar et al., |
白菜Brassica rapa var. glabra | 叶片Leaf | N-ChIP | 组蛋白修饰Histone modification | H3K27me3 | Poza-Viejo et al., |
桂花Osmanthus fragrans | 花瓣Petal | X-ChIP | 转录因子Transcription factor | COfCCD1、OfCCD4 | Han et al., |
矮牵牛Pharbitis nil | 花冠Corolla | X-ChIP | 转录因子Transcription factor | ODORANT 1 (ODO1) | Boersma et al., |
表2 ChIP-seq技术在园艺植物中的应用
Table 2 Application of ChIP-seq technique in horticultural plants
物种 Species | 样品 Sample | 方法 Method | 应用方向 Application direction | 定位基因/定位组蛋白 Localization gene/ histone | 参考文献 Reference |
---|---|---|---|---|---|
龙眼 Dimocarpus longan | 胚性愈伤组织 Embryonic callus | X-ChIP | 组蛋白修饰 Histone modification | H3K4me1 | Ma et al., |
葡萄Vitis vinifera L. | 叶片Leaf | X-ChIP | 转录因子Transcription factor | VlbZIP30 | 涂明星, |
叶片Leaf | X-ChIP | 组蛋白修饰Histone modification | H3K4me1、H3K4me3、 H3K27ac | Schwope et al., | |
叶片Leaf | X-ChIP | 转录因子Transcription factor | VaMYB4a | 俞沁含, | |
柑橘Citrus reticulata | 叶片Leaf | X-ChIP | 转录因子Transcription factor | CsbZIP40 | 窦万福, |
叶片Leaf | X-ChIP | 转录因子Transcription factor | CsLOB1 | Zou et al., | |
苹果Malus × domestica | 叶片Leaf | X-ChIP | 转录因子Transcription factor | MdMYB88、MdMYB124 | Xie et al., |
根系Root | X-ChIP | 转录因子Transcription factor | MdMYB88、MdMYB124 | Geng et al., | |
叶片Leaf | X-ChIP | 转录因子Transcription factor | MdDof54 | Chen et al., | |
叶片Leaf | X-ChIP | 转录因子Transcription factor | B-BOX 7/CONSTANS-LIKE 9 (MdBBX7/MdCOL9) | Chen et al., | |
果实Fruit | X-ChIP | 转录因子Transcription factor | MdERF4 | Hu et al., | |
桃Amygdalus persica | 花蕾Flower bud | X-ChIP | 组蛋白修饰Histone modification | H3K4me3、H3K27me3 | Canton et al., |
杏Prunus | 花蕾Flower bud | X-ChIP | 转录因子Transcription factor | PmTCP4 | Iqbal et al., |
猕猴桃Actinidia | 叶片Leaf | X-ChIP | 转录因子Transcription factor | SHORT VEGETATIVE PHASE (SVP2) | Wu et al., |
香蕉Musa nana | 果实Fruit | X-ChIP | 转录因子Transcription factor | Dehydration-responsive element binding (MaDREB) | Kuang et al., |
梨Pyrus communis | 愈伤组织Callus | X-ChIP | 转录因子Transcription factor | PpDAM2、PpDAM3、 PpDAM4 | 杨锋, |
沙棘 Hippophae rhamnoides | 叶片Leaf | X-ChIP | 组蛋白修饰Histone modification | H3K9ac | 高国日 等, |
草莓Fragaria ananassa | 果实Fruit | N-ChIP | 组蛋白修饰Histone modification | H3K27me3 | 黄晓荣, |
果实Fruit | N-ChIP | 组蛋白修饰Histone modification | H3K9me2、H3K27me3 | 林莹, | |
黄瓜Cucumis sativus | 卷须Tendril | X-ChIP | 转录因子Transcription factor | TCP(TEN) | 许梦楠, |
果实Fruit | X-ChIP | 组蛋白修饰Histone modification | HDAC(SF2) | 张震, | |
油菜Brassica napus | 种子Seed | X-ChIP | 转录因子Transcription factor | SHORT HYPOCOTYL UNDER BLUE1 (SHB1) | Zhang et al., |
叶、根、花芽、角果 Leaf,root,flower bud,horn fruit | X-ChIP | 组蛋白修饰 Histone modification | H3K4me1、H3K27me3 | Zhang et al., | |
叶片Leaf | eChIP | 组蛋白修饰Histone modification | H3K4me1、H3K27me3 | 章清, | |
番茄 | 叶片Leaf | X-ChIP | 转录因子Transcription factor | SlMYC2 | Du et al., |
Solanum lycopersicum | 果实Fruit | X-ChIP | 转录因子Transcription factor | Constans-like4 (SlCOL4) | 吴琼, |
果实Fruit | X-ChIP | 转录因子Transcription factor | SNAC4-9 | 冯炎春, | |
果实Fruit | X-ChIP | 转录因子Transcription factor | BEL1-LIKE HOMEODOMAIN4(SlBL4) | Yan et al., | |
果实Fruit | X-ChIP | 转录因子Transcription factor | SlGRAS4 | Liu et al., | |
果皮Pericarp | X-ChIP | 组蛋白修饰Histone modification | H3K27me3 | Li et al., | |
花序原基 Inflorescence primordium | X-ChIP | 转录因子 Transcription factor | SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1)、 SISTER OF TM3 (STM3) | 王晓甜, | |
叶片Leaf | X-ChIP | 组蛋白修饰Histone modification | H3K4me3 | Liu et al., | |
果皮Pericarp | X-ChIP | 组蛋白修饰Histone modification | H3K4me3 | Ding et al., | |
莲藕Nelumbo nucifera | 叶片Leaf | N-ChIP | 组蛋白修饰Histone modification | NnCenH3 | 朱之轩, |
莴苣 Lactuca sativa var. ramosa | 叶片Leaf | X-ChIP | 转录因子Transcription factor | LsSAW1 | 安光辉, |
茄子Solanum melongena | 根系Root | X-ChIP | 转录因子Transcription factor | SmTCP7a | Xiao et al., |
甜菜Beta vulgaris | 叶片Leaf | N-ChIP | 组蛋白修饰Histone modification | H3K9me2 | Kowar et al., |
白菜Brassica rapa var. glabra | 叶片Leaf | N-ChIP | 组蛋白修饰Histone modification | H3K27me3 | Poza-Viejo et al., |
桂花Osmanthus fragrans | 花瓣Petal | X-ChIP | 转录因子Transcription factor | COfCCD1、OfCCD4 | Han et al., |
矮牵牛Pharbitis nil | 花冠Corolla | X-ChIP | 转录因子Transcription factor | ODORANT 1 (ODO1) | Boersma et al., |
[1] |
doi: 10.1038/nprot.2011.402 pmid: 21959244 |
[2] |
doi: 10.26508/lsa.201900318 URL |
[3] |
|
安光辉. 2022. LsSAW1调控生菜结球及叶背腹性的遗传和分子机理[博士论文]. 武汉: 华中农业大学.
|
|
[4] |
doi: 10.1038/s41587-021-00869-9 pmid: 33846645 |
[5] |
doi: 10.1073/pnas.082249499 pmid: 12060701 |
[6] |
doi: 10.1111/tpj.v109.5 URL |
[7] |
doi: 10.1038/ncomms7033 pmid: 25607992 |
[8] |
doi: 10.1111/nph.18393 pmid: 35860865 |
[9] |
doi: 10.1038/s41438-020-00419-5 |
[10] |
doi: 10.1093/plphys/kiab420 URL |
[11] |
doi: 10.1104/pp.20.00302 URL |
[12] |
doi: 10.1016/j.plaphy.2023.01.006 URL |
[13] |
doi: 10.1111/nph.v233.3 URL |
[14] |
|
窦万福. 2020. 转录因子CsBZIP40增强柑橘对溃疡病抗性的分子机制解析[硕士论文]. 重庆: 西南大学.
|
|
[15] |
doi: 10.1105/tpc.16.00953 URL |
[16] |
|
冯炎春. 2019. 番茄SNAC4/9蛋白的表达特性分析及调控的靶基因研究[硕士论文]. 天津: 天津大学.
|
|
[17] |
|
高国日, 张彤, 陈道国, 何彩云. 2018. 沙棘H3K9ac乙酰化修饰全基因组分析. 西北植物学报, 38 (2):242-248.
|
|
[18] |
doi: 10.1104/pp.18.00502 URL |
[19] |
pmid: 6379641 |
[20] |
doi: S0092-8674(19)30276-4 pmid: 30955888 |
[21] |
|
[22] |
doi: 10.1016/j.ygeno.2021.12.008 URL |
[23] |
doi: 10.1038/nbt.3121 |
[24] |
doi: 10.1016/j.hpj.2022.01.002 URL |
[25] |
|
黄晓荣. 2019. H3K27me3在草莓成熟过程中的调控机理探讨[硕士论文]. 南京: 南京农业大学.
|
|
[26] |
doi: 10.1002/tpg2.v13.3 URL |
[27] |
doi: 10.1126/science.1141319 pmid: 17540862 |
[28] |
doi: 10.1038/nmeth.2766 pmid: 24336359 |
[29] |
doi: 10.1038/s41467-019-09982-5 pmid: 31036827 |
[30] |
doi: 10.1093/plcell/koac282 URL |
[31] |
doi: 10.1186/s12870-016-0805-5 pmid: 27230558 |
[32] |
doi: 10.1111/nph.2017.214.issue-2 URL |
[33] |
doi: 10.1111/nph.v227.4 URL |
[34] |
|
林莹. 2020. HP1和组蛋白甲基修饰酶的共进化及其在草莓中的鉴定和表达模式分析[硕士论文]. 南京: 南京农业大学.
|
|
[35] |
doi: 10.1111/pbi.v18.7 URL |
[36] |
doi: 10.3390/ijms231710049 URL |
[37] |
doi: 10.3389/fpls.2022.1043464 URL |
[38] |
doi: 10.1016/j.jmb.2012.09.022 pmid: 23041298 |
[39] |
doi: 10.1038/s41477-020-00757-1 |
[40] |
doi: 10.1016/S1046-2023(03)00090-2 URL |
[41] |
doi: 10.1111/pce.v45.5 URL |
[42] |
doi: 10.1016/j.cell.2011.11.013 pmid: 22153082 |
[43] |
doi: 10.1038/nature10799 |
[44] |
doi: 10.1186/1471-2229-14-29 |
[45] |
doi: 10.1038/nbt.3383 pmid: 26458175 |
[46] |
doi: 10.1007/978-1-0716-2281-0_9 pmid: 35486242 |
[47] |
doi: 10.1111/tpj.v107.6 URL |
[48] |
doi: 10.7554/eLife.21856 URL |
[49] |
pmid: 2995966 |
[50] |
|
涂明星. 2021. 葡萄转录因子VlbZIP30抗旱功能及其调控机理研究[博士论文]. 杨凌: 西北农林科技大学.
|
|
[51] |
doi: 10.1038/nature07730 |
[52] |
doi: S1097-2765(19)30545-3 pmid: 31471188 |
[53] |
|
王晓甜. 2021. 番茄花序分枝调控基因qMIB1的图位克隆及功能分析[博士论文]. 北京: 中国农业科学院.
|
|
[54] |
|
吴琼. 2019. ABA-乙烯互作调控樱桃番茄果实成熟的效应与机理研究[博士论文]. 杭州: 浙江大学.
|
|
[55] |
doi: 10.1007/s11103-017-0688-3 URL |
[56] |
doi: 10.3390/ijms23126844 URL |
[57] |
doi: 10.1111/nph.14952 pmid: 29266327 |
[58] |
|
许梦楠. 2015. TCP基因调控黄瓜卷须发育机理的初探[硕士论文]. 北京: 中国农业科学院.
|
|
[59] |
doi: 10.1093/jxb/eraa272 URL |
[60] |
|
杨锋. 2021. 基于梨愈伤组织的CRISPR/Cas9基因编辑系统和ChIP-Seq体系的建立与应用[硕士论文]. 杭州: 浙江大学.
|
|
[61] |
|
俞沁含. 2022. 山葡萄VaMYB4a参与低温胁迫应答的机理研究[硕士论文]. 银川: 宁夏大学.
|
|
[62] |
doi: 10.16420/j.issn.0513-353x.2021-1219 URL |
俞沁含, 李俊铎, 崔莹, 王佳慧, 郑巧玲, 徐伟荣. 2023. 山葡萄转录因子VaMYB4a互作蛋白的筛选与鉴定. 园艺学报, 50 (3):508-522.
doi: 10.16420/j.issn.0513-353x.2021-1219 URL |
|
[63] |
doi: 10.1111/tpj.2017.91.issue-1 URL |
[64] |
doi: 10.1016/j.molp.2020.12.020 pmid: 33387675 |
[65] |
|
章清. 2021. 甘蓝型油菜表观遗传图谱和亚基因组不平衡的研究[博士论文]. 武汉: 华中农业大学.
|
|
[66] |
doi: 10.1016/j.hpj.2022.01.002 URL |
[67] |
|
张震. 2019. 黄瓜果实长度调控基因SF2的克隆及分子机制的研究[博士论文]. 杨凌: 西北农林科技大学.
|
|
[68] |
doi: 10.1038/s41588-018-0115-y |
[69] |
doi: 10.1038/s41596-019-0223-x pmid: 31666743 |
[70] |
doi: 10.1016/j.hpj.2023.03.002 URL |
[71] |
|
朱之轩. 2015. 莲藕(Nelumbo nucifera Gaertn.)着丝粒蛋白NnCenH3和着丝粒DNA序列研究[博士论文]. 武汉: 武汉大学.
|
|
[72] |
doi: 10.1111/tpj.v106.4 URL |
[1] | 梁国平, 曾宝珍, 刘铭, 边志远, 陈佰鸿, 毛娟. 山葡萄VaSR基因家族的鉴定及VaSR1抗寒功能验证与互作蛋白筛选[J]. 园艺学报, 2025, 52(1): 37-50. |
[2] | 段敏杰, 李怡斐, 王春萍, 杨小苗, 黄任中, 黄启中, 张世才. 辣椒果实类胡萝卜素调控因子转录组和靶向代谢组分析[J]. 园艺学报, 2024, 51(8): 1773-1791. |
[3] | 赵泽阳, 周雨晴, 林德书, 任慧波. 花瓣锥形表皮细胞形态建成研究进展[J]. 园艺学报, 2024, 51(7): 1695-1706. |
[4] | 邓淑芳, 刘倩, 刘玲, 陈鸥, 王文军, 曾凯芳, 邓丽莉. 蜜橘CcHY5的克隆及其对果实转色功能的研究[J]. 园艺学报, 2024, 51(5): 939-955. |
[5] | 姜波, 吕远达, 刘淑梅, 闫化学. 植物激素调控柑橘果实成熟的研究进展[J]. 园艺学报, 2024, 51(12): 2928-2944. |
[6] | 唐征, 陈思雀, 徐谦, 钟伟杰, 刘庆, 朱世杨. AP2/ERF在青花菜苗期响应黑腐病的功能研究[J]. 园艺学报, 2024, 51(11): 2523-2539. |
[7] | 尤倩, 刘晓, 刘梦梦, 刘丹, 伯晨, 朱艳芳, 段永波, 薛建平, 张爱民, 薛涛. 半夏热激因子HSF家族基因鉴定及生物信息分析[J]. 园艺学报, 2024, 51(10): 2371-2385. |
[8] | 张巧丽, 陈笛, 宋艳萍, 朱鸿亮, 罗云波, 曲桂芹. 番茄果实叶绿素代谢转录调控网络研究进展[J]. 园艺学报, 2023, 50(9): 2031-2047. |
[9] | 贺威智, 雷伟奇, 郭祥鑫, 李蕊莲, 陈冠群. 百子莲MYB家族鉴定及蓝色形成关键基因功能分析[J]. 园艺学报, 2023, 50(6): 1255-1268. |
[10] | 王同欢, 吴雨馨, 武艺圆, 李鑫鑫, 刘梦阳, 杨莲莲, 李佳鹏, 张忠山, 曹访, 仲雪婷, 王占旗. 菊花脑GRAS家族鉴定及其低温胁迫响应表达分析[J]. 园艺学报, 2023, 50(4): 815-830. |
[11] | 郑嘉瑞, 杨晓燕, 叶家保, 廖咏玲, 许锋. MYC2转录因子在植物中的功能研究进展[J]. 园艺学报, 2023, 50(4): 896-908. |
[12] | 刘语诺, 曹亚, 王帅, 杜美霞, 郑林, 陈善春, 邹修平. 柑橘CsMYB41和CsMYB63响应溃疡病菌侵染的表达[J]. 园艺学报, 2023, 50(3): 495-507. |
[13] | 叶子茂, 申晚霞, 刘梦雨, 王彤, 张晓楠, 余歆, 刘小丰, 赵晓春. R2R3-MYB转录因子CitMYB21对柑橘类黄酮生物合成的影响[J]. 园艺学报, 2023, 50(2): 250-264. |
[14] | 宋艳红, 陈亚铎, 张晓玉, 宋盼, 刘丽锋, 李刚, 赵霞, 周厚成. 森林草莓FvbHLH130转录因子调控植株提前开花[J]. 园艺学报, 2023, 50(2): 295-306. |
[15] | 韩睿, 钟雄辉, 陈登辉, 崔建, 乐祥庆, 颉建明, 康俊根. 黑腐病菌效应因子XopR的甘蓝靶标基因BobHLH34的克隆及功能分析[J]. 园艺学报, 2023, 50(2): 319-330. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司