[1] |
Bergelson J, Kreitman M, Stahl E A, Tian D. 2001. Evolutionary dynamics of plant R-genes. Science, 292 (5525):2281-2285.
pmid: 11423651
|
[2] |
Bhure S S, Bramhankar S B, Thakur K D, Wasnik D G, Pawar R D, Labhasetwar A A, Kakad S A, Ravali T, Sarode C A. 2019. Physiological and biochemical characterization of Xanthomonas axonopodis pv. citri:a gram negative bacterium causing citrus canker. International Journal of Chemical Studies, 7 (1):1941-1944.
|
[3] |
Chenna R, Sugawara H, Koike T, Lopez R, Gibson T J, Higgins D G, Thompson J D. 2003. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Research, 31 (13):3497-3500.
doi: 10.1093/nar/gkg500
pmid: 12824352
|
[4] |
Cui Y N, Jiang J B, Yang H H, Zhao T T, Xu X Y, Li J F. 2018. Virus-induced gene silencing (VIGS) of the NBS-LRR gene SLNLC1compromises Sm-mediated disease resistance to Stemphylium lycopersici in tomato. Biochemical and Biophysical Research Communications, 503 (3):1524-1529.
doi: 10.1016/j.bbrc.2018.07.074
URL
|
[5] |
Das A K. 2003. Citrus canker-a review. Journal of Applied Horticulture, 5 (1):52-60.
doi: 10.37855/jah.2003.v05i01.15
URL
|
[6] |
Di Lorenzo F, Silipo A, Andersen Gersby L B, Palmigiano A, Lanzetta R, Garozzo D, Boyer C, Pruvost O, Newman M, Molinaro A. 2017. Xanthomonas citri pv. citri pathotypes:LPS structure and function as microbe‐associated molecular patterns. ChemBioChem, 18 (8):772-781.
doi: 10.1002/cbic.201600671
URL
|
[7] |
Dodds P N, Rathjen J P. 2010. Plant immunity:towards an integrated view of plant-pathogen interactions. Nature Reviews Genetics, 11 (8):539-548.
doi: 10.1038/nrg2812
URL
|
[8] |
Duvaud S, Gabella C, Lisacek F, Stockinger H, Ioannidis V, Durinx C. 2021. Expasy,the Swiss Bioinformatics Resource Portal,as designed by its users. Nucleic Acids Research, 49:W216-W227.
doi: 10.1093/nar/gkab225
URL
|
[9] |
Fu X Z, Gong X Q, Zhang Y X, Wang Y, Liu J H. 2012. Different transcriptional response to Xanthomonas citri subsp. citri between kumquat and sweet orange with contrasting canker tolerance. PLoS ONE, 7:e41790.
doi: 10.1371/journal.pone.0041790
URL
|
[10] |
He H G, Zhu S Y, Zhao R H, Jiang Z N, Ji Y Y, Ji J, Qiu D, Li H J, Bie T D. 2018. Pm21,encoding a typical CC-NBS-LRR protein,confers broad-spectrum resistance to wheat powdery mildew disease. Molecular Plant, 11:879-882.
doi: 10.1016/j.molp.2018.03.004
URL
|
[11] |
Hu B, Jin J P, Guo A Y, Zhang H, Luo J C, Gao G. 2015. GSDS 2.0:an upgraded gene feature visualization server. Bioinformatics, 31(8):1296-1297.
doi: 10.1093/bioinformatics/btu817
URL
|
[12] |
Huang H, Ullah F, Zhou D X, Yi M, Zhao Y. 2019. Mechanisms of ROS regulation of plant development and stress responses. Frontiers in Plant Science, 10:800.
doi: 10.3389/fpls.2019.00800
pmid: 31293607
|
[13] |
Khan W A, Atiq M, Sahi S T, Khan A A, Ali S, Younas M, Ali Y, Bashir M R, Sajid M. 2018. Induction of resistance against citrus canker through chemicals and plant activators. Advances in Zoology and Botany, 6 (1):26-30.
doi: 10.13189/azb.2018.060103
URL
|
[14] |
Krasileva K V, Dahlbeck D, Staskawicz B J. 2010. Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector. The Plant Cell, 22 (7):2444-2458.
doi: 10.1105/tpc.110.075358
pmid: 20601497
|
[15] |
Kun X, Zhu H F, Zhu X, Liu Z H, Wang Y, Pu W J, Guan P Y, Hu J F. 2021. Overexpression of PsoRPM3,an NBS-LRR gene isolated from myrobalan plum,confers resistance to Meloidogyne incognita in tobacco. Plant Molecular Biology, 107 (3):129-146.
doi: 10.1007/s11103-021-01185-1
URL
|
[16] |
Letunic I, Khedkar S, Bork P. 2021. SMART:recent updates,new developments and status in 2020. Nucleic Acids Research, 49 (D1):D458-D460.
doi: 10.1093/nar/gkaa937
pmid: 33104802
|
[17] |
Li N Y, Zhou L, Zhang D D, Klosterman S J, Li T G, Gui Y J, Kong Z Q, Ma X F, Short D P G, Zhang W Q, Li J J, Subbarao K V, Chen J Y, Dai X F. 2018. Heterologous expression of the cotton NBS-LRR gene GbaNA1 enhances verticillium wilt resistance in Arabidopsis. Frontiers in Plant Science, 9:119.
doi: 10.3389/fpls.2018.00119
URL
|
[18] |
Li Qiang, Qi Jingjing, Dou Wanfu, Qin Xiujuan, He Yongrui, Chen Shanchun. 2020. Overexpression of CsNBS-LRR in citrus confers bacterial canker resistance by regulating SA signaling pathway. Acta Horticulturae Sinica, 47 (5):817-826. (in Chinese)
|
|
李强, 祁静静, 窦万福, 秦秀娟, 何永睿, 陈善春. 2020. 柑橘超量表达CsNBS-LRR通过SA信号途径增强对溃疡病抗性. 园艺学报, 47 (5):817-826.
|
[19] |
Liu J H, Inoue H, Moriguchi T. 2008. Salt stress-mediated changes in free polyamine titers and expression of genes responsible for polyamine biosynthesis of apple in vitro shoots. Environmental And Experimental Botany, 62 (1):28-35.
doi: 10.1016/j.envexpbot.2007.07.002
URL
|
[20] |
Moffett P, Farnham G, Peart J, Baulcombe D C. 2002. Interaction between domains of a plant NBS-LRR protein in disease resistance-related cell death. The EMBO Journal, 21 (17):4511-4519.
doi: 10.1093/emboj/cdf453
URL
|
[21] |
Rairdan G J, Moffett P. 2006. Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation. The Plant Cell, 18 (8):2082-2093.
doi: 10.1105/tpc.106.042747
URL
|
[22] |
Sekhwal M K, Li P C, Lam I, Wang X, Cloutier S, You F M. 2015. Disease resistance gene analogs(RGAs)in plants. International Journal of Molecular Sciences, 16 (8):19248-19290.
doi: 10.3390/ijms160819248
pmid: 26287177
|
[23] |
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5:molecular evolutionary genetics analysis using maximum likelihood,evolutionary distance,and maximum parsimony methods. Molecular Biology and Evolution, 28 (10):2731-2739.
doi: 10.1093/molbev/msr121
URL
|
[24] |
van der Biezen E A, Jones J D G. 1998. Plant disease-resistance proteins and the gene-for-gene concept. Trends in Biochemical Sciences, 23 (12):454-456.
doi: 10.1016/s0968-0004(98)01311-5
pmid: 9868361
|
[25] |
van Ooijen G, Mayr G, Kasiem M M A, Albrecht M, Cornelissen B J C, Takken F L W. 2008. Structure-function analysis of the NB-ARC domain of plant disease resistance proteins. Journal of Experimental Botany, 59 (6):1383-1397.
doi: 10.1093/jxb/ern045
pmid: 18390848
|
[26] |
Wang C L, Zhang X P, Fan Y L, Gao Y, Zhu Q L, Zheng C K, Qin T F, Li Y Q, Che J Y, Zhang M W, Yang B, Liu Y G, Zhao K J. 2015. XA 23 is an executor R protein and confers broad-spectrum disease resistance in rice. Molecular Plant, 8 (2):290-302.
doi: 10.1016/j.molp.2014.10.010
URL
|
[27] |
Wang F S, Wang M, Liu X N, Xu Y Y, Zhu S P, Shen W X, Zhao X C. 2017. Identification of putative genes involved in limonoids biosynthesis in citrus by comparative transcriptomic analysis. Frontiers in Plant Science, 8:782.
doi: 10.3389/fpls.2017.00782
pmid: 28553308
|
[28] |
Wang X, Chen Q, Huang J, Meng X, Cui N, Yu Y, Fan H. 2021. Nucleotide-binding leucine-rich repeat genes CsRSF1 and CsRSF2are positive modulators in the Cucumis sativus defense response to Sphaerotheca fuliginea. International Journal of Molecular Sciences, 22 (8):3986.
doi: 10.3390/ijms22083986
URL
|
[29] |
Wu C H, Krasileva K V, Banfield M J, Terauchi R, Kamoun S. 2015. The“sensor domains”of plant NLR proteins:more than decoys? Frontiers in Plant Science, 6:134.
|
[30] |
Xiao X, Li X, Chen C, Guo W. 2020. DR5 is a suitable system for studying the auxin response in the Poncirus trifoliata-Xanthomonas axonopodis pv. citri interaction. Horticultural Plant Journal, 6 (5):277-283.
doi: 10.1016/j.hpj.2020.07.001
URL
|
[31] |
Xu Q, Wen X P, Deng X X. 2005. Isolation of TIR and nonTIR NBS-LRR resistance gene analogues and identification of molecular markers linked to a powdery mildew resistance locus in chestnut rose(Rosa roxburghii Tratt). Theoretical and Applied Genetics, 111 (5):819-830.
doi: 10.1007/s00122-005-0002-7
URL
|
[32] |
Xu Y J, Liu F, Zhu S W, Li X Y. 2018. The maize NBS-LRR gene ZmNBS25 enhances disease resistance in rice and Arabidopsis. Frontiers in Plant Science, 9:1033.
doi: 10.3389/fpls.2018.01033
URL
|
[33] |
Zhang C, Chen H, Cai T C, Deng Y, Zhuang R R, Zhang N, Zeng Y H, Zheng Y X, Tang R H, Pan R L, Zhuang W J. 2017. Overexpression of a novel peanut NBS-LRR gene AhRRS5 enhances disease resistance to Ralstonia solanacearum in tobacco. Plant Biotechnology Journal, 15 (1):39-55.
doi: 10.1111/pbi.12589
URL
|
[34] |
Zhang Jie, Dong Shameng, Wang Wei, Zhao Jianhua, Chen Xuewei, Guo Huishan, He Guangcun, He Zuhua, Kang Zhensheng, Li Yi, Peng Youliang,Wang Guoliang,Zhou Xueping,Wang Yuanchao,Zhou Jianmin. 2019. Plant immunity research and green control of disease and insect resistance:progress,opportunities and challenges. Scientia Sinica Vitae, 49 (11):1479-1507. (in Chinese)
|
|
张杰, 董莎萌, 王伟, 赵建华, 陈学伟, 郭惠珊, 何光存, 何祖华, 康振生, 李毅, 彭友良, 王国梁, 周雪平, 王源超, 周俭民. 2019. 植物免疫研究与抗病虫绿色防控:进展、机遇与挑战. 中国科学:生命科学, 49 (11):1479-1507.
|