园艺学报 ›› 2023, Vol. 50 ›› Issue (9): 1916-1928.doi: 10.16420/j.issn.0513-353x.2022-0579
何斌1, 徐勤超2, 戢小梅3, 王小玲4, 张文东5, 程运江1, 曾云流1,*(
)
收稿日期:2023-03-07
修回日期:2023-05-06
出版日期:2023-09-25
发布日期:2023-09-26
通讯作者:
基金资助:
HE Bin1, XU Qinchao2, JI Xiaomei3, WANG Xiaoling4, ZHANG Wendong5, CHENG Yunjiang1, ZENG Yunliu1,*(
)
Received:2023-03-07
Revised:2023-05-06
Published:2023-09-25
Online:2023-09-26
Contact:
*(E-mail:zengyl@mail.hzau.edu.cn)
摘要:
气调贮藏是一种通过改变贮藏气体环境,有效延长猕猴桃等果蔬贮藏寿命与货架期的高效保鲜技术,但是由于气调设备昂贵、管理技术复杂、设备与参数研究滞后、市场过度竞争等问题,气调贮藏在中国果蔬保鲜上始终未能得到广泛有效地应用。因此,本文中以猕猴桃果实为例,综述了气调贮藏对果实品质的影响,详述了使用气调贮藏时需控制的参数,梳理了气调保鲜技术在猕猴桃贮藏保鲜中的应用情况,最后针对在实际应用中存在的问题做出展望,以期为猕猴桃等园艺产品气调保鲜技术的发展与应用提供指导。
何斌, 徐勤超, 戢小梅, 王小玲, 张文东, 程运江, 曾云流. 气调保鲜技术在猕猴桃贮藏保鲜中的应用进展[J]. 园艺学报, 2023, 50(9): 1916-1928.
HE Bin, XU Qinchao, JI Xiaomei, WANG Xiaoling, ZHANG Wendong, CHENG Yunjiang, ZENG Yunliu. Progress of Application on Controlled Atmosphere Preservation Technology in Kiwifruit Storage and Preservation[J]. Acta Horticulturae Sinica, 2023, 50(9): 1916-1928.
| 种系 Species | 品种 Cultivar | 温度/℃ Temperature | O2/% | CO2/% | 保鲜效果 Fresh-keeping roles | 参考文献 Reference |
|---|---|---|---|---|---|---|
| 美味 Actinidia deliciosa | 翠香 Cuixiang | 0 ± 0.5 | 2.5 | 4.5 | 延缓果实硬度下降,降低腐烂率与失重率 Delays the decline of fruit softness,and reduces the rate of fruit decay and weight loss | 廖梓懿 等, |
| 徐香 Xuxiang | 0 ± 1 | 2.0 | 5.0 | 抑制MDA含量上升,保持维生素C含量 Inhibit the increase of MDA content and maintain the level of vitamin C | 康慧芳 等, | |
| 海沃德 Hayward | 0 | 2.0 | 5.0 | 保持果实硬度 Effectively maintains the fruit firmness | Li et al., | |
| 哑特 Yate | 0 ± 0.5 | 2.5 ~ 3.0 | 4.0 ~ 4.5 | 抑制与乙烯合成相关酶活性,减少乙烯生成 Inhibit the activity of enzymes associated with ethylene synthesis to reduce ethylene production | 王静, | |
| 秦美 Qinmei | 0 ± 0.5 | 2.5 ~ 3.0 | 4.0 ~ 4.5 | 贮藏期比冷藏长2 ~ 3个月,且风味较好 The CA storage period is 2-3 months longer than that in cold room storage,and the flavor is better | 邢红华 等, | |
| 中华 A. chinensis Planch | 红阳 Hongyang | 0 ~ 2.0 | 3.0 ~ 5.0 | 3.0 ~ 5.0 | 保持果实品质,延长果实贮藏保鲜时间 Maintain fruit quality and extend fruit storage and preservation time | 邱静 等, |
| 红阳 Hongyang | 1.0 ± 0.5 | 2.0 | 3.0 | 抑制细胞壁降解酶活性,延缓果实硬度下降 Inhibit the activity of cell wall-degrading enzymes to delay the decrease in fruit firmness | 王亚楠 等, | |
| 华优 Huayou | 0.5 ± 0.3 | 2.5 ~ 3.0 | 4.0 ~ 4.5 | 抑制货架期果实可溶性固形物含量上升 Inhibit the increase of SSC in fruits during the shelf life | 姚天娇, | |
| 金桃 Jintao | 1.0 ± 0.5 | 5.0 | 3.0 | 可提高果实货架品质 Improves shelf quality of fruits | 张四普 等, | |
| 软枣 A. arguta | 丰绿 Fenglü | 1.0 ~ 4.0 | / | 5.0 | 抑制果实呼吸,较好保持果实硬度 Inhibit fruit respiration,which helps to maintain fruit firmness | 蔡慧, |
| 长江一号 Changjiang 1 | 0 ± 0.5 | 17.1 ~ 18.6 | 2.2 ~ 3.1 | 抑制果实软化与腐烂,保持果实品质 Inhibits fruit softening and decay to maintain fruit quality | 颜廷才 等, |
表1 常见猕猴桃品种气调参数推荐
Table 1 Recommended CA parameters for kiwifruit
| 种系 Species | 品种 Cultivar | 温度/℃ Temperature | O2/% | CO2/% | 保鲜效果 Fresh-keeping roles | 参考文献 Reference |
|---|---|---|---|---|---|---|
| 美味 Actinidia deliciosa | 翠香 Cuixiang | 0 ± 0.5 | 2.5 | 4.5 | 延缓果实硬度下降,降低腐烂率与失重率 Delays the decline of fruit softness,and reduces the rate of fruit decay and weight loss | 廖梓懿 等, |
| 徐香 Xuxiang | 0 ± 1 | 2.0 | 5.0 | 抑制MDA含量上升,保持维生素C含量 Inhibit the increase of MDA content and maintain the level of vitamin C | 康慧芳 等, | |
| 海沃德 Hayward | 0 | 2.0 | 5.0 | 保持果实硬度 Effectively maintains the fruit firmness | Li et al., | |
| 哑特 Yate | 0 ± 0.5 | 2.5 ~ 3.0 | 4.0 ~ 4.5 | 抑制与乙烯合成相关酶活性,减少乙烯生成 Inhibit the activity of enzymes associated with ethylene synthesis to reduce ethylene production | 王静, | |
| 秦美 Qinmei | 0 ± 0.5 | 2.5 ~ 3.0 | 4.0 ~ 4.5 | 贮藏期比冷藏长2 ~ 3个月,且风味较好 The CA storage period is 2-3 months longer than that in cold room storage,and the flavor is better | 邢红华 等, | |
| 中华 A. chinensis Planch | 红阳 Hongyang | 0 ~ 2.0 | 3.0 ~ 5.0 | 3.0 ~ 5.0 | 保持果实品质,延长果实贮藏保鲜时间 Maintain fruit quality and extend fruit storage and preservation time | 邱静 等, |
| 红阳 Hongyang | 1.0 ± 0.5 | 2.0 | 3.0 | 抑制细胞壁降解酶活性,延缓果实硬度下降 Inhibit the activity of cell wall-degrading enzymes to delay the decrease in fruit firmness | 王亚楠 等, | |
| 华优 Huayou | 0.5 ± 0.3 | 2.5 ~ 3.0 | 4.0 ~ 4.5 | 抑制货架期果实可溶性固形物含量上升 Inhibit the increase of SSC in fruits during the shelf life | 姚天娇, | |
| 金桃 Jintao | 1.0 ± 0.5 | 5.0 | 3.0 | 可提高果实货架品质 Improves shelf quality of fruits | 张四普 等, | |
| 软枣 A. arguta | 丰绿 Fenglü | 1.0 ~ 4.0 | / | 5.0 | 抑制果实呼吸,较好保持果实硬度 Inhibit fruit respiration,which helps to maintain fruit firmness | 蔡慧, |
| 长江一号 Changjiang 1 | 0 ± 0.5 | 17.1 ~ 18.6 | 2.2 ~ 3.1 | 抑制果实软化与腐烂,保持果实品质 Inhibits fruit softening and decay to maintain fruit quality | 颜廷才 等, |
| 控制类别 Control categories | 处理 Processing | 使用与效果 Usage and effect | 作物种类 Crop species | 参考文献 Reference |
|---|---|---|---|---|
| 清除 Removal | 通风换气 Ventilation | 可以直接清除环境中的乙烯,但需注意处理时间 Can directly remove ethylene from the environment,need to pay attention to the processing time | 苹果 Apple | 胡磊洋 等, |
| 臭氧 Ozone | 可直接氧化乙烯,延缓果实后熟 Direct oxidation of ethylene to delay fruit ripening | 猕猴桃 Kiwifruit | Minas et al., | |
| 高锰酸钾 Potassium permanganate | 抑制果实软化,减少果实失重和腐烂 Inhibit fruit softening,reduce fruit weight loss and decay | 蓝莓 Blueberry | Wang et al., | |
| 紫外辐射 Ultraviolet radiation | 产生氧原子与低浓度臭氧来清除乙烯 UV radiation can produce oxygen atoms with low concentrations of ozone to remove ethylene | 苹果 Apple | Jozwiak et al., | |
| 光催化氧化 Photocatalytic oxidation | 使用二氧化钛作为催化剂实现对乙烯的氧化去除 The oxidative removal of ethylene is achieved using materials such as titanium dioxide as a catalyst | 番茄 Tomato | Kaewklin et al., | |
| 含铂二氧化硅 Pt-Loaded Silica | 可有效分解乙烯 Can effectively decompose ethylene | 香蕉、鳄梨 Banana,Avocado | Na et al., | |
| 活性碳—TiO2复合材料 Biocarbon-TiO2 nanocomposites | 通过吸附和光催化可加强对乙烯的去除 Adsorption and photocatalysis can enhance the removal of ethylene | / | Regadera-Macías et al., | |
| 真空紫外光解 Vacuum ultraviolet photolysis | 减少贮藏环境中乙烯含量,保持果实品质 Reduce ethylene content in storage environment and maintain fruit quality | 苹果、猕猴桃 Apple,Kiwifruit | Pathak et al., | |
| 高温催化氧化 High temperature catalytic oxidation | 使用铂、铜等作为催化剂进行催化燃烧,可以有效去除乙烯 The catalytic combustion of ethylene using platinum and copper as catalysts can be effective in removing ethylene | / | Wojciechowski, | |
| 钯-ZSM-5 Palladium-ZSM-5 | 可将乙烯氧化成二氧化碳 Can oxidize ethylene to carbon dioxide | 猕猴桃 Kiwifruit | Mok et al., | |
| 活性炭负载氯化钯、硫酸铜Activated carbon supported PdCl2-CuSO4 | 延缓黄化,有效保持西兰花品质 Delay yellowing and effectively maintain broccoli quality | 西兰花 Broccoli | Cao et al., | |
| 减少产生 Reduced generation | 降温 Lower temperature | 抑制与乙烯合成相关基因的表达,减少乙烯产生 Inhibit the expression of gene related to ethylene synthesis and reduce ethylene production | 猕猴桃 Kiwifruit | Afshar-Mohammadian et al., |
| 降温 Lower temperature | 抑制果实呼吸速率,减少乙烯产生 Inhibit fruit respiration rate and reduce ethylene production | 杏 Apricot | Fan et al., | |
| 1H-环丙基苯 1H-cyclopropabenzene | 抑制乙烯产生,有效保持果实品质 Inhibit ethylene production and effectively maintain fruit quality | 李 Plum | Kyaw et al., | |
| (S)-氨基乙氧基乙烯基甘氨酸(AVG) Aminoethoxyvinylglycine | 抑制乙烯合成限速酶—ACC合酶的活性,减少乙烯的生物合成 Inhibits the activity of ACC synthase to reduce ethylene biosynthesis | 玫瑰 Rose | Ha et al., | |
| 褪黑激素 Melatonin | 通过下调乙烯生物合成基因抑制乙烯产生 Inhibit ethylene production by down-regulating ethylene biosynthetic genes | 苹果 Apple | Onik et al., | |
| 削弱影响 Weakening impact | 1-甲基环丙烯(1-MCP) 1-Methylcyclopropene | 通过与乙烯受体永久性结合,抑制乙烯对果实的影响 1-MCP can dull fruit perception of ethylene signals by permanently binding to ethylene receptors | 香蕉 Banana | Chang & Brecht, |
| 1-甲基环丙烯 1-Methylcyclopropene | 保持果实品质,延缓呼吸和乙烯释放 Maintain fruit quality by delaying respiration and ethylene release | 桃 Peach | Zhang et al., | |
| 1-甲基环丙烯 1-Methylcyclopropene | 削弱了乙烯的影响,并有效抑制了乙烯的产生 Weakened the influence of ethylene and effectively inhibited the production of ethylene | 蓝莓 Blueberry | Xu et al., | |
| 1-MCP联合高锰酸钾 1-MCP combined with potassium permanganate | 显著抑制乙烯产生,减少了采后病害的发生 Significantly inhibit ethylene production,reducing the occurrence of postharvest disease | 梨 Pear | Wang et al., | |
| 重氮环戊二烯(DACP) Diazocyclopentadiene | 在光照下能永久与乙烯受体结合,使乙烯受体失效 Under light,DACP can permanently binds to the ethylene receptor,thus disabling most ethylene receptors | 苹果 Apple | Sisler & Blankenship, |
表2 气调保鲜中乙烯浓度控制方法及其效果
Table 2 Ethylene concentration control and its effect in CA storage
| 控制类别 Control categories | 处理 Processing | 使用与效果 Usage and effect | 作物种类 Crop species | 参考文献 Reference |
|---|---|---|---|---|
| 清除 Removal | 通风换气 Ventilation | 可以直接清除环境中的乙烯,但需注意处理时间 Can directly remove ethylene from the environment,need to pay attention to the processing time | 苹果 Apple | 胡磊洋 等, |
| 臭氧 Ozone | 可直接氧化乙烯,延缓果实后熟 Direct oxidation of ethylene to delay fruit ripening | 猕猴桃 Kiwifruit | Minas et al., | |
| 高锰酸钾 Potassium permanganate | 抑制果实软化,减少果实失重和腐烂 Inhibit fruit softening,reduce fruit weight loss and decay | 蓝莓 Blueberry | Wang et al., | |
| 紫外辐射 Ultraviolet radiation | 产生氧原子与低浓度臭氧来清除乙烯 UV radiation can produce oxygen atoms with low concentrations of ozone to remove ethylene | 苹果 Apple | Jozwiak et al., | |
| 光催化氧化 Photocatalytic oxidation | 使用二氧化钛作为催化剂实现对乙烯的氧化去除 The oxidative removal of ethylene is achieved using materials such as titanium dioxide as a catalyst | 番茄 Tomato | Kaewklin et al., | |
| 含铂二氧化硅 Pt-Loaded Silica | 可有效分解乙烯 Can effectively decompose ethylene | 香蕉、鳄梨 Banana,Avocado | Na et al., | |
| 活性碳—TiO2复合材料 Biocarbon-TiO2 nanocomposites | 通过吸附和光催化可加强对乙烯的去除 Adsorption and photocatalysis can enhance the removal of ethylene | / | Regadera-Macías et al., | |
| 真空紫外光解 Vacuum ultraviolet photolysis | 减少贮藏环境中乙烯含量,保持果实品质 Reduce ethylene content in storage environment and maintain fruit quality | 苹果、猕猴桃 Apple,Kiwifruit | Pathak et al., | |
| 高温催化氧化 High temperature catalytic oxidation | 使用铂、铜等作为催化剂进行催化燃烧,可以有效去除乙烯 The catalytic combustion of ethylene using platinum and copper as catalysts can be effective in removing ethylene | / | Wojciechowski, | |
| 钯-ZSM-5 Palladium-ZSM-5 | 可将乙烯氧化成二氧化碳 Can oxidize ethylene to carbon dioxide | 猕猴桃 Kiwifruit | Mok et al., | |
| 活性炭负载氯化钯、硫酸铜Activated carbon supported PdCl2-CuSO4 | 延缓黄化,有效保持西兰花品质 Delay yellowing and effectively maintain broccoli quality | 西兰花 Broccoli | Cao et al., | |
| 减少产生 Reduced generation | 降温 Lower temperature | 抑制与乙烯合成相关基因的表达,减少乙烯产生 Inhibit the expression of gene related to ethylene synthesis and reduce ethylene production | 猕猴桃 Kiwifruit | Afshar-Mohammadian et al., |
| 降温 Lower temperature | 抑制果实呼吸速率,减少乙烯产生 Inhibit fruit respiration rate and reduce ethylene production | 杏 Apricot | Fan et al., | |
| 1H-环丙基苯 1H-cyclopropabenzene | 抑制乙烯产生,有效保持果实品质 Inhibit ethylene production and effectively maintain fruit quality | 李 Plum | Kyaw et al., | |
| (S)-氨基乙氧基乙烯基甘氨酸(AVG) Aminoethoxyvinylglycine | 抑制乙烯合成限速酶—ACC合酶的活性,减少乙烯的生物合成 Inhibits the activity of ACC synthase to reduce ethylene biosynthesis | 玫瑰 Rose | Ha et al., | |
| 褪黑激素 Melatonin | 通过下调乙烯生物合成基因抑制乙烯产生 Inhibit ethylene production by down-regulating ethylene biosynthetic genes | 苹果 Apple | Onik et al., | |
| 削弱影响 Weakening impact | 1-甲基环丙烯(1-MCP) 1-Methylcyclopropene | 通过与乙烯受体永久性结合,抑制乙烯对果实的影响 1-MCP can dull fruit perception of ethylene signals by permanently binding to ethylene receptors | 香蕉 Banana | Chang & Brecht, |
| 1-甲基环丙烯 1-Methylcyclopropene | 保持果实品质,延缓呼吸和乙烯释放 Maintain fruit quality by delaying respiration and ethylene release | 桃 Peach | Zhang et al., | |
| 1-甲基环丙烯 1-Methylcyclopropene | 削弱了乙烯的影响,并有效抑制了乙烯的产生 Weakened the influence of ethylene and effectively inhibited the production of ethylene | 蓝莓 Blueberry | Xu et al., | |
| 1-MCP联合高锰酸钾 1-MCP combined with potassium permanganate | 显著抑制乙烯产生,减少了采后病害的发生 Significantly inhibit ethylene production,reducing the occurrence of postharvest disease | 梨 Pear | Wang et al., | |
| 重氮环戊二烯(DACP) Diazocyclopentadiene | 在光照下能永久与乙烯受体结合,使乙烯受体失效 Under light,DACP can permanently binds to the ethylene receptor,thus disabling most ethylene receptors | 苹果 Apple | Sisler & Blankenship, |
| [1] |
doi: 10.1007/s00003-018-1205-6 |
| [2] |
doi: 10.1016/j.hpj.2020.12.006 URL |
| [3] |
|
| [4] |
doi: 10.1016/S0925-5214(02)00040-6 URL |
| [5] |
|
| [6] |
doi: 10.1186/s12870-017-1213-1 URL |
| [7] |
doi: 10.2503/hortj.OKD-028 URL |
| [8] |
|
|
白俊青, 李锐, 罗安伟, 寇莉萍, 方沂蒙. 2018. 猕猴桃贮藏保鲜技术研究进展. 食品研究与开发, 39 (17):219-224.
|
|
| [9] |
doi: 10.1016/S0925-5214(98)00092-1 URL |
| [10] |
|
| [11] |
doi: 10.1016/j.foodres.2020.109900 URL |
| [12] |
pmid: 14280001 |
| [13] |
|
|
蔡慧. 2012. 不同处理对软枣猕猴桃采后生理生化变化的影响[硕士论文]. 长春: 吉林农业大学.
|
|
| [14] |
doi: 10.1016/j.postharvbio.2014.07.017 URL |
| [15] |
doi: 10.1016/j.scienta.2022.111636 URL |
| [16] |
doi: 10.1016/j.lwt.2015.08.075 URL |
| [17] |
|
| [18] |
|
| [19] |
doi: 10.16420/j.issn.0513-353x.2020-0261 URL |
|
杜艳民, 王文辉, 贾晓辉, 王志华, 佟伟, 张鑫楠. 2021. 前期低氧处理对梨虎皮病的防控及乙烯释放的影响. 园艺学报, 48 (1):15-25.
doi: 10.16420/j.issn.0513-353x.2020-0261 URL |
|
| [20] |
|
|
段眉会, 朱建斌. 2013. 猕猴桃贮藏保鲜实用技术(三)——塑料大帐人工气调贮藏. 果树实用技术与信息,(9):40-43.
|
|
| [21] |
doi: 10.1016/j.scienta.2017.12.015 URL |
| [22] |
doi: 10.16420/j.issn.0513-353x.2019-0886 URL |
|
高萌, 屈魏, 冉昪, 饶景萍. 2020. ‘徐香’与‘海沃德’猕猴桃冷藏期间组织结构与生理变化差异. 园艺学报, 47 (7):1289-1300.
doi: 10.16420/j.issn.0513-353x.2019-0886 URL |
|
| [23] |
|
|
高书亚, 王贞丽, 吴帅帅, 闫平, 赵玉霞. 2013. 气调包装对鲜切猕猴桃和木瓜贮藏品质的影响. 包装工程, 34 (11):39-42.
|
|
| [24] |
doi: 10.1080/01140671.2022.2044357 URL |
| [25] |
doi: 10.1016/0304-4238(89)90141-6 URL |
| [26] |
|
| [27] |
|
|
胡磊洋, 南晓红, 洪妮. 2018. 苹果冷藏库通风换气影响因素研究. 建筑热能通风空调, 37 (1):79-81,63.
|
|
| [28] |
|
|
黄琦. 2019. 高O2气调包装对美味猕猴桃‘布鲁诺’果实采后品质劣变的调控作用的影响[硕士论文]. 杭州: 浙江工商大学.
|
|
| [29] |
|
|
黄永红, 王江勇, 徐玉芳, 杨娟侠. 2006. FACA柔性气调库中CO2浓度对猕猴桃果实品质及耐藏性的影响. 落叶果树,(5):37-39.
|
|
| [30] |
doi: 10.1016/j.postharvbio.2015.11.002 URL |
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
doi: S0141-8130(17)34754-2 pmid: 29410369 |
| [35] |
|
|
康慧芳, 乔勇进, 刘晨霞, 张怡, 陈冰洁. 2020. 气调贮藏对‘徐香’猕猴桃采后保鲜效果影响. 食品工业科技, 41 (2):279-282,287.
|
|
| [36] |
doi: 10.1016/j.postharvbio.2021.111625 URL |
| [37] |
doi: 10.21273/HORTTECH.15.2.0253 URL |
| [38] |
|
| [39] |
|
|
雷玉山, 刘运松, 杨晓宇. 2005. 猕猴桃大帐气调贮藏保鲜技术研究. 陕西农业科学,(3):46-48.
|
|
| [40] |
doi: 10.1016/j.scienta.2017.05.013 URL |
| [41] |
doi: 10.1111/jfpp.12303 URL |
| [42] |
doi: 10.16420/j.issn.0513-353x.2016-0718 URL |
|
李桦, 梁春强, 吕茳, 胡苗, 李佳颖, 饶景萍. 2017. 草酸对冷藏‘华优’猕猴桃果实木质化及相关酶活性的影响. 园艺学报, 44 (6):1085-1093.
doi: 10.16420/j.issn.0513-353x.2016-0718 URL |
|
| [43] |
|
|
李黎, 潘慧, 邓蕾, 赵婷婷, 陈美艳, 钟彩虹. 2019. 猕猴桃果实腐烂病最佳防治药剂的室内筛选. 中国南方果树, 48 (4):83-86.
|
|
| [44] |
|
|
李民. 1996. 猕猴桃低乙烯气调库及其使用. 河南科技,(10):6-7.
|
|
| [45] |
|
|
廖梓懿. 2021. ‘翠香’猕猴桃大帐动态气调保鲜技术研究[硕士论文]. 杨凌: 西北农林科技大学.
|
|
| [46] |
|
|
廖梓懿, 周会玲, 姚宗祥, 王新茹, 马慧. 2021. 动态气调对‘翠香’猕猴桃贮藏效果的影响. 保鲜与加工, 21 (12):31-37.
|
|
| [47] |
|
|
刘新美, 孙璐. 2020. 我国气调贮藏技术在果蔬上的应用现状及展望. 中国果菜, 40 (9):10-13.
|
|
| [48] |
|
|
罗白玲, 马丽娜, 韩璐, 王婷婷, 刘敦华. 2021. 基于细胞壁特性改变的猕猴桃果实软化机制研究. 食品科技, 46 (11):42-48.
|
|
| [49] |
|
|
罗政, 袁兆飞, 陈飞平, 王玲, 戚英伟, 叶明强, 陈于陇. 2021. 不同气调包装袋对红心猕猴桃后熟品质的影响. 食品安全质量检测学报, 12 (11):4506-4512.
|
|
| [50] |
|
| [51] |
doi: 10.1016/0304-4238(82)90003-6 URL |
| [52] |
doi: 10.1186/s12870-017-1213-1 URL |
| [53] |
doi: 10.3389/fpls.2019.00888 URL |
| [54] |
doi: 10.1016/j.cattod.2019.02.059 |
| [55] |
doi: S0308-8146(18)30142-0 pmid: 29502844 |
| [56] |
|
| [57] |
doi: 10.21273/HORTSCI14771-19 URL |
| [58] |
doi: 10.1016/j.foodchem.2020.127753 URL |
| [59] |
doi: 10.1016/j.scienta.2019.03.034 URL |
| [60] |
|
|
潘林娜, 陈长忠. 1995. 温度、湿度和不同处理对猕猴桃贮藏性能的影响. 中国果菜,(3):12-14.
|
|
| [61] |
doi: 10.1016/j.biosystemseng.2017.04.008 URL |
| [62] |
doi: 10.3390/agronomy10060822 URL |
| [63] |
|
|
邱静, 邹礼根, 陈飞东, 姜慧燕, 李锋, 王琴. 2019. 数字化控制气调保鲜对红阳猕猴桃品质的影响. 浙江农业科学, 60 (11):2080-2083.
|
|
| [64] |
|
| [65] |
|
|
沈云亭. 2004. 猕猴桃低乙烯气调贮藏与保鲜. 河南农业,(2):34-35.
|
|
| [66] |
doi: 10.1007/BF00144593 URL |
| [67] |
|
|
孙强. 2019. ‘海沃德’猕猴桃货架期相关问题研究[硕士论文]. 西安: 陕西师范大学.
|
|
| [68] |
|
| [69] |
doi: 10.1002/jsfa.v101.6 URL |
| [70] |
|
|
王贵禧, 于梁. 1993. 秦美猕猴桃在5% O2和不同CO2浓度下气调贮藏的研究. 园艺学报, 20 (4):401-402.
|
|
| [71] |
|
|
王贵禧, 宗亦臣, 梁丽松, 成晓霞. 1998. 猕猴桃大帐气调贮藏保鲜的理论与技术. 林业科学,(2):33-38. (in Chinese)
|
|
| [72] |
|
|
王国立, 吴素芳, 谭永元, 黄亚欣, 李秋萍, 王晓醒, 刘艺, 董晓庆. 2022. 二氧化氯对“贵长”猕猴桃采后贮藏品质的影响. 贵州农业科学, 50 (1):69-76.
|
|
| [73] |
|
|
王静. 2015. 气调贮藏对美味猕猴桃品质及乙烯合成的影响[硕士论文]. 西安: 陕西师范大学.
|
|
| [74] |
|
|
王兰菊, 杨德兴, 胡莎, 邢红花, 宋尚伟. 1998. 猕猴桃低乙烯气调库的性能和贮藏效果. 农业工程学报,(1):223-226.
|
|
| [75] |
doi: S0308-8146(17)31805-8 pmid: 29291851 |
| [76] |
|
|
王香兰, 朱贤东, 郑志华, 薛洁, 李欢, 祝庆刚, 饶景萍. 2021. 温度和PE袋包装对皖金猕猴桃果实采后品质变化的影响. 果树学报, 38 (4):580-591.
|
|
| [77] |
|
|
王亚楠. 2014. 气调贮藏对红阳猕猴桃和桑葚采后保鲜效果及其生理机制的研究[硕士论文]. 南京: 南京农业大学.
|
|
| [78] |
|
|
王亚楠, 胡花丽, 张璇, 古荣鑫, 李鹏霞. 2013. 气调贮藏对‘红阳’猕猴桃果胶含量及相关酶活的影响. 食品与发酵工业, 39 (8):207-211.
|
|
| [79] |
doi: 10.1016/j.foodchem.2019.125017 URL |
| [80] |
doi: 10.1080/10408398.2017.1375892 pmid: 28891686 |
| [81] |
|
| [82] |
|
|
肖妍. 2020. 调控‘徐香’猕猴桃货架期的研究[硕士论文]. 西安: 陕西师范大学.
|
|
| [83] |
|
|
邢红华, 王兰菊, 胡莎, 王艳琴, 杨德兴. 1998. 低乙烯气调贮藏对“秦美”猕猴桃的品质和货架期的影响. 河南科学,(4):105-109.
|
|
| [84] |
|
| [85] |
|
| [86] |
|
|
杨德兴, 杜玉宽,
|
|
| [87] |
doi: 10.1111/jfds.1972.37.issue-2 URL |
|
颜廷才, 刘振通, 李江阔, 孙晓荣, 张鹏. 2016. 箱式气调结合1-MCP对软枣猕猴桃冷藏期品质及风味物质的影响. 食品科学, 37 (20):253-260
doi: 10.7506/spkx1002-6630-201620043 |
|
| [88] |
|
|
姚天娇. 2015. 中华猕猴桃品种‘华优’和‘红阳’的气调贮藏及‘华优’果肉黄化问题的研究[硕士论文]. 西安: 陕西师范大学.
|
|
| [89] |
doi: 10.1016/j.postharvbio.2008.09.016 URL |
| [90] |
|
|
余亚英, 袁唯. 2007. 食品货架期概述及其预测. 中国食品添加剂,(5):77-79,76.
|
|
| [91] |
|
|
曾云流. 2021. 猕猴桃贮藏保鲜技术规范. 果农之友,(1):38-39.
|
|
| [92] |
|
|
张四普, 王欣锐, 崔巍, 张柯, 胡青霞, 鲁云风, 苗建银, 刘成, 牛佳佳. 2022. 气调贮藏对金桃猕猴桃货架品质的影响. 河南农业科学, 51 (12):162-171.
|
|
| [93] |
|
| [94] |
doi: 10.1016/j.postharvbio.2021.111737 URL |
| [95] |
doi: 10.1016/j.hpj.2021.07.003 URL |
| [1] | 罗 轩, 陈庆红 , 张 蕾, 高 磊, 白福玺, 汪 志, 叶丽霞, 彭 珏. 红肉软枣猕猴桃新品种‘金香红’[J]. 园艺学报, 2023, 50(S1): 27-28. |
| [2] | 齐永杰 , 高正辉 , 马 娜 , 高 霞 , 柯凡君 , 徐义流 , . 优质抗旱猕猴桃新品种‘金山 1 号’[J]. 园艺学报, 2023, 50(S1): 29-30. |
| [3] | 丁捷, 刘春燕, 黄彭, 李红莹, 陈黎维, 蒲小燕, 刘耀文, 秦文. 蓝莓保鲜技术研究进展[J]. 园艺学报, 2023, 50(9): 1944-1958. |
| [4] | 贾兵, 王克灿, 叶振风, 王谋才, 刘莉, 朱立武. 猕猴桃新品种‘皖黄’[J]. 园艺学报, 2023, 50(8): 1803-1804. |
| [5] | 邓成凤, 李素平, 张瑞轩, 韩冷, 李勇. 产酶溶杆菌LE16对采后柑橘青霉绿霉病的防治作用[J]. 园艺学报, 2023, 50(7): 1574-1586. |
| [6] | 周成, 方怡, 周锦杨, 黄企浩, 盘永坚, 史千千, 倪慧娴, 杨震峰, 宋春波. 低温诱导的桃果实采后膜脂代谢变化与冷害的关系[J]. 园艺学报, 2023, 50(6): 1305-1317. |
| [7] | 刘南祥, 张慧琴, 谢鸣, 徐象华, 范芳娟. 猕猴桃新品种‘金丽’[J]. 园艺学报, 2023, 50(6): 1377-1378. |
| [8] | 邹运乾, 罗曲娟, 张金, 许让伟, 程运江. 虫胶松香涂膜对柑橘货架期品质的影响[J]. 园艺学报, 2023, 50(4): 853-863. |
| [9] | 毛可欣, 安淼, 王海荣, 王世金, 吕巍, 郭盈添, 李健, 李国田. 猕猴桃MYB家族成员鉴定及其低温表达分析[J]. 园艺学报, 2023, 50(3): 534-548. |
| [10] | 何亚芳, 包慧芳, 王 宁, 詹发强, 张学军, 史应武, 杨 蓉, 侯新强, 龙宣杞, . 甜瓜镰刀菌果腐病菌拮抗菌筛选及其拮抗性研究[J]. 园艺学报, 2023, 50(10): 2257-2270. |
| [11] | 袁馨, 徐云鹤, 张雨培, 单楠, 陈楚英, 万春鹏, 开文斌, 翟夏琬, 陈金印, 甘增宇. 猕猴桃后熟过程中ABA响应结合因子AcAREB1调控AcGH3.1的表达[J]. 园艺学报, 2023, 50(1): 53-64. |
| [12] | 杜玉玲, 杨凡, 赵娟, 刘书琪, 龙超安. 新鱼腥草素钠对柑橘指状青霉的抑菌作用[J]. 园艺学报, 2023, 50(1): 145-152. |
| [13] | 宋 放, 陈 奇, 袁炎良, 陈 沙, 尹海军, 蒋迎春, . 黄肉猕猴桃新品种‘先沃1号’[J]. 园艺学报, 2022, 49(S2): 47-48. |
| [14] | 齐永杰, 高正辉, 马 娜, 王清明, 柯凡君, 陈 钱, 徐义流, . 黄肉抗溃疡病猕猴桃新品种‘皖农金果’[J]. 园艺学报, 2022, 49(S2): 49-50. |
| [15] | 张慧琴, 楼国荣, 陆玲鸿, 古咸彬, 宋根华, 谢 鸣. 黄肉中华猕猴桃新品种‘金义’[J]. 园艺学报, 2022, 49(S2): 51-52. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司