园艺学报 ›› 2026, Vol. 53 ›› Issue (2): 331-358.doi: 10.16420/j.issn.0513-353x.2025-1069
• 综述 • 下一篇
许弘朋1,2, 陆锦萍1,2, 蒋晓楠1,2, 谢伟琳1,2, 刘至柔1,2, 班佳熠1,2, 薛冰冰1,2, 叶若玉1,2, 张可欣1,2, 熊宇辰1,2, 陈佳敏1,2, 宋叶繁1,2, 袁福榜1,2, 王绎乔1,2, 刘倬闻1,2, 高俊平1,2,*(
), 梁跃1,2,*(
)
收稿日期:2025-12-02
修回日期:2026-01-11
出版日期:2026-02-25
发布日期:2026-02-12
基金资助:
XU Hongpeng1,2, LU Jinping1,2, JIANG Xiaonan1,2, XIE Weilin1,2, LIU Zhirou1,2, BAN Jiayi1,2, XUE Bingbing1,2, YE Ruoyu1,2, ZHANG Kexin1,2, XIONG Yuchen1,2, CHEN Jiamin1,2, SONG Yefan1,2, YUAN Fubang1,2, WANG Yiqiao1,2, LIU Zhuowen1,2, GAO Junping1,2(
), LIANG Yue1,2(
)
Received:2025-12-02
Revised:2026-01-11
Published:2026-02-25
Online:2026-02-12
摘要:
园艺作物香气品质是由挥发性有机化合物构成的重要经济性状,其合成受内部调控网络与外部环境因子的协同调控。茉莉酸、乙烯、生长素等植物激素通过激活MYB和bHLH等转录因子形成复杂的调控网络,并通过交叉互作精确调控萜类和苯丙烷类等香气物质的生物合成。钙离子、过氧化氢和一氧化氮等信号分子通过介导激素信号与环境刺激参与调控香气合成基因的表达。光照和温度等环境因子在园艺作物中不仅独立调控其香气合成,还通过光受体与温度传感器等的相互作用产生协同效应。本文中对近年来植物激素、信号分子及环境因子调控园艺作物香气合成的研究进展进行了综述,旨在为植物花香理论研究和高香气园艺植物的培育提供参考依据。
许弘朋, 陆锦萍, 蒋晓楠, 谢伟琳, 刘至柔, 班佳熠, 薛冰冰, 叶若玉, 张可欣, 熊宇辰, 陈佳敏, 宋叶繁, 袁福榜, 王绎乔, 刘倬闻, 高俊平, 梁跃. 植物激素与环境因子调控园艺作物香气合成的研究进展[J]. 园艺学报, 2026, 53(2): 331-358.
XU Hongpeng, LU Jinping, JIANG Xiaonan, XIE Weilin, LIU Zhirou, BAN Jiayi, XUE Bingbing, YE Ruoyu, ZHANG Kexin, XIONG Yuchen, CHEN Jiamin, SONG Yefan, YUAN Fubang, WANG Yiqiao, LIU Zhuowen, GAO Junping, LIANG Yue. Research Advances in the Regulation of Aroma Biosynthesis in Horticultural Crops by Plant Hormones and Environmental Factors[J]. Acta Horticulturae Sinica, 2026, 53(2): 331-358.
| 转录因子 家族 Transcription factor family | 基因 Gene | 功能描述 Functional description | 物种 Species | 参考文献 Reference | |||||
|---|---|---|---|---|---|---|---|---|---|
| MYB | AtMYB21/24 | 调控苯丙素合成相关基因,促进芳香物质产生 Enhancement of aromatic volatile production via the regulation of phenylpropanoid biosynthetic genes | 拟南芥 Arabidopsis thaliana | Reeves et al., | |||||
| OfMYB1R-70,OfMYB1R-114,OfMYB1R-201 | 调控苯丙烷/苯丙酮等香气物质合成,影响β-紫罗酮等挥发物含量Regulation of phenylpropanoid/phenylpropanone-derived aroma compounds biosynthesis,and influencing the emission of volatiles such as β-ionone | 桂花 Osmanthus fragrans | Yan et al., | ||||||
| CtMYB2 | 同时激活CtTPS3和CtTPS8的表达 Activating the expression of CtTPS3 and CtTPS8 | 西藏虎头兰Cymbidium tracyanum | Tu et al., | ||||||
| CtMYB3 | 同时激活 CtTPS2、CtTPS3和CtTPS8 的表达 Activating the expression of CtTPS2,CtTPS3 and CtTPS8 | 西藏虎头兰Cymbidium tracyanum | |||||||
| ODORANT1 | 直接调控莽草酸途径中关键酶基因表达 Directly modulates the expression of key enzymes in the shikimate pathway | 矮牵牛 Petunia hybrida | Verdonk et al., | ||||||
| FaEOBII | 通过激活肉桂醇脱氢酶(FaCAD1)和丁香酚合成酶(FaEGS2)的表达,调控挥发性丁香酚的产生 Regulating volatile eugenol production by activating the expression of cinnamyl-alcohol dehydrogenase(FaCAD1)and eugenol synthase(FaEGS2) | 草莓 Fragaria × ananassa | Medina-Puche et al., | ||||||
| FhMYB21L1 | 直接结合FhTPS1启动子中的MYBCORE位点,激活FhTPS1的表达,促进芳樟醇的释放 Directly binds to the MYBCORE cis-element in the FhTPS1 promoter,thereby activating FhTPS1 expression and promoting linalool emission | 香雪兰 Freesia hybrida | 张佳 等, | ||||||
| FhMYB21L2 | |||||||||
| PhMYB4 | 作为苯丙烷类途径中肉桂酸-4-羟基酶的阻滞剂,控制矮牵牛花中由对香豆酸衍生的挥发物的碳通量,如异丁香酚和丁香酚 Acting as a repressor of cinnamate-4-hydroxylase in the phenylpropanoid pathway,and controlling the carbon flux toward p-coumaric acid-derived volatiles,such as isoeugenol and eugenol in petunia flowers | 矮牵牛 Petunia hybrida | Colquhoun et al., | ||||||
| CrBPF1 | 增加吲哚和萜类生物合成途径中基因的转录水平 Elevates the transcript levels of genes in the indole and terpenoid biosynthetic pathways | 长春花 Catharanthus roseus | Li et al., | ||||||
| AtMYB21 | 激活倍半萜合酶基因的表达 Activating the expression of sesquiterpene synthase genes | 拟南芥 Arabidopsis thaliana | Yang et al., | ||||||
| PAP1 | 增加挥发性苯丙素/苯类化合物的含量 Increases the abundance of volatile phenylpropanoid/benzenoid compounds | 拟南芥 Arabidopsis thaliana | Ben et al., | ||||||
| 增加萜类化合物中气味化合物水平 Elevates the levels of odor-active terpenoid compounds | 月季 Rosa chinensis | Zvi et al., | |||||||
| MYB1 | 与代谢物通量、产生黄酮醇/花青素的苯丙烷途径有关 Related to metabolic flux through the phenylpropanoid pathway that produces flavonols and anthocyanins. | 蕙兰 Cymbidium faberi | Ramya et al., | ||||||
| FaEOBII | 调节挥发性苯丙烷通路基因表达 Regulates the expression of genes within the volatile phenylpropanoid pathway | 草莓 Fragaria × ananassa | Medina-Puche et al., | ||||||
| FaMYB10 | 调节类黄酮/苯丙烷途径的早期和晚期生物合成基因 Modulates both early- and late-biosynthetic genes in the flavonoid/phenylpropanoid pathway | 草莓 Fragaria × ananassa | Medina-Puche et al., | ||||||
| AtMYB21 | 激活倍半萜合酶基因的表达 Activates the expression of sesquiterpene synthase genes | 拟南芥 Arabidopsis thaliana | Yang et al., | ||||||
| MYB | HcMYB7,HcMYB8,HcMYB79,HcMYB145,HcMYB248 | 调控花香生物合成基因的表达 Regulates the expression of floral scent biosynthetic genes | 姜花Hedychium coronarium | Abbas et al., | |||||
| MdMYB85 | MdMYC2和MdMYB85与MdAAT1的启动子区域相互作用,从而增强其转录活性,促进苹果酯香气合成 MdMYC2 and MdMYB85 interact with the promoter region of MdAAT1 to enhance its transcriptional activity,thereby promoting ester-derived aroma biosynthesis in apple | 苹果 Malus × domestica | Li et al., | ||||||
| MsMYB | 单萜生物合成的新型负调节因子 A novel negative regulator of monoterpene biosynthesis | 留兰香 Mentha spicata | Reddy et al., | ||||||
| CCA1 | 上调萜烯合酶表达,影响蝴蝶兰花香的昼夜节律发射 Upregulates the expression of terpene biosynthsis genes,and influences the diurnal emission of floral volatiles in Phalaenopsis | 蝴蝶兰 Phalaenopsis aphrodite | Yeh et al., | ||||||
| OfMYB21 | 正向调控芳樟醇生物合成 Positively regulates linalool biosynthesis | 桂花 Osmanthus fragrans | Lan et al., | ||||||
| ODO1 | 调控莽草酸途径前体的合成 Regulates the precursor biosynthesis in shikimate pathway | 矮牵牛 Petunia hybrida | van Moerkercke et al., | ||||||
| PhMYB4 | 抑制C4H转录,间接控制矮牵牛花组织中挥发性苯类/苯丙烷类化合物产生的平衡Repression of C4H transcription,indirectly controls the balance of volatile benzenoid/phenylpropanoid production in petunia tissues | 矮牵牛 Petunia hybrida | Colquhoun et al., | ||||||
| PH4 | PH4基因的沉默导致花苯丙醇挥发性物质排放显着减少 Silencing of PH4 markedly reduces floral phenylpropanoid- alcohol volatile emission | 矮牵牛 Petunia hybrida | Cna'ani et al., | ||||||
| SlMYB75 | 调节倍半萜的积累 Regulates sesquiterpene accumulation | 番茄 Solanum lycopersicum | Gong et al., | ||||||
| TcMYB8 | 调节萜类化合物的生物合成 Modulates terpenoid biosynthesis | 除虫菊Tanacetum cinerariifolium | Zhou et al., | ||||||
| VviMYB24 | 与TPS和HYH的启动子结合,调节单萜和黄酮醇的生物合成 Binds to the promoter regions of both TPS genes and HYH to modulate monoterpene and flavonol biosynthesis | 欧亚种葡萄 Vitis vinifera | Zhang et al., | ||||||
| AmMYB24 | 调控蓝光诱导的萜类物质合成 Regulates blue-light-induced terpenoid biosynthesis | 金鱼草 Antirrhinum majus | Han et al., | ||||||
| PbbHLH4 | 激活单萜合成基因GDPS Activates the monoterpene-biosynthetic gene GDPS | 蝴蝶兰 Phalaenopsis aphrodite | Chuang et al., | ||||||
| DobHLH4 | 芳樟醇合成的正向调控因子,促进萜类物质积累 A positive regulator of linalool synthesis that promotes terpenoid accumulation | 铁皮石斛Dendrobium officinale | Yu et al., | ||||||
| CfbHLH | 直接结合CfAOC和CfJMT启动子,促进茉莉酸甲酯合成 Directly binds to the CfAOC and CfJMT promoters to promote methyl jasmonate biosynthesis | 蕙兰 Cymbidium faberi | Zhou et al., | ||||||
| bHLH | AaMYC2 | 激活CYP71AV1和DBR2的转录,导致青蒿素含量增加 Activates the transcription of CYP71AV1 and DBR2,increasing accumulation of artemisinin | 青蒿 Artemisia annua | Shen et al., | |||||
| AabHLH1 | 正向调控青蒿素(倍半萜内酯)的生物合成 Positively regulates artemisinin(sesquiterpene lactone)biosynthesis | 青蒿 Artemisia annua | Ji et al., | ||||||
| AtMYC2 | 参与GA介导的倍半萜合酶基因的诱导 Participates in gibberellin-mediated induction of sesquiterpene synthase genes expression | 拟南芥 Arabidopsis thaliana | Hong et al., | ||||||
| CrMYC2 | 调节萜类物质生物合成Regulates terpenoid biosynthesis | 长春花Catharanthus roseus | Zhang et al., | ||||||
| BIS1 | 调控单萜物质生物合成Regulates monoterpene biosynthesis | 长春花Catharanthus roseus | van Moerkercke et al., | ||||||
| BIS2 | 调控萜类物质合成Regulates terpenoid biosynthesis | 长春花Catharanthus roseus | van Moerkercke et al., | ||||||
| MtTSAR1,MtTSAR2 | 提高单萜吲哚生物碱(MIA)通路环烯醚萜分支的基因的表达 Enhances the expression of genes within the iridoid branch of the monoterpene indole alkaloid(MIA) pathway | 长春花Catharanthus roseus | Mertens et al., | ||||||
| CpMYC2,CpbHLH13 | 参与单萜(芳樟醇)和倍半萜(β-石竹烯)的生物合成 Participates in the biosynthesis of monoterpenes(linalool)and sesquiterpenes(β-caryophyllene) | 腊梅 Chimonanthus praecox | Aslam et al., | ||||||
| bHLH | MYC2 | 花香产生的候选基因Candidate genes for floral scent production | 百合属Lilium spp. | Shi et al., | |||||
| LaMYC4 | LaMYC4调节挥发性萜类生物合成 LaMYC4 regulates volatile terpenoid biosynthesis | 薰衣草 Lavandula angustifolia | Dong et al., | ||||||
| MdMYC2 | 调节苹果果实中的α-法呢烯生物合成 Regulates α-farnesene biosynthesis in apple fruit | 苹果 Malus × domestica | Wang et al., | ||||||
| PbbHLH4 | 调控单萜生物合成Regulates monoterpene biosynthesis | 蝴蝶兰 Phalaenopsis aphrodite | Chuang et al., | ||||||
| PpbHLH1 | 提高芳樟醇的产量Enhances linalool yield | 桃 Prunus persica | Wei et al., | ||||||
| SlMYC1 | 调节萜烯生物合成Regulates terpene biosynthesis | 番茄Solanum lycopersicum | Xu et al., | ||||||
| JIG1 | MYC2-SlJIG模块在萜烯生物合成发挥作用 The MYC2-SlJIG module functions in terpene biosynthesis | 番茄 Solanum lycopersicum | Cao et al., | ||||||
| TgbHLH95 | TgbHLH95-TgbZIP44复合物结合TgGPPS启动子,上调香榧果实收获后萜烯生物合成基因 The TgbHLH95-TgbZIP44 complex binds the TgGPPS promoter and upregulates post-harvest terpene biosynthesis genes in Torreya grandis nuts | 香榧 Torreya grandis | Zhang et al., | ||||||
| OfWRKY3 | 直接结合花瓣香气关键酶OfCCD4启动子的W-box序列,有效调控该酶的转录活性 Directly binds the W-box element in the promoter of the petal-aroma key enzyme OfCCD4 and effectively modulates its transcriptional activity | 桂花 Osmanthus fragrans | 吴淼, | ||||||
| OfWRKY33 | 诱导MEP途径基因OfDXS1表达,促进芳樟醇的生物合成 Induces expression of OfDXS1 and promotes linalool biosynthesis | 桂花 Osmanthus fragrans | Xi et al., | ||||||
| OfWRKY21 | 显著提升丁酸1-苯乙基酯、苯甲酰胺、苯丙酸甲酯等挥发性芳香物质的积累水平 Significantly enhances the accumulation of volatile aromatics,including 1-phenylethyl butyrate,benzamide,and methyl phenylpropanoate | 桂花 Osmanthus fragrans | 郭炳澳, | ||||||
| WRKY | HcWRKY1 | 促进β-石竹烯、柠檬烯和α-蒎烯等花朵挥发性物质的生物合成 Promotes the biosynthesis of floral volatiles such as β-caryophyllene,limonene,and α-pinene | 姜花 Hedychium coronarium | 高婷, | |||||
| AvWRKY61,AvWRKY28,AvWRKY40 | 参与萜类物质合成Participates in terpenoid biosynthesis | 砂仁Amomum villosum | He et al., | ||||||
| AtWRKY40 | 激活MEP途径中多个基因的转录 Activates the transcription of multiple genes in the MEP pathway | 欧丹参Salvia sclarea | Alfieri et al., | ||||||
| CmWRKY41 | 激活 CmHMGR2 和 CmFPPS2,正向调控菊花中倍半萜的合成 Activates the expression of CmHMGR2 and CmFPPS2 to positively regulate sesquiterpene biosynthesis in Chrysanthemum | 杭白菊Chrysanthemum morifolium | Hu et al., | ||||||
| NaWRKY3,NaWRKY6 | 激活茉莉酸(JA)的生物合成,提高烟草中的挥发性物质含量 Activation of jasmonic acid(JA)biosynthesis to increase the volatile content in tobacco | 烟草 Tobacco | Skibbe et al., | ||||||
| WRKY17 | 促进单萜合成Promotes monoterpene biosynthesis | 山胡椒Lindera glauca | Gao et al., | ||||||
| OfWRKY7,OfWRKY19,OfWRKY36 | 与单萜类物质合成有关 Involved in monoterpene biosynthesis | 桂花 Osmanthus fragrans | Ding et al., | ||||||
| WRKY70 | 调控单萜类化合物香叶醇的生物合成 Regulates the biosynthesis of the monoterpenoid geraniol | 月季 Rosa chinensis | Yu et al., | ||||||
| SmWRKY1 | 参与丹参酮生物合成的调控,激活MEP通路中的SmDXR表达Participates in the regulation of tanshinone biosynthesis by activating SmDXR in the MEP pathway | 丹参 Salvia miltiorrhiza | Cao et al., | ||||||
| AaGSW1 | 特异性WRKY转录因子,是青蒿素生物合成途径中的正调节因子 A specific WRKY transcription factor that functions as a positive regulator of artemisinin biosynthesis | 青蒿 Artemisia annua | Chen et al., | ||||||
| AaWRKY9 | 直接与AaDBR2和AaGSW1的启动子结合,正向调节青蒿素生物合成 Directly binds to the promoters of AaDBR2 and AaGSW1 to positively regulate artemisinin biosynthesis | 青蒿Artemisia annua | Fu et al., | ||||||
| AaWRKY40 | 参与萜类代谢 Involved in terpenoid metabolism | 青蒿 Artemisia annua | De Paolis et al., | ||||||
| WRKY | CiAP2.10 | 促进倍半萜(+)-valencene的合成 Promotes the biosynthesis of the sesquiterpene(+)-valencene | 橘Citrus reticulata Blanco | Shen et al., | |||||
| CitERF71 | 控制柑橘类水果中E-香叶醇的产生 Controls the production of E-geraniol in Citrus fruit | 甜橙Citrus sinensis | Li et al., | ||||||
| MdERF3 | 调节苹果果实中的α-法呢烯生物合成 Modulates α-farnesene biosynthesis in apple fruits | 苹果Malus pumila | Wang et al., | ||||||
| AP2/ERF | PpERF61 | 提高 PpTPS1和PpTPS3 的表达和芳香醇含量 Enhances the expression of PpTPS1 and PpTPS3 and the content of aromatic alcohols | 桃Prunus persica | Wei et al., | |||||
| PhERF6 | 通过竞争EOBI蛋白的c-myb 结构域与花香相关基因的启动子的结合,负向调节矮牵牛花的挥发性物质产生 Negatively regulates the production of floral volatiles in petunia by competing with the EOBI protein for binding to the c-myb domain in the promoters of scent-related genes | 矮牵牛 Petunia hybrida | Liu et al., | ||||||
| PpERF5,PpERF7 | 上调PpLOX4表达从而促进香气的生物合成 Upregulates PpLOX4 expression and thereby promotes aroma biosynthesis | 桃Prunus persica | Wang et al., | ||||||
表1 调节植物挥发性香气化合物产生的主要转录因子
Table 1 Major transcription factors regulating the emission of floral volatile organic compounds in plants
| 转录因子 家族 Transcription factor family | 基因 Gene | 功能描述 Functional description | 物种 Species | 参考文献 Reference | |||||
|---|---|---|---|---|---|---|---|---|---|
| MYB | AtMYB21/24 | 调控苯丙素合成相关基因,促进芳香物质产生 Enhancement of aromatic volatile production via the regulation of phenylpropanoid biosynthetic genes | 拟南芥 Arabidopsis thaliana | Reeves et al., | |||||
| OfMYB1R-70,OfMYB1R-114,OfMYB1R-201 | 调控苯丙烷/苯丙酮等香气物质合成,影响β-紫罗酮等挥发物含量Regulation of phenylpropanoid/phenylpropanone-derived aroma compounds biosynthesis,and influencing the emission of volatiles such as β-ionone | 桂花 Osmanthus fragrans | Yan et al., | ||||||
| CtMYB2 | 同时激活CtTPS3和CtTPS8的表达 Activating the expression of CtTPS3 and CtTPS8 | 西藏虎头兰Cymbidium tracyanum | Tu et al., | ||||||
| CtMYB3 | 同时激活 CtTPS2、CtTPS3和CtTPS8 的表达 Activating the expression of CtTPS2,CtTPS3 and CtTPS8 | 西藏虎头兰Cymbidium tracyanum | |||||||
| ODORANT1 | 直接调控莽草酸途径中关键酶基因表达 Directly modulates the expression of key enzymes in the shikimate pathway | 矮牵牛 Petunia hybrida | Verdonk et al., | ||||||
| FaEOBII | 通过激活肉桂醇脱氢酶(FaCAD1)和丁香酚合成酶(FaEGS2)的表达,调控挥发性丁香酚的产生 Regulating volatile eugenol production by activating the expression of cinnamyl-alcohol dehydrogenase(FaCAD1)and eugenol synthase(FaEGS2) | 草莓 Fragaria × ananassa | Medina-Puche et al., | ||||||
| FhMYB21L1 | 直接结合FhTPS1启动子中的MYBCORE位点,激活FhTPS1的表达,促进芳樟醇的释放 Directly binds to the MYBCORE cis-element in the FhTPS1 promoter,thereby activating FhTPS1 expression and promoting linalool emission | 香雪兰 Freesia hybrida | 张佳 等, | ||||||
| FhMYB21L2 | |||||||||
| PhMYB4 | 作为苯丙烷类途径中肉桂酸-4-羟基酶的阻滞剂,控制矮牵牛花中由对香豆酸衍生的挥发物的碳通量,如异丁香酚和丁香酚 Acting as a repressor of cinnamate-4-hydroxylase in the phenylpropanoid pathway,and controlling the carbon flux toward p-coumaric acid-derived volatiles,such as isoeugenol and eugenol in petunia flowers | 矮牵牛 Petunia hybrida | Colquhoun et al., | ||||||
| CrBPF1 | 增加吲哚和萜类生物合成途径中基因的转录水平 Elevates the transcript levels of genes in the indole and terpenoid biosynthetic pathways | 长春花 Catharanthus roseus | Li et al., | ||||||
| AtMYB21 | 激活倍半萜合酶基因的表达 Activating the expression of sesquiterpene synthase genes | 拟南芥 Arabidopsis thaliana | Yang et al., | ||||||
| PAP1 | 增加挥发性苯丙素/苯类化合物的含量 Increases the abundance of volatile phenylpropanoid/benzenoid compounds | 拟南芥 Arabidopsis thaliana | Ben et al., | ||||||
| 增加萜类化合物中气味化合物水平 Elevates the levels of odor-active terpenoid compounds | 月季 Rosa chinensis | Zvi et al., | |||||||
| MYB1 | 与代谢物通量、产生黄酮醇/花青素的苯丙烷途径有关 Related to metabolic flux through the phenylpropanoid pathway that produces flavonols and anthocyanins. | 蕙兰 Cymbidium faberi | Ramya et al., | ||||||
| FaEOBII | 调节挥发性苯丙烷通路基因表达 Regulates the expression of genes within the volatile phenylpropanoid pathway | 草莓 Fragaria × ananassa | Medina-Puche et al., | ||||||
| FaMYB10 | 调节类黄酮/苯丙烷途径的早期和晚期生物合成基因 Modulates both early- and late-biosynthetic genes in the flavonoid/phenylpropanoid pathway | 草莓 Fragaria × ananassa | Medina-Puche et al., | ||||||
| AtMYB21 | 激活倍半萜合酶基因的表达 Activates the expression of sesquiterpene synthase genes | 拟南芥 Arabidopsis thaliana | Yang et al., | ||||||
| MYB | HcMYB7,HcMYB8,HcMYB79,HcMYB145,HcMYB248 | 调控花香生物合成基因的表达 Regulates the expression of floral scent biosynthetic genes | 姜花Hedychium coronarium | Abbas et al., | |||||
| MdMYB85 | MdMYC2和MdMYB85与MdAAT1的启动子区域相互作用,从而增强其转录活性,促进苹果酯香气合成 MdMYC2 and MdMYB85 interact with the promoter region of MdAAT1 to enhance its transcriptional activity,thereby promoting ester-derived aroma biosynthesis in apple | 苹果 Malus × domestica | Li et al., | ||||||
| MsMYB | 单萜生物合成的新型负调节因子 A novel negative regulator of monoterpene biosynthesis | 留兰香 Mentha spicata | Reddy et al., | ||||||
| CCA1 | 上调萜烯合酶表达,影响蝴蝶兰花香的昼夜节律发射 Upregulates the expression of terpene biosynthsis genes,and influences the diurnal emission of floral volatiles in Phalaenopsis | 蝴蝶兰 Phalaenopsis aphrodite | Yeh et al., | ||||||
| OfMYB21 | 正向调控芳樟醇生物合成 Positively regulates linalool biosynthesis | 桂花 Osmanthus fragrans | Lan et al., | ||||||
| ODO1 | 调控莽草酸途径前体的合成 Regulates the precursor biosynthesis in shikimate pathway | 矮牵牛 Petunia hybrida | van Moerkercke et al., | ||||||
| PhMYB4 | 抑制C4H转录,间接控制矮牵牛花组织中挥发性苯类/苯丙烷类化合物产生的平衡Repression of C4H transcription,indirectly controls the balance of volatile benzenoid/phenylpropanoid production in petunia tissues | 矮牵牛 Petunia hybrida | Colquhoun et al., | ||||||
| PH4 | PH4基因的沉默导致花苯丙醇挥发性物质排放显着减少 Silencing of PH4 markedly reduces floral phenylpropanoid- alcohol volatile emission | 矮牵牛 Petunia hybrida | Cna'ani et al., | ||||||
| SlMYB75 | 调节倍半萜的积累 Regulates sesquiterpene accumulation | 番茄 Solanum lycopersicum | Gong et al., | ||||||
| TcMYB8 | 调节萜类化合物的生物合成 Modulates terpenoid biosynthesis | 除虫菊Tanacetum cinerariifolium | Zhou et al., | ||||||
| VviMYB24 | 与TPS和HYH的启动子结合,调节单萜和黄酮醇的生物合成 Binds to the promoter regions of both TPS genes and HYH to modulate monoterpene and flavonol biosynthesis | 欧亚种葡萄 Vitis vinifera | Zhang et al., | ||||||
| AmMYB24 | 调控蓝光诱导的萜类物质合成 Regulates blue-light-induced terpenoid biosynthesis | 金鱼草 Antirrhinum majus | Han et al., | ||||||
| PbbHLH4 | 激活单萜合成基因GDPS Activates the monoterpene-biosynthetic gene GDPS | 蝴蝶兰 Phalaenopsis aphrodite | Chuang et al., | ||||||
| DobHLH4 | 芳樟醇合成的正向调控因子,促进萜类物质积累 A positive regulator of linalool synthesis that promotes terpenoid accumulation | 铁皮石斛Dendrobium officinale | Yu et al., | ||||||
| CfbHLH | 直接结合CfAOC和CfJMT启动子,促进茉莉酸甲酯合成 Directly binds to the CfAOC and CfJMT promoters to promote methyl jasmonate biosynthesis | 蕙兰 Cymbidium faberi | Zhou et al., | ||||||
| bHLH | AaMYC2 | 激活CYP71AV1和DBR2的转录,导致青蒿素含量增加 Activates the transcription of CYP71AV1 and DBR2,increasing accumulation of artemisinin | 青蒿 Artemisia annua | Shen et al., | |||||
| AabHLH1 | 正向调控青蒿素(倍半萜内酯)的生物合成 Positively regulates artemisinin(sesquiterpene lactone)biosynthesis | 青蒿 Artemisia annua | Ji et al., | ||||||
| AtMYC2 | 参与GA介导的倍半萜合酶基因的诱导 Participates in gibberellin-mediated induction of sesquiterpene synthase genes expression | 拟南芥 Arabidopsis thaliana | Hong et al., | ||||||
| CrMYC2 | 调节萜类物质生物合成Regulates terpenoid biosynthesis | 长春花Catharanthus roseus | Zhang et al., | ||||||
| BIS1 | 调控单萜物质生物合成Regulates monoterpene biosynthesis | 长春花Catharanthus roseus | van Moerkercke et al., | ||||||
| BIS2 | 调控萜类物质合成Regulates terpenoid biosynthesis | 长春花Catharanthus roseus | van Moerkercke et al., | ||||||
| MtTSAR1,MtTSAR2 | 提高单萜吲哚生物碱(MIA)通路环烯醚萜分支的基因的表达 Enhances the expression of genes within the iridoid branch of the monoterpene indole alkaloid(MIA) pathway | 长春花Catharanthus roseus | Mertens et al., | ||||||
| CpMYC2,CpbHLH13 | 参与单萜(芳樟醇)和倍半萜(β-石竹烯)的生物合成 Participates in the biosynthesis of monoterpenes(linalool)and sesquiterpenes(β-caryophyllene) | 腊梅 Chimonanthus praecox | Aslam et al., | ||||||
| bHLH | MYC2 | 花香产生的候选基因Candidate genes for floral scent production | 百合属Lilium spp. | Shi et al., | |||||
| LaMYC4 | LaMYC4调节挥发性萜类生物合成 LaMYC4 regulates volatile terpenoid biosynthesis | 薰衣草 Lavandula angustifolia | Dong et al., | ||||||
| MdMYC2 | 调节苹果果实中的α-法呢烯生物合成 Regulates α-farnesene biosynthesis in apple fruit | 苹果 Malus × domestica | Wang et al., | ||||||
| PbbHLH4 | 调控单萜生物合成Regulates monoterpene biosynthesis | 蝴蝶兰 Phalaenopsis aphrodite | Chuang et al., | ||||||
| PpbHLH1 | 提高芳樟醇的产量Enhances linalool yield | 桃 Prunus persica | Wei et al., | ||||||
| SlMYC1 | 调节萜烯生物合成Regulates terpene biosynthesis | 番茄Solanum lycopersicum | Xu et al., | ||||||
| JIG1 | MYC2-SlJIG模块在萜烯生物合成发挥作用 The MYC2-SlJIG module functions in terpene biosynthesis | 番茄 Solanum lycopersicum | Cao et al., | ||||||
| TgbHLH95 | TgbHLH95-TgbZIP44复合物结合TgGPPS启动子,上调香榧果实收获后萜烯生物合成基因 The TgbHLH95-TgbZIP44 complex binds the TgGPPS promoter and upregulates post-harvest terpene biosynthesis genes in Torreya grandis nuts | 香榧 Torreya grandis | Zhang et al., | ||||||
| OfWRKY3 | 直接结合花瓣香气关键酶OfCCD4启动子的W-box序列,有效调控该酶的转录活性 Directly binds the W-box element in the promoter of the petal-aroma key enzyme OfCCD4 and effectively modulates its transcriptional activity | 桂花 Osmanthus fragrans | 吴淼, | ||||||
| OfWRKY33 | 诱导MEP途径基因OfDXS1表达,促进芳樟醇的生物合成 Induces expression of OfDXS1 and promotes linalool biosynthesis | 桂花 Osmanthus fragrans | Xi et al., | ||||||
| OfWRKY21 | 显著提升丁酸1-苯乙基酯、苯甲酰胺、苯丙酸甲酯等挥发性芳香物质的积累水平 Significantly enhances the accumulation of volatile aromatics,including 1-phenylethyl butyrate,benzamide,and methyl phenylpropanoate | 桂花 Osmanthus fragrans | 郭炳澳, | ||||||
| WRKY | HcWRKY1 | 促进β-石竹烯、柠檬烯和α-蒎烯等花朵挥发性物质的生物合成 Promotes the biosynthesis of floral volatiles such as β-caryophyllene,limonene,and α-pinene | 姜花 Hedychium coronarium | 高婷, | |||||
| AvWRKY61,AvWRKY28,AvWRKY40 | 参与萜类物质合成Participates in terpenoid biosynthesis | 砂仁Amomum villosum | He et al., | ||||||
| AtWRKY40 | 激活MEP途径中多个基因的转录 Activates the transcription of multiple genes in the MEP pathway | 欧丹参Salvia sclarea | Alfieri et al., | ||||||
| CmWRKY41 | 激活 CmHMGR2 和 CmFPPS2,正向调控菊花中倍半萜的合成 Activates the expression of CmHMGR2 and CmFPPS2 to positively regulate sesquiterpene biosynthesis in Chrysanthemum | 杭白菊Chrysanthemum morifolium | Hu et al., | ||||||
| NaWRKY3,NaWRKY6 | 激活茉莉酸(JA)的生物合成,提高烟草中的挥发性物质含量 Activation of jasmonic acid(JA)biosynthesis to increase the volatile content in tobacco | 烟草 Tobacco | Skibbe et al., | ||||||
| WRKY17 | 促进单萜合成Promotes monoterpene biosynthesis | 山胡椒Lindera glauca | Gao et al., | ||||||
| OfWRKY7,OfWRKY19,OfWRKY36 | 与单萜类物质合成有关 Involved in monoterpene biosynthesis | 桂花 Osmanthus fragrans | Ding et al., | ||||||
| WRKY70 | 调控单萜类化合物香叶醇的生物合成 Regulates the biosynthesis of the monoterpenoid geraniol | 月季 Rosa chinensis | Yu et al., | ||||||
| SmWRKY1 | 参与丹参酮生物合成的调控,激活MEP通路中的SmDXR表达Participates in the regulation of tanshinone biosynthesis by activating SmDXR in the MEP pathway | 丹参 Salvia miltiorrhiza | Cao et al., | ||||||
| AaGSW1 | 特异性WRKY转录因子,是青蒿素生物合成途径中的正调节因子 A specific WRKY transcription factor that functions as a positive regulator of artemisinin biosynthesis | 青蒿 Artemisia annua | Chen et al., | ||||||
| AaWRKY9 | 直接与AaDBR2和AaGSW1的启动子结合,正向调节青蒿素生物合成 Directly binds to the promoters of AaDBR2 and AaGSW1 to positively regulate artemisinin biosynthesis | 青蒿Artemisia annua | Fu et al., | ||||||
| AaWRKY40 | 参与萜类代谢 Involved in terpenoid metabolism | 青蒿 Artemisia annua | De Paolis et al., | ||||||
| WRKY | CiAP2.10 | 促进倍半萜(+)-valencene的合成 Promotes the biosynthesis of the sesquiterpene(+)-valencene | 橘Citrus reticulata Blanco | Shen et al., | |||||
| CitERF71 | 控制柑橘类水果中E-香叶醇的产生 Controls the production of E-geraniol in Citrus fruit | 甜橙Citrus sinensis | Li et al., | ||||||
| MdERF3 | 调节苹果果实中的α-法呢烯生物合成 Modulates α-farnesene biosynthesis in apple fruits | 苹果Malus pumila | Wang et al., | ||||||
| AP2/ERF | PpERF61 | 提高 PpTPS1和PpTPS3 的表达和芳香醇含量 Enhances the expression of PpTPS1 and PpTPS3 and the content of aromatic alcohols | 桃Prunus persica | Wei et al., | |||||
| PhERF6 | 通过竞争EOBI蛋白的c-myb 结构域与花香相关基因的启动子的结合,负向调节矮牵牛花的挥发性物质产生 Negatively regulates the production of floral volatiles in petunia by competing with the EOBI protein for binding to the c-myb domain in the promoters of scent-related genes | 矮牵牛 Petunia hybrida | Liu et al., | ||||||
| PpERF5,PpERF7 | 上调PpLOX4表达从而促进香气的生物合成 Upregulates PpLOX4 expression and thereby promotes aroma biosynthesis | 桃Prunus persica | Wang et al., | ||||||
| 激素 Hormone | 物种 Species | 应用方式 Application method | 植物组织 Tissue | 主要调控作用 Major regulatory effect | 参考文献 Reference |
|---|---|---|---|---|---|
| 茉莉酸Jasmonic Acid | 玫瑰 Rosa rugosa | 喷施 Spraying | 花蕾、叶片 Lower bud,leaf | 玫瑰半开期花瓣中的芳香物质总含量均提高 The total content of aromatic compounds of the petal is significantly elevated in Rosa rugosa at the half-open stage | 尚彤 等, |
| ‘南果’梨 Pyrus ussuriensis‘Nanguo’ | 浸泡 Immersion | 果实 Fruit | 提高了挥发性酯和不饱和脂肪酸的含量以及醇酰基转移酶、醇脱氢酶和LOX的活性 Elevates volatile ester and unsaturated fatty-acid contents and activates the expression of alcohol acyltransferase,alcohol dehydrogenase and LOX | Luo et al., | |
| ‘黑比诺’葡萄Vitis vinifera‘Pinot Noir’ | 喷施 Spraying | 叶片 Leaf | 显著增加癸酸乙酯、乙酸异戊酯、辛酸乙酯和1-辛醇含量 Significantly increases the content of ethyl decanoate,isoamyl acetate,ethyl octanoate,and 1-octanol | 高阳 等, | |
| 茉莉酸Jasmonic Acid | 越橘 Vaccinium vitis-idaea | 喷施 Spraying | 果实 Fruit | 提高果实的短链脂肪族衍生物含量,丰富果实香气层次 Enhances the content of short-chain aliphatic derivatives in fruit,thereby enriching the aroma profile | 刘梦溪 等, |
| 红山茶Camellia japonica var. rubra | 喷施 Spraying | 叶片 Leaf | 诱导茶树释放挥发物引诱害虫天敌,提高茶树防御能力 Induces the emission of volatiles to attract natural enemies of pests in tea plants,thereby enhancing defense capability in tea | 孙晓玲 等, | |
| 百合 Lilium brownii | 喷施 Spraying | 花瓣 Petal | 挥发物总释放量显著升高 Significantly increasing the total volatile emission | 吴琦 等, | |
| 玫瑰 Rosa rugosa | 喷施 Spraying | 花瓣 Petal | 花蕾期、半开期和盛开期的玫瑰花香气成分释放总量均明显增加 The total emission of rose floral volatiles increases markedly at the bud,half-open,and full-bloom stages | 周金鑫 等, | |
| 牡丹‘洛阳红’ Paeonia suffruticosa ‘Luoyang Hong’ | 喷施 Spraying | 花瓣 Petal | 2,4-二叔丁基苯酚和茉莉酸甲酯含量升高 Significantly increasing the content of 2,4-di-tert-butylphenol and methyl jasmonate | 牛童非 等, | |
| 赤霉素Gibberellin | 茉莉花 Jasminum sambac | 喷施 Spraying | 花蕾 Flower bud | 芳香成分芳樟醇和法尼烯含量升高 Significantly increasing the level of the aroma compounds linalool and farnesene | 赵炜淑 等, |
| 生长素Auxin | 白姜花 Hedychium coronarium‘White’ | 瓶插Vase-insertion | 短截花枝 Cut flowering shoot | 花香挥发性物质释放量升高 Promoting the emission of floral volatile compounds | 柯艳果, |
| 葡萄Vitis vinifera | 浸泡Immersion | 果实 Fruit | 花香挥发性物质释放量升高 Promoting the emission of floral volatile compounds | Jia et al., | |
| 姜花Hedychium coronarium | 瓶插 Vase-insertion | 短截花枝 Cut flowering shoot | 上调苯甲酸甲酯生物合成的关键酶HcBSMT2和芳樟醇生物合成的关键酶HcTPS5的表达 Up-regulates the expression of HcBSMT2,a key enzyme in methyl benzoate biosynthesis,and HcTPS,a key enzyme in linalool biosynthesis | Ke et al., | |
| 水杨酸Salicylic acid | 郁金香 Tulipa gesneriana | 喷施 Spraying | 花苞 Floral bud | 花香挥发性物质释放量明显提高 The emission of floral volatiles increased markedly | 陈雨馨 等, |
| 菊花 Chrysanthemum morifolium | 喷施 Spraying | 花瓣 Petal | 通过CmWRKY1-CmNPR3转录调控模块,在花发育过程中特异性激活CmEβFS的表达,从而促进(E)-β-法尼烯的生物合成 The CmWRKY1-CmNPR3 transcriptional module specifically activates CmEβFS expression during flower development under SA treatmen,thereby promoting (E)-β-farnesene biosynthesis | Wang et al., | |
| 微型月季 Rosa chinensis‘Mini’ | 喷施 Spraying | 叶片 Leaf | 提高萜类物质合成相关基因的表达水平 Elevates the expression level of genes related to terpenoid biosynthesis | 王启 等, | |
| 欧李‘农大6号’ Prunus humilis‘Nongda 6’ | 喷施 Spraying | 果实 Fruit | 果实不同时期均显著提高了果实的挥发物含量 Significantly increases fruit volatile content at all developmental stages | 张羚绢, | |
| 脱落酸 Abscisic acid | 番茄 Solanum lycopersicum | 浸泡 Immersion | 果实 Fruit | 提高果实中亚油酸和亚麻酸等不饱和脂肪酸的含量,增加 β-大马酮、苯甲醛、苄腈等香气物质的积累 Elevates linoleic and α-linolenic acid contents and promotes the accumulation of aroma compounds such as β-damascenone,benzaldehyde,and benzonitrile | Wu et al., |
| 姜花 Hedychium coronarium | 瓶插 Vase-insertion | 短截花枝 Cut flowering shoot | 促进姜花花香物质合成 Promotes floral scent biosynthesis in Hedychium coronarium | 王楚天, | |
| 乙烯Ethylene | 桂花 Osmanthus fragrans | 盘插 Tray-insertion | 花序 Inflorescence | 抑制芳樟醇、二氢芳樟醇等单萜类化合物释放 Suppresses the emission of monoterpenoids,such as linalool and dihydrolinalool | 邹晶晶 等, |
| 白姜花 Hedychium coronarium‘White’ | 瓶插 Tray-insertion | 短截花枝 Cut flowering shoot | 乙烯处理提高白姜花萜类化合物(如罗勒烯和法尼烯)的挥发量;1-MCP处理抑制萜类化合物的挥发量 Ethylene treatment increases the emission of terpenoids such as ocimene and farnesene from Hedychium coronarium flowers,whereas 1-MCP suppresses terpenoid emission | 刘晓洲 等, | |
| 矮牵牛 Petunia hybrida | 瓶插 Vase-insertion | 短截花枝 Cut flowering shoot | 降低苯甲酸甲酯和其他挥发性有机化合物的排放 Reduces the emission of methyl benzoate and other volatile organic compounds | Underwood et al., |
表2 植物激素对挥发性化合物合成的调控作用
Table 2 Regulatory effects of phytohormones on volatile compound biosynthesis
| 激素 Hormone | 物种 Species | 应用方式 Application method | 植物组织 Tissue | 主要调控作用 Major regulatory effect | 参考文献 Reference |
|---|---|---|---|---|---|
| 茉莉酸Jasmonic Acid | 玫瑰 Rosa rugosa | 喷施 Spraying | 花蕾、叶片 Lower bud,leaf | 玫瑰半开期花瓣中的芳香物质总含量均提高 The total content of aromatic compounds of the petal is significantly elevated in Rosa rugosa at the half-open stage | 尚彤 等, |
| ‘南果’梨 Pyrus ussuriensis‘Nanguo’ | 浸泡 Immersion | 果实 Fruit | 提高了挥发性酯和不饱和脂肪酸的含量以及醇酰基转移酶、醇脱氢酶和LOX的活性 Elevates volatile ester and unsaturated fatty-acid contents and activates the expression of alcohol acyltransferase,alcohol dehydrogenase and LOX | Luo et al., | |
| ‘黑比诺’葡萄Vitis vinifera‘Pinot Noir’ | 喷施 Spraying | 叶片 Leaf | 显著增加癸酸乙酯、乙酸异戊酯、辛酸乙酯和1-辛醇含量 Significantly increases the content of ethyl decanoate,isoamyl acetate,ethyl octanoate,and 1-octanol | 高阳 等, | |
| 茉莉酸Jasmonic Acid | 越橘 Vaccinium vitis-idaea | 喷施 Spraying | 果实 Fruit | 提高果实的短链脂肪族衍生物含量,丰富果实香气层次 Enhances the content of short-chain aliphatic derivatives in fruit,thereby enriching the aroma profile | 刘梦溪 等, |
| 红山茶Camellia japonica var. rubra | 喷施 Spraying | 叶片 Leaf | 诱导茶树释放挥发物引诱害虫天敌,提高茶树防御能力 Induces the emission of volatiles to attract natural enemies of pests in tea plants,thereby enhancing defense capability in tea | 孙晓玲 等, | |
| 百合 Lilium brownii | 喷施 Spraying | 花瓣 Petal | 挥发物总释放量显著升高 Significantly increasing the total volatile emission | 吴琦 等, | |
| 玫瑰 Rosa rugosa | 喷施 Spraying | 花瓣 Petal | 花蕾期、半开期和盛开期的玫瑰花香气成分释放总量均明显增加 The total emission of rose floral volatiles increases markedly at the bud,half-open,and full-bloom stages | 周金鑫 等, | |
| 牡丹‘洛阳红’ Paeonia suffruticosa ‘Luoyang Hong’ | 喷施 Spraying | 花瓣 Petal | 2,4-二叔丁基苯酚和茉莉酸甲酯含量升高 Significantly increasing the content of 2,4-di-tert-butylphenol and methyl jasmonate | 牛童非 等, | |
| 赤霉素Gibberellin | 茉莉花 Jasminum sambac | 喷施 Spraying | 花蕾 Flower bud | 芳香成分芳樟醇和法尼烯含量升高 Significantly increasing the level of the aroma compounds linalool and farnesene | 赵炜淑 等, |
| 生长素Auxin | 白姜花 Hedychium coronarium‘White’ | 瓶插Vase-insertion | 短截花枝 Cut flowering shoot | 花香挥发性物质释放量升高 Promoting the emission of floral volatile compounds | 柯艳果, |
| 葡萄Vitis vinifera | 浸泡Immersion | 果实 Fruit | 花香挥发性物质释放量升高 Promoting the emission of floral volatile compounds | Jia et al., | |
| 姜花Hedychium coronarium | 瓶插 Vase-insertion | 短截花枝 Cut flowering shoot | 上调苯甲酸甲酯生物合成的关键酶HcBSMT2和芳樟醇生物合成的关键酶HcTPS5的表达 Up-regulates the expression of HcBSMT2,a key enzyme in methyl benzoate biosynthesis,and HcTPS,a key enzyme in linalool biosynthesis | Ke et al., | |
| 水杨酸Salicylic acid | 郁金香 Tulipa gesneriana | 喷施 Spraying | 花苞 Floral bud | 花香挥发性物质释放量明显提高 The emission of floral volatiles increased markedly | 陈雨馨 等, |
| 菊花 Chrysanthemum morifolium | 喷施 Spraying | 花瓣 Petal | 通过CmWRKY1-CmNPR3转录调控模块,在花发育过程中特异性激活CmEβFS的表达,从而促进(E)-β-法尼烯的生物合成 The CmWRKY1-CmNPR3 transcriptional module specifically activates CmEβFS expression during flower development under SA treatmen,thereby promoting (E)-β-farnesene biosynthesis | Wang et al., | |
| 微型月季 Rosa chinensis‘Mini’ | 喷施 Spraying | 叶片 Leaf | 提高萜类物质合成相关基因的表达水平 Elevates the expression level of genes related to terpenoid biosynthesis | 王启 等, | |
| 欧李‘农大6号’ Prunus humilis‘Nongda 6’ | 喷施 Spraying | 果实 Fruit | 果实不同时期均显著提高了果实的挥发物含量 Significantly increases fruit volatile content at all developmental stages | 张羚绢, | |
| 脱落酸 Abscisic acid | 番茄 Solanum lycopersicum | 浸泡 Immersion | 果实 Fruit | 提高果实中亚油酸和亚麻酸等不饱和脂肪酸的含量,增加 β-大马酮、苯甲醛、苄腈等香气物质的积累 Elevates linoleic and α-linolenic acid contents and promotes the accumulation of aroma compounds such as β-damascenone,benzaldehyde,and benzonitrile | Wu et al., |
| 姜花 Hedychium coronarium | 瓶插 Vase-insertion | 短截花枝 Cut flowering shoot | 促进姜花花香物质合成 Promotes floral scent biosynthesis in Hedychium coronarium | 王楚天, | |
| 乙烯Ethylene | 桂花 Osmanthus fragrans | 盘插 Tray-insertion | 花序 Inflorescence | 抑制芳樟醇、二氢芳樟醇等单萜类化合物释放 Suppresses the emission of monoterpenoids,such as linalool and dihydrolinalool | 邹晶晶 等, |
| 白姜花 Hedychium coronarium‘White’ | 瓶插 Tray-insertion | 短截花枝 Cut flowering shoot | 乙烯处理提高白姜花萜类化合物(如罗勒烯和法尼烯)的挥发量;1-MCP处理抑制萜类化合物的挥发量 Ethylene treatment increases the emission of terpenoids such as ocimene and farnesene from Hedychium coronarium flowers,whereas 1-MCP suppresses terpenoid emission | 刘晓洲 等, | |
| 矮牵牛 Petunia hybrida | 瓶插 Vase-insertion | 短截花枝 Cut flowering shoot | 降低苯甲酸甲酯和其他挥发性有机化合物的排放 Reduces the emission of methyl benzoate and other volatile organic compounds | Underwood et al., |
图1 园艺作物香气物质合成与改良研究进展 光照与外源钙调节剂通过调控植物钙离子浓度影响内源激素合成,进而调节TPS等香气合成关键基因的相对表达量,促进香气物质生物合成;H2O2可单独或与SA协同提升植株内H2O2水平,靶向调控TPS等基因表达以促进香气物质积累;JA、ETH及Auxin通过介导ERF、MYB、ARF 等转录因子家族的表达,调控香气合成关键基因的转录;ABA 通过调控香气物质合成过程,影响植物香气释放。Ca2+:钙离子;H2O2:过氧化氢;SA:水杨酸;ABA:脱落酸;JA:茉莉酸;ETH:乙烯;Auxin:生长素;BR:油菜素内酯;IAA:吲哚乙酸;TyrDC:酪氨酸脱羧酶;DXS:1-脱氧-D-木酮糖-5-磷酸合成酶;G10H:牻牛儿醇10-羟化酶;TPS:萜类合成酶;DXR:1-脱氧-D-木酮糖-5-磷酸还原异构酶;ERF:乙烯响应因子;MYB:MYB结构域蛋白;ARF:生长素响应因子
Fig. 1 Research progress in biosynthesis and improvement of aroma compounds in horticultural crops Light and exogenous calcium regulators affect the synthesis of endogenous hormones by modulating plant calcium ion concentrations,thereby regulating the relative expression levels of key aroma synthesis genes such as TPS to promote the biosynthesis of aroma compounds;H2O2 can independently or synergistically with SA increase endogenous H2O2 levels in plants,and targetedly regulate the expression of TPS and other related genes to facilitate the accumulation of aroma compounds;JA,ETH and Auxin mediate the expression of transcription factor families including ERF,MYB and ARF,further regulating the transcription of key aroma synthesis genes;ABA affects plant aroma emission by modulating the biosynthesis process of aroma compounds. Ca2+:Calcium ion;H2O2:Hydrogen peroxide;SA:Salicylic acid;ABA:Abscisic acid;JA:Jasmonic acid;ETH:Ethylene;Auxin:Auxin;BR:Brassinosteroid;IAA:Indole-3-acetic acid;TyrDC:Tyrosine decarboxylase;DXS:1-Deoxy-D-xylulose-5- phosphate synthase;G10H;Geraniol 10-hydroxylase;TPS:Terpene synthase;DXR:1-Deoxy-D-xylulose-5-phosphate reductoisomerase; ERF:Ethylene responsive factor;MYB:MYB domain protein;ARF:Auxin response factor
| [167] |
|
| [168] |
|
| [169] |
|
| [170] |
|
| [171] |
|
| [172] |
|
| [173] |
|
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [174] |
|
| [175] |
|
| [176] |
|
| [177] |
|
| [178] |
|
| [179] |
|
| [180] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [181] |
|
| [182] |
|
| [183] |
|
| [184] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [185] |
|
|
张佳, 李月庆, 单晓彤, 王丽, 高翔. 2024. 香雪兰花色花香物质合成和调控研究进展. 植物遗传资源学报, 25 (5):679-694.
|
|
| [186] |
|
|
张羚绢. 2024. 外源水杨酸和脱落酸处理对欧李果实挥发性物质的调控研究[硕士论文]. 太谷: 山西农业大学.
|
|
| [187] |
|
| [188] |
|
| [189] |
|
| [190] |
|
| [191] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
|
陈雨馨, 罗巧, 皮学娜, 邬梦玥, 侯健琦, 王艳平, 产祝龙, 向林. 2025. 水杨酸甲酯和茉莉酸甲酯对郁金香花香挥发物的影响. 华中农业大学学报, 44 (5):88-97.
|
|
| [191] |
赵前. 2025. 芍药花香主要萜类合成关键基因的挖掘及功能解析[博士论文]. 杨凌: 西北农林科技大学.
|
| [192] |
|
|
赵炜淑, 万超, 胡莉, 张蕖, 袁媛. 2022. 外施GA3对茉莉花主要萜类物质及其相关基因表达的影响. 亚热带植物科学, 51 (4):241-247.
|
|
| [193] |
|
| [194] |
|
| [195] |
|
| [196] |
|
| [197] |
|
| [198] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [198] |
周金鑫, 魏恬恬, 袁晓雨, 冯立国, 生利霞. 2019. 外源茉莉酸甲酯处理对玫瑰花香成分及含量的影响. 分子植物育种, 17 (14):4776-4784.
|
| [199] |
|
| [200] |
|
| [201] |
|
| [202] |
|
|
邹晶晶, 蔡璇, 曾祥玲, 郑日如, 王彩云. 2017. 桂花不同品种开花过程中香气活性物质的变化. 园艺学报, 44 (8):1517-1534.
|
|
| [203] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
|
付琪, 王丹, 景维坤, 张颢, 王慧纯, 蹇洪英, 邱显钦, 王其刚, 唐开学, 晏慧君. 2025. 月季类胡萝卜素裂解双加氧酶基因RcCCD4在花香合成中的功能. 园艺学报, 52 (3):623-634.
|
|
| [46] |
|
| [47] |
|
|
高婷. 2021. 姜花E3泛素连接酶HcPUB30介导HcWRKY1参与花香调控的机理研究[硕士论文]. 广州: 华南农业大学.
|
|
| [48] |
|
|
高阳, 冶楠, 孔祥锦, 马英虎, 吴娟弟, 韩舜愈, 李蔚. 2022. 外源喷施茉莉酸甲酯类对‘黑比诺’葡萄及葡萄酒香气品质的影响. 食品与发酵科技, 58 (6):1-8.
|
|
| [49] |
|
| [50] |
|
|
郭炳澳. 2024. 桂花OfWRKY21转录因子调控OfCCD4基因表达和花香产生的功能分析[硕士论文]. 开封: 河南大学.
|
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
|
柯艳果. 2019. 生长素信号及其应答因子对姜花花香物质代谢的调控研究[博士论文]. 广州: 华南农业大学.
|
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
|
兰熙, 张乐华, 张金政, 崔洪霞, 姜闯道, 石雷. 2012. 杜鹃花属植物育种研究进展. 园艺学报, 39 (9):1829-1838.
|
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
|
李海燕, 李火根, 杨秀莲, 岳远征, 徐晨, 丁文杰, 王良桂. 2018. 植物花香物质合成与调控研究进展. 分子植物育种, 16 (1):123-129.
|
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
|
刘梦溪, 田瑞平, 曾其龙, 於虹, 韦继光. 2021. 喷施茉莉酸甲酯对高丛越橘品种‘海岸’成熟果实挥发性成分的影响. 植物资源与环境学报, 30 (2):71-73.
|
|
| [89] |
|
|
刘晓洲, 范燕萍, 余让才, 岳跃冲, 李昕悦, 玉云祎. 2018. 乙烯和1-MCP对白姜花萜类香气及相关基因表达的影响. 华南农业大学学报, 39 (4):68-72.
|
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
|
牛童非, 薛娴, 郭丽丽, 郁敏, 张晨洁, 徐鑫傲, 李瑞雅, 侯小改. 2023. 外源茉莉酸甲酯对温室牡丹‘洛阳红’挥发性成分及含量的影响. 林业科学, 59 (5):53-60.
|
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
|
任婷婷, 张廷秀, 战良, 张志昌, 任怡然, 季兴龙, 王培培, 刘源霞, 孟庆福, 刘更森, 房经贵, 冷翔鹏. 2025. 不同光质补光对设施栽培‘阳光玫瑰’葡萄果实品质的影响. 园艺学报, 52 (9):2464-2476.
|
|
| [116] |
|
| [117] |
|
| [118] |
|
| [119] |
|
| [120] |
|
| [121] |
|
|
尚彤. 2023. 玫瑰芳香物质响应茉莉酸甲酯处理的变化及关键基因挖掘[硕士论文]. 泰安: 山东农业大学.
|
|
| [122] |
|
| [123] |
|
| [124] |
|
|
石雪珺. 2020. BTH通过调控H2O2含量调节百合'西伯利亚'单萜类挥发物释放[硕士论文]. 北京: 北京林业大学.
|
|
| [125] |
|
| [126] |
|
| [127] |
|
| [128] |
|
| [129] |
|
| [130] |
|
| [131] |
|
| [132] |
|
| [133] |
|
|
孙晓玲, 董文霞, 蔡晓明, 桂连友, 陈宗懋. 2016. 外用不同浓度茉莉酸甲酯诱导的茶树挥发物的种类和时序变化. 应用昆虫学报, 53 (3):499-506.
|
|
| [134] |
|
| [135] |
|
| [136] |
|
| [137] |
|
| [138] |
|
| [139] |
|
| [140] |
|
| [141] |
|
| [142] |
|
| [143] |
|
| [144] |
|
|
王楚天. 2021. ABA及其信号元件对姜花花香物质合成的调控[博士论文]. 广州: 华南农业大学.
|
|
| [145] |
|
| [146] |
|
| [147] |
|
| [148] |
|
|
王启, 刘广达, 苏蕾. 2020. 水杨酸和茉莉酸甲酯对微型月季萜类次生代谢产物相关基因表达的影响. 分子植物育种, 18 (3):797-803.
|
|
| [149] |
|
| [150] |
|
| [151] |
|
|
王文静, 吕思佳, 汪庆昊, 何凡, 吴月燕. 2021. 植物花香物质代谢与调控研究进展. 分子植物育种, 19 (22):7612-7617.
|
|
| [152] |
|
| [153] |
|
| [154] |
|
| [155] |
|
| [156] |
|
| [157] |
|
|
文典. 2022. 高温、斜纹夜蛾侵害对菊花脑萜类物质生物合成影响的研究[硕士论文]. 南京: 南京农业大学.
|
|
| [158] |
|
| [159] |
|
|
吴淼. 2017. 桂花WRKY3转录因子调控CCD4基因功能的验证[硕士论文]. 开封: 河南大学.
|
|
| [160] |
|
| [161] |
|
|
吴琦, 付宇辰, 冷平生, 胡增辉. 2017. 茉莉酸甲酯(MeJA)处理时长对‘西伯利亚’百合花香的影响. 北京: 中国林业出版社:315-320.
|
|
| [162] |
|
|
吴琦, 付宇辰, 闫子飞, 王少杰, 冷平生, 胡增辉. 2018. 喷施茉莉酸甲酯对百合花香的影响. 江苏农业科学, 46 (6):100-104.
|
|
| [163] |
|
| [164] |
|
| [165] |
|
|
徐善斌, 郑洪亮, 刘利锋, 卜庆云, 李秀峰, 邹德堂. 2022. 利用CRISPR/Cas9技术高效创制长粒香型水稻. 中国水稻科学, 34 (5):406-412.
|
|
| [166] |
|
| [1] | 刘北平, 高暝, 赵耘霄, 汪阳东, 王斌, 方宏峰, 罗明杨, 陈益存. 植物激素对木本植物果实发育和品质形成的调控作用及应用[J]. 园艺学报, 2025, 52(8): 1939-1966. |
| [2] | 李美玉, 王本启, 黄树苹, 陈霞, 谈杰, 张洪源, 王俊良, 陈蓉, 张俊红, 张敏. 花序结构调控研究进展[J]. 园艺学报, 2025, 52(8): 2249-2269. |
| [3] | 唐伶俐, 贺玉花, 王庆涛, 安璐璐, 徐永阳, 张健, 孔维虎, 户克云, 赵光伟. 非呼吸跃变和呼吸跃变型甜瓜成熟果实的激素与转录组分析[J]. 园艺学报, 2025, 52(4): 883-896. |
| [4] | 邵一帆, 朱宝庆, 王童欣, 廖建和, 吴繁花, 杨思怡, 冯建行, 于旭东. 基于激素、转录组和代谢组研究木棉皮刺的遗传调控[J]. 园艺学报, 2025, 52(4): 933-946. |
| [5] | 田玉凤, 马松亚, 杨安, 韩晓蕾, 张彩霞. 苹果砧木B9再生体系的建立与优化[J]. 园艺学报, 2025, 52(4): 947-958. |
| [6] | 王森, 何平, 王海波, 常源升, 何晓文, 郑文燕, 王永旭, 李林光. ‘富士’苹果果实品质与环境因子的关系[J]. 园艺学报, 2025, 52(11): 2931-2942. |
| [7] | 张国鑫, 宋珈凝, 崔霞. 番茄单性结实分子调控机制研究进展[J]. 园艺学报, 2025, 52(10): 2816-2828. |
| [8] | 姬雅静, 李金焱, 张沛宇, 马力群, 朱鸿亮. 番茄果实形状的调控机制研究进展[J]. 园艺学报, 2023, 50(9): 2015-2030. |
| [9] | 孟宪敏, 崔青青, 段韫丹, 庄团结, 濮丹, 董春娟, 杨文才, 尚庆茂. 烯效唑对番茄幼苗嫁接愈合的促进作用及其机理研究[J]. 园艺学报, 2022, 49(6): 1275-1289. |
| [10] | 辛明志1,陶 炼2,樊 胜1,艾炳伟3,闫 淼1,王 珏1,韩明玉1,张 东1,*. 纬度和海拔对主要苹果品种花芽分化期的影响[J]. 园艺学报, 2019, 46(4): 761-774. |
| [11] | 赵书岗1,刘 凯2,文 菁2,王红霞3,*,张志华3,*,滑 磊4. GA3和6-BA对核桃果壳发育的影响[J]. 园艺学报, 2019, 46(11): 2119-2128. |
| [12] | 王小权*,李晟男*,张俊利*,王志敏,魏大勇,汤青林**. 拟南芥和十字花科蔬菜花序发育调控机制研究进展[J]. 园艺学报, 2018, 45(9): 1727-1738. |
| [13] | 尚均忠,向 林,王 月,陈龙清*. 蕨类植物性别决定调控机制研究进展[J]. 园艺学报, 2016, 43(9): 1776-1790. |
| [14] | 刘锴栋*,冯少娴,盘耀亮,黎海利,陈 燕,袁长春*. 番木瓜开花相关基因CpFT1及启动子的克隆与表达分析[J]. 园艺学报, 2016, 43(12): 2359-2368. |
| [15] | 刘建福,王明元,唐源江,杨 晨,钟书淳,陈 钦,范燕萍. 水杨酸和一氧化氮对姜黄生长及次生代谢产物的影响[J]. 园艺学报, 2015, 42(4): 741-750. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司