园艺学报 ›› 2022, Vol. 49 ›› Issue (12): 2683-2702.doi: 10.16420/j.issn.0513-353x.2021-0674
收稿日期:
2022-03-22
修回日期:
2022-05-12
出版日期:
2022-12-25
发布日期:
2023-01-02
通讯作者:
娄群峰
E-mail:qflou@njau.edu.cn
SONG Mengfei, ZHA Gaohui, CHEN Jinfeng, LOU Qunfeng()
Received:
2022-03-22
Revised:
2022-05-12
Online:
2022-12-25
Published:
2023-01-02
Contact:
LOU Qunfeng
E-mail:qflou@njau.edu.cn
Supported by:
摘要:
围绕近年来黄瓜株型相关性状在遗传规律、QTL定位以及基因克隆等方面取得的研究结果,从株高、有限/无限生长能力、下胚轴长度、叶形、叶片大小、侧枝分生能力、卷须发育共7个方面在分子基础研究上取得的进展进行综述,分析相关研究中存在的问题及不足,并对理想株型进行展望,以期为黄瓜理想株型的选育提供参考。
中图分类号:
宋蒙飞, 查高辉, 陈劲枫, 娄群峰. 黄瓜株型性状分子基础研究进展[J]. 园艺学报, 2022, 49(12): 2683-2702.
SONG Mengfei, ZHA Gaohui, CHEN Jinfeng, LOU Qunfeng. Research Progress on Molecular Basis of Plant Architecture Related Traits in Cucumber[J]. Acta Horticulturae Sinica, 2022, 49(12): 2683-2702.
性状分类 Classification | 性状/突变体 Phenotype /mutant | 基因名称 Gene name | 基因编号 Gene ID | 参考文献 Reference |
---|---|---|---|---|
株高 Plant height | 矮化Dawrf/cp | cp | CsaV3_4G036030 | Li et al., |
矮化Dawrf/Csdw | CsCLAVATA1 | CsaV3_3G045960 | Xu et al., | |
矮化Dawrf/td-1 | CsGN5 | CsaV3_6G052930 | Chen et al., | |
矮化Dawrf | CsYAB5 | CsaV3_2G002960 | Yan et al., | |
短节间Short internote/si | CsVFB1 | CsaV3_4G034690 | Lin et al., | |
紧凑株型Compact/cp-3 | Cullin | CsaV3_6G017300 | van der Linden, | |
紧凑株型Compact/cpa | CsDWF5 | CsaV3_7G033720 | Zhang et al., | |
超级紧凑株型Super compact/scp-1 | CsCYP85A | CsaV3_5G038650 | Wang et al., | |
超级紧凑株型Super compact/scp-2 | CsDET2 | CsaV3_3G034190 | Hou et al., | |
短节间距Short internote | CsIVP | CsaV3_6G041730 | Yan et al., | |
有限生长 Determinate growth | 有限生长Determinate growth/de | CsTFL1 | CsaV3_6G040640 | Wen et al., |
CsTLF1d /CsCEN | CsaV3_6G014990 | Njogu et al., | ||
CsLFY | CsaV3_1G000050 | Zhao et al., | ||
CsCML25 | CsaV3_5G028160 | 王雪艳 等, | ||
下胚轴长度 Hypocotyl length | 短下胚轴Short hypocotyl/sh1 | sh1 | CsaV3_3G012370 | Bo et al., |
短下胚轴Short hypocotyl/sh5.1 | sh5.1 | CsaV3_5G005500 | Zhang et al., | |
长下胚轴Long hypocotyl/lh | CsLH | CsaV3_3G015190 | Liu et al., | |
叶形 Leaf shape | 裂叶Lobed leaves | CsHAN1 | CsaV3_4G005580 | Ding et al., |
小心形叶 Small and cordate leaf/scl1 | scl1 | CsaV3_7G006420 | Gao et al., | |
窄叶Narrower leaf/mango fruit | CsWOX1 | CsaV3_1G007120 | Niu et al., | |
卷叶Curly leaf/cul-1,cul-2 | CsPHB | CsaV3_6G052310 | Rong et al., | |
圆叶Round leaf/rl | rl | CsaV3_1G036980 | Song et al., | |
叶大小 Leaf size | 小叶Little leaf/ll | ll | CsaV3_6G009540 | Yang et al., |
小心形叶 Small and cordate leaf/scl1 | scl1 | CsaV3_7G006420 | Gao et al., | |
真叶变形 Rosette leaf | CsBRC1-like | CsaV3_1G006490 | Shen et al., | |
侧枝发育 Lateral branch | 侧枝抑制 Lateral suppressor | CLS | CsaV3_3G003590 | Yuan et al., |
多分枝 Multiple branches | CsBRC1 | CsaV3_1G003610 | Shen et al., | |
卷须发育 Tendril | 卷须退化Modified tendrils/ten | TEN | CsaV3_5G039160 | Wang et al., |
卷须异常Tendril-less/td-1 | CsGN5 | CsaV3_6G052930 | Chen et al., |
表1 黄瓜株型调控基因
Table 1 Plant architecture related genes in cucumber
性状分类 Classification | 性状/突变体 Phenotype /mutant | 基因名称 Gene name | 基因编号 Gene ID | 参考文献 Reference |
---|---|---|---|---|
株高 Plant height | 矮化Dawrf/cp | cp | CsaV3_4G036030 | Li et al., |
矮化Dawrf/Csdw | CsCLAVATA1 | CsaV3_3G045960 | Xu et al., | |
矮化Dawrf/td-1 | CsGN5 | CsaV3_6G052930 | Chen et al., | |
矮化Dawrf | CsYAB5 | CsaV3_2G002960 | Yan et al., | |
短节间Short internote/si | CsVFB1 | CsaV3_4G034690 | Lin et al., | |
紧凑株型Compact/cp-3 | Cullin | CsaV3_6G017300 | van der Linden, | |
紧凑株型Compact/cpa | CsDWF5 | CsaV3_7G033720 | Zhang et al., | |
超级紧凑株型Super compact/scp-1 | CsCYP85A | CsaV3_5G038650 | Wang et al., | |
超级紧凑株型Super compact/scp-2 | CsDET2 | CsaV3_3G034190 | Hou et al., | |
短节间距Short internote | CsIVP | CsaV3_6G041730 | Yan et al., | |
有限生长 Determinate growth | 有限生长Determinate growth/de | CsTFL1 | CsaV3_6G040640 | Wen et al., |
CsTLF1d /CsCEN | CsaV3_6G014990 | Njogu et al., | ||
CsLFY | CsaV3_1G000050 | Zhao et al., | ||
CsCML25 | CsaV3_5G028160 | 王雪艳 等, | ||
下胚轴长度 Hypocotyl length | 短下胚轴Short hypocotyl/sh1 | sh1 | CsaV3_3G012370 | Bo et al., |
短下胚轴Short hypocotyl/sh5.1 | sh5.1 | CsaV3_5G005500 | Zhang et al., | |
长下胚轴Long hypocotyl/lh | CsLH | CsaV3_3G015190 | Liu et al., | |
叶形 Leaf shape | 裂叶Lobed leaves | CsHAN1 | CsaV3_4G005580 | Ding et al., |
小心形叶 Small and cordate leaf/scl1 | scl1 | CsaV3_7G006420 | Gao et al., | |
窄叶Narrower leaf/mango fruit | CsWOX1 | CsaV3_1G007120 | Niu et al., | |
卷叶Curly leaf/cul-1,cul-2 | CsPHB | CsaV3_6G052310 | Rong et al., | |
圆叶Round leaf/rl | rl | CsaV3_1G036980 | Song et al., | |
叶大小 Leaf size | 小叶Little leaf/ll | ll | CsaV3_6G009540 | Yang et al., |
小心形叶 Small and cordate leaf/scl1 | scl1 | CsaV3_7G006420 | Gao et al., | |
真叶变形 Rosette leaf | CsBRC1-like | CsaV3_1G006490 | Shen et al., | |
侧枝发育 Lateral branch | 侧枝抑制 Lateral suppressor | CLS | CsaV3_3G003590 | Yuan et al., |
多分枝 Multiple branches | CsBRC1 | CsaV3_1G003610 | Shen et al., | |
卷须发育 Tendril | 卷须退化Modified tendrils/ten | TEN | CsaV3_5G039160 | Wang et al., |
卷须异常Tendril-less/td-1 | CsGN5 | CsaV3_6G052930 | Chen et al., |
性状 Trait | 参考文献 Reference | QTL | 贡献率/% Contribution | 连锁群号 Linkage group No. | 染色体号 Chromosome No. |
---|---|---|---|---|---|
主茎长度 Main stem length | Serquen et al., | F-de | 44.5 | B | |
OP-R13-OP-H5 | 6.5 | C | |||
ll-BC-592 | 12.1 | D | |||
U15-2-OP-I20 | 8.0 | E | |||
OP-AB14-BC-469 | 9.5 | G | |||
株高 Plant height | 辛明 等, | Qchl1 | 23.0 | 1 | |
Qchl2 | 8.4 | 1 | |||
嵇怡 等, | QPH4_1 | 13.2 | 4 | ||
QPH4_2 | 13.0 | 4 | |||
苗晗 等, | Msl1.1 | 17.2 ~ 32.1 | 1 | ||
Msl6.1 | 8.6 | 6 | |||
Msl6.2 | 9.6 | 6 | |||
节间距 Length of the main stem internode | 苗晗 等, | Lmi1.1 | 11.5 ~ 25.0 | 1 | |
Lmi2.1 | 8.5 | 2 | |||
Lmi5.1 | 10.0 | 5 | |||
Lmi5.2 | 8.1 | 5 | |||
Lmi6.1 | 11.5 | 6 | |||
Lmi6.2 | 7.5 | 6 | |||
嵇怡 等, | QPN4_1 | 13.1 | 4 | ||
节数 Node number of main stem | 苗晗 等, | Nms1.1 | 32.7 | 1 | |
下胚轴长 Hypocotyl length | 张冠英 等, | Hyl1.1 | 12.2 | 1 | |
Hyl2.1 | 9.4 | 2 | |||
Hyl2.2 | 7.4 | 2 | |||
Hyl2.3 | 5.5 | 2 | |||
Hyl2.4 | 5.9 | 2 | |||
Hyl4.1 | 8.9 | 4 | |||
Hyl4.2 | 6.9 | 4 | |||
Hyl6.1 | 19.8 | 6 | |||
Hyl6.2 | 10.4 | 6 | |||
Hyl7.1 | 6.4 | 7 | |||
苗晗 等, | Hl5.1 | 15.2 | 5 | ||
Hl5.2 | 13.4 | 5 | |||
Hl5.3 | 11.4 ~ 21.0 | 5 | |||
Hl6.1 | 22.6 ~ 24.2 | 6 | |||
Hl6.2 | 17.6 ~ 22.5 | 6 | |||
Wang et al., | Hl1.1 | 10.3 | 4 | ||
Hl2.1 | 7.6 ~ 11.3 | 2 | |||
Hl2.2 | 8.7 | 2 | |||
Hl3.1 | 10.0 | 3 | |||
Hl3.2 | 13.7 | 3 | |||
Hl3.3 | 15.1 | 3 | |||
Hl3.4 | 12.7 | 3 | |||
Hl5.1 | 14.8 | 5 | |||
性状 Trait | 参考文献 Reference | QTL | 贡献率/% Contribution | 连锁群号 Linkage group No. | 染色体号 Chromosome No. |
Hl5.2 | 10.8 | 5 | |||
Hl6.1 | 11.4 | 6 | |||
蔡和序 等, | Hl1.1 | \ | 1 | ||
Hl1.2 | \ | 1 | |||
Hl2.1 | \ | 2 | |||
Hl3.1 | \ | 3 | |||
Hl3.2 | \ | 3 | |||
Hl4.1 | \ | 4 | |||
Hl5.1 | \ | 5 | |||
Hl6.1 | \ | 6 | |||
叶面积 Leaf area | Fazio et al., | ll | \ | 1 | |
吴鹏 等, | Qchl1 | 8.7 | 1 | ||
Weng et al., | ll | \ | 6 | ||
史婷婷 等, | ll2 | 21.2 | 7 | ||
张海英 等, | la-1 | 10.6 | 1 | ||
la-2 | 11.9 | 1 | |||
la-3 | 7.3 | 1 | |||
la-4 | 8.3 | 7 | |||
la-5 | 20.2 | 9 | |||
叶大小 Leaf size | Qi et al., | ls1.1 | \ | 1 | |
ls2.1 | \ | 2 | |||
ls2.2 | \ | 2 | |||
李效尊, | lhl1.1 | 8.2 | 1 | ||
lhl1.2 | 9.6 | 1 | |||
lhl1.3 | 19.5 | 1 | |||
lhl1.4 | 5.1 ~ 7.0 | 1 | |||
lhl2.1 | 14.1 | 2 | |||
lhl2.2 | 8.1 | 2 | |||
lhl2.3 | 32.9 | 2 | |||
lhl6.1 | 4.7 ~ 9.5 | 6 | |||
侧枝长度 Lateral branch length | Wang et al., | lbl1 | 10.4 | 2 | |
lbl1 | 6.2 | 2 | |||
lbl1 | 7.7 | 1 | |||
lbl1 | 6.9 | 7 | |||
侧枝数 Lateral branch number | Serquen et al., | F | 13.1 | B | |
de-OP-L18-2 | 39.6 | B | |||
BC-403-OP-W7-2 | 13.6 | D | |||
OP-AJ6-BC-523 | 11.0 | D | |||
Fazio et al., | mlb1.1 | 9.1 ~ 10.6 | 1 | ||
mlb1.2 | 2.3 | 1 | |||
mlb1.3 | 1.8 | 1 | |||
mlb1.4 | 8.1 ~ 32.4 | 1 | |||
mlb3.1 | 3.5 | 3 | |||
mlb4.1 | 5.4 | 4 | |||
mlb4.2 | 4.2 | 4 | |||
mlb4.3 | 2.8 | 4 | |||
mlb4.4 | 1.7 ~ 4.6 | 4 | |||
mlb5.1 | 7.2 | 5 | |||
mlb6.1 | 1.5 ~ 2.9 | 6 | |||
mlb6.2 | 3.7 ~ 4.3 | 6 | |||
mlb7.1 | 2.8 | 7 | |||
Wang et al., | lbn1 | 10.6 | 2 | ||
lbn2 | 7.6 | 2 | |||
lbn3 | 6.5 | 1 | |||
lbn4 | 10.0 | 7 |
表2 黄瓜株型调控相关QTL
Table 2 QTLs related to plant type regulation in cucumber
性状 Trait | 参考文献 Reference | QTL | 贡献率/% Contribution | 连锁群号 Linkage group No. | 染色体号 Chromosome No. |
---|---|---|---|---|---|
主茎长度 Main stem length | Serquen et al., | F-de | 44.5 | B | |
OP-R13-OP-H5 | 6.5 | C | |||
ll-BC-592 | 12.1 | D | |||
U15-2-OP-I20 | 8.0 | E | |||
OP-AB14-BC-469 | 9.5 | G | |||
株高 Plant height | 辛明 等, | Qchl1 | 23.0 | 1 | |
Qchl2 | 8.4 | 1 | |||
嵇怡 等, | QPH4_1 | 13.2 | 4 | ||
QPH4_2 | 13.0 | 4 | |||
苗晗 等, | Msl1.1 | 17.2 ~ 32.1 | 1 | ||
Msl6.1 | 8.6 | 6 | |||
Msl6.2 | 9.6 | 6 | |||
节间距 Length of the main stem internode | 苗晗 等, | Lmi1.1 | 11.5 ~ 25.0 | 1 | |
Lmi2.1 | 8.5 | 2 | |||
Lmi5.1 | 10.0 | 5 | |||
Lmi5.2 | 8.1 | 5 | |||
Lmi6.1 | 11.5 | 6 | |||
Lmi6.2 | 7.5 | 6 | |||
嵇怡 等, | QPN4_1 | 13.1 | 4 | ||
节数 Node number of main stem | 苗晗 等, | Nms1.1 | 32.7 | 1 | |
下胚轴长 Hypocotyl length | 张冠英 等, | Hyl1.1 | 12.2 | 1 | |
Hyl2.1 | 9.4 | 2 | |||
Hyl2.2 | 7.4 | 2 | |||
Hyl2.3 | 5.5 | 2 | |||
Hyl2.4 | 5.9 | 2 | |||
Hyl4.1 | 8.9 | 4 | |||
Hyl4.2 | 6.9 | 4 | |||
Hyl6.1 | 19.8 | 6 | |||
Hyl6.2 | 10.4 | 6 | |||
Hyl7.1 | 6.4 | 7 | |||
苗晗 等, | Hl5.1 | 15.2 | 5 | ||
Hl5.2 | 13.4 | 5 | |||
Hl5.3 | 11.4 ~ 21.0 | 5 | |||
Hl6.1 | 22.6 ~ 24.2 | 6 | |||
Hl6.2 | 17.6 ~ 22.5 | 6 | |||
Wang et al., | Hl1.1 | 10.3 | 4 | ||
Hl2.1 | 7.6 ~ 11.3 | 2 | |||
Hl2.2 | 8.7 | 2 | |||
Hl3.1 | 10.0 | 3 | |||
Hl3.2 | 13.7 | 3 | |||
Hl3.3 | 15.1 | 3 | |||
Hl3.4 | 12.7 | 3 | |||
Hl5.1 | 14.8 | 5 | |||
性状 Trait | 参考文献 Reference | QTL | 贡献率/% Contribution | 连锁群号 Linkage group No. | 染色体号 Chromosome No. |
Hl5.2 | 10.8 | 5 | |||
Hl6.1 | 11.4 | 6 | |||
蔡和序 等, | Hl1.1 | \ | 1 | ||
Hl1.2 | \ | 1 | |||
Hl2.1 | \ | 2 | |||
Hl3.1 | \ | 3 | |||
Hl3.2 | \ | 3 | |||
Hl4.1 | \ | 4 | |||
Hl5.1 | \ | 5 | |||
Hl6.1 | \ | 6 | |||
叶面积 Leaf area | Fazio et al., | ll | \ | 1 | |
吴鹏 等, | Qchl1 | 8.7 | 1 | ||
Weng et al., | ll | \ | 6 | ||
史婷婷 等, | ll2 | 21.2 | 7 | ||
张海英 等, | la-1 | 10.6 | 1 | ||
la-2 | 11.9 | 1 | |||
la-3 | 7.3 | 1 | |||
la-4 | 8.3 | 7 | |||
la-5 | 20.2 | 9 | |||
叶大小 Leaf size | Qi et al., | ls1.1 | \ | 1 | |
ls2.1 | \ | 2 | |||
ls2.2 | \ | 2 | |||
李效尊, | lhl1.1 | 8.2 | 1 | ||
lhl1.2 | 9.6 | 1 | |||
lhl1.3 | 19.5 | 1 | |||
lhl1.4 | 5.1 ~ 7.0 | 1 | |||
lhl2.1 | 14.1 | 2 | |||
lhl2.2 | 8.1 | 2 | |||
lhl2.3 | 32.9 | 2 | |||
lhl6.1 | 4.7 ~ 9.5 | 6 | |||
侧枝长度 Lateral branch length | Wang et al., | lbl1 | 10.4 | 2 | |
lbl1 | 6.2 | 2 | |||
lbl1 | 7.7 | 1 | |||
lbl1 | 6.9 | 7 | |||
侧枝数 Lateral branch number | Serquen et al., | F | 13.1 | B | |
de-OP-L18-2 | 39.6 | B | |||
BC-403-OP-W7-2 | 13.6 | D | |||
OP-AJ6-BC-523 | 11.0 | D | |||
Fazio et al., | mlb1.1 | 9.1 ~ 10.6 | 1 | ||
mlb1.2 | 2.3 | 1 | |||
mlb1.3 | 1.8 | 1 | |||
mlb1.4 | 8.1 ~ 32.4 | 1 | |||
mlb3.1 | 3.5 | 3 | |||
mlb4.1 | 5.4 | 4 | |||
mlb4.2 | 4.2 | 4 | |||
mlb4.3 | 2.8 | 4 | |||
mlb4.4 | 1.7 ~ 4.6 | 4 | |||
mlb5.1 | 7.2 | 5 | |||
mlb6.1 | 1.5 ~ 2.9 | 6 | |||
mlb6.2 | 3.7 ~ 4.3 | 6 | |||
mlb7.1 | 2.8 | 7 | |||
Wang et al., | lbn1 | 10.6 | 2 | ||
lbn2 | 7.6 | 2 | |||
lbn3 | 6.5 | 1 | |||
lbn4 | 10.0 | 7 |
图1 部分黄瓜紧凑株型/矮化突变体
Fig. 1 Several compact / dwarf mutants of cucumber cp(Li et al.,2011);si(Lin et al.,2016);scp-1(Wang et al.,2017);scp-2(Hou et al.,2017);Csdw(Xu et al.,2018);cpa(Zhang et al.,2021b).
图2 黄瓜有限生长材料 A:CsTFL1突变体WI1983Hde(Wen et al.,2019);B:CsTFL1d的RNAi沉默植株(Wen et al.,2021);C:CsCEN突变体D226(Njogu et al.,2020);D:CsLFY的RNAi沉默植株(Zhao et al.,2018)。
Fig. 2 Determine growth cucumber varieties A:CsTFL1 mutant WI1983Hde(Wen et al.,2019);B:RNAi gene silencing plants of CsTFL1d gene(Wen et al.,2021);C:CsCEN mutant D226(Njogu et al.,2020);D:RNAi silencing plants of CsLFY gene(Zhao et al.,2018).
图3 黄瓜下胚轴长度突变体 A:短下胚轴西双版纳型黄瓜(Bo et al.,2016);B:光敏感型长下胚轴突变体lh(Liu et al.,2021);C:温度敏感性短下胚轴突变体sh5.1(Zhang et al.,2021a)。
Fig. 3 Cucumber hypocotyl length mutants A:Xishuangbanna cucumber with short hypocotyl growth habit(Bo et al.,2016);B:Light-sensitive long hypocotyl mutant lh(Liu et al.,2021); C:Temperature sensitive short hypocotyl mutant sh5.1(Zhang et al.,2021a).
图6 nlb及CsBRC1基因调控黄瓜侧枝发育 A:nlb突变导致黄瓜无侧枝发育(任国良 等,2013);B:CsBRC1的RNAi沉默植株具有多分枝表型(Shen et al.,2019)。
Fig. 6 nlb and CsBRC1 genes regulate cucumber lateral branch development A:nlb gene mutation resulted in no lateral branch development in cucumber(Ren et al.,2013);B:The RNAi transgenic plant of CsBRC1 gene produced multi branches(Shen et al.,2019).
图7 黄瓜卷须发育异常突变体 A:ten卷须退化突变体(Wang et al.,2015);B:td-1无卷须突变体(Chen et al.,2017)。
Fig. 7 Cucumber abnormal tendril development mutants A:ten mutant(Wang et al.,2015);B:td-1 mutant(Chen et al.,2017).
[1] | Bo K, Wang H, Pan Y, Behera T K, Pandey S, Wen C, Wang Y, Simon P W, Li Y, Chen J, Weng Y. 2016. SHORT HYPOCOTYL1 encodes a SMARCA3-like chromatin remodeling factor regulating elongation. Plant Physiol, 172:1273-1292. |
[2] | Cai He-xu, Bo Kai-liang, Zhou Qi, Miao Han, Dong Shao-yun, Gu Xing-fang, Zhang Sheng-ping. 2020. GWAS analysis of hypocotyl length and candidate gene mining in cucumber seedlings. Scientia Agricultura Sinica, 53 (1):122-132. (in Chinese) |
蔡和序, 薄凯亮, 周琪, 苗晗, 董邵云, 顾兴芳, 张圣平. 2020. 黄瓜幼苗下胚轴长度GWAS分析及候选基因挖掘. 中国农业科学, 53 (1):122-132. | |
[3] | Cao Qi-wei, Zhang Yun-nan, Wang Yong-qiang, Yang Gui-lan, Sun Xiao-lei, Li Li-bin. 2018. Genetic analysis of internode length using mixed major-gene plus polygene inheritance model in Cucumis sativus. Journal of Agricultural Biotechnology, 26 (2):205-212. (in Chinese) |
曹齐卫, 张允楠, 王永强, 杨桂兰, 孙小镭, 李利斌. 2018. 黄瓜节间长的主基因 + 多基因混合遗传模型分析. 农业生物技术学报, 26 (2):205-212. | |
[4] |
Chen F, Fu B, Pan Y, Zhang C, Wen H, Weng Y, Chen P, Li Y. 2017. Fine mapping identifies CsGCN5 encoding a histone acetyltransferase as putative candidate gene for tendril-less1 mutation(td-1)in cucumber. Theor Appl Genet, 130:1549-1558.
doi: 10.1007/s00122-017-2909-1 URL |
[5] | Crienen J, Reuling G, Segers B, van de Wal M. 2008. New cucumber plants with a compact growing habit. Netherlands,Patent number:NL20072000992,20081107. |
[6] |
Ding L, Yan S, Jiang L, Liu M, Zhang J, Zhao J, Zhao W, Han Y Y, Wang Q, Zhang X. 2015. HANABA TARANU regulates the shoot apical meristem and leaf development in cucumber(Cucumis sativus L.). J Exp Bot, 66:7075-7087.
doi: 10.1093/jxb/erv409 URL |
[7] |
Donald C M. 1968. The breeding of crop ideotypes. Euphytica, 17:385-403.
doi: 10.1007/BF00056241 URL |
[8] |
Duncan W G. 1971. Leaf angles,leaf area,and canopy photosynthesis. Crop Sci, 11 (4):482-485.
doi: 10.2135/cropsci1971.0011183X001100040006x URL |
[9] |
Fazio G, Chung S M, Staub J E. 2003a. Comparative analysis of response to phenotypic and marker-assisted selection for multiple lateral branching in cucumber(Cucumis sativus L.). Theor Appl Genet, 107:875-883.
doi: 10.1007/s00122-003-1313-1 URL |
[10] |
Fazio G, Staub J E, Stevens M R. 2003b. Genetic mapping and QTL analysis of horticultural traits in cucumber(Cucumis sativus L.)using recombinant inbred lines. Theor Appl Genet, 107:864-874.
doi: 10.1007/s00122-003-1277-1 URL |
[11] |
Ford B A, Foo E, Sharwood R, Karafiatova M, Vrána J, MacMillan C, Nichols D S, Steuernagel B, Uauy C, Doležel J, Chandler P M, Spielmeyer W. 2018. Rht18 semidwarfism in wheat is due to increased GA 2-oxidaseA9 expression and reduced GA content. Plant Physiol, 177:168-180.
doi: 10.1104/pp.18.00023 URL |
[12] |
Gao D, Zhang C, Zhang S, Hu B, Wang S, Zhang Z, Huang S. 2017. Mutation in a novel gene SMALL AND CORDATE LEAF 1 affects leaf morphology in cucumber. J Integr Plant Biol, 59:736-741.
doi: 10.1111/jipb.12558 URL |
[13] |
George Jr W L. 1970. Genetic and environmental modification of determinant plant habit in cucumbers. J Amer Soc Hort Sci. 95:583-586.
doi: 10.21273/JASHS.95.5.583 URL |
[14] |
Gonzalez N, Vanhaeren H. 2012. Leaf size control:complex coordination of cell division and expansion. Trends Plant Sci, 17 (6):332-340.
doi: 10.1016/j.tplants.2012.02.003 URL |
[15] | Gu Xing-fang, Zhang Chun-zhen, Feng Lin-lin, Fang Xiu-juan, Zhang Tian-ming. 2002. Genetic analysis of some seedling characters in protected cucumber. Acta Horticulturae Sinica, 29 (5):443-446. (in Chinese) |
顾兴芳, 张春震, 封林林, 方秀娟, 张天明. 2002. 保护地黄瓜苗期性状遗传分析. 园艺学报, 29 (5):443-446. | |
[16] |
Guo W, Chen L, Herrera-Estrella L, Cao D, Tran L. 2020. Altering plant architecture to improve performance and resistance. Trends in Plant Science, 25 (11):1154-1170.
doi: 10.1016/j.tplants.2020.05.009 pmid: 32595089 |
[17] |
Hou S, Niu H, Tao Q, Wang S, Gong Z, Li S, Weng Y, Li Z. 2017. A mutant in the CsDET2 gene leads to a systemic brassinosteriod deficiency and super compact phenotype in cucumber(Cucumis sativus L.). Theor Appl Genet, 130:1693-1703.
doi: 10.1007/s00122-017-2919-z URL |
[18] |
Huang S, Li R, Zhang Z, Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P, Ren Y, Zhu H, Li J, Lin K, Jin W, Fei Z, Li G, Staub J, Kilian A, van der Vossen EA, Wu Y, Guo J, He J, Jia Z, Ren Y, Tian G, Lu Y, Ruan J, Qian W ang M, Huang Q, Li B, Xuan Z, Cao J,Asan, Wu Z, Zhang J, Cai Q, Bai Y, Zhao B, Han Y, Li Y, Li X, Wang S, Shi Q, Liu S, Cho WK, Kim JY, Xu Y, Heller-Uszynska K, Miao H, Cheng Z, Zhang S, Wu J, Yang Y, Kang H, Li M, Liang H, Ren X, Shi Z, Wen M, Jian M, Yang H, Zhang G, Yang Z, Chen R, Liu S, Li J, Ma L, Liu H, Zhou Y, Zhao J, Fang X, Li G, Fang L, Li Y, Liu D, Zheng H, Zhang Y, Qin N, Li Z, Yang G, Yang S, Bolund L, Kristiansen K, Zheng H, Li S, Zhang X, Yang H, Wang J, Sun R, Zhang B, Jiang S, Wang J, Du Y, Li S. 2009. The genome of the cucumber,Cucumis sativus L. Nat Genet, 41:1275-1281.
doi: 10.1038/ng.475 URL |
[19] | Hutchins A E. 1940. Inheritance in the cucumber. Journal of Agriculture Research, 60:117-128. |
[20] |
Isnard S, Silk W K. 2009. Moving with climbing plants from Charles Darwin’s time into the 21st century. Am J Bot, 96:1205.
doi: 10.3732/ajb.0900045 URL |
[21] |
Jiang S, Yuan X J, Pan J S, He H L, Cai R. 2008. Quantitative trait locus analysis of lateral branch-related traits in cucumber(Cucumis sativus L.) using recombinant inbred lines. Sci China,Ser C Life Sci, 51:833-841.
doi: 10.1007/s11427-008-0101-1 URL |
[22] | Ji Yi, Xu Qiang, Chen Xue-hao. 2009. Genetic model analysis of plant height in Cucumis sativus L. Journal of Yangzhou University(Agricultural and Life Science Edition), 30 (3):75-79. (in Chinese) |
嵇怡, 徐强, 陈学好. 2009. 黄瓜株高性状遗传模型分析. 扬州大学学报(农业与生命科学版), 30 (3):75-79. | |
[23] |
Kauffman C S, Lower R L. 1976. Inheritance of an extreme dwarf plant type in the cucumber. Journal of the American Society Horticultural Science, 101:150-151.
doi: 10.21273/JASHS.101.2.150 URL |
[24] | Li Dan-dan, Si Long-ting, Luo Xiao-mei, Li Tao. 2009. Genetic analysis on hypocotyl traits of cucumber seedlings under low light stress. Journal of Northwest A & F University(Natural Science Edition), 37 (11):113-119. (in Chinese) |
李丹丹, 司龙亭, 罗晓梅, 李涛. 2009. 弱光胁迫下黄瓜苗期下胚轴性状的遗传分析. 西北农林科技大学学报(自然科学版), 37 (11):113-119. | |
[25] | Li Xi-xiang, Shen Di, Song Jiang-ping, Zhang Chun-zhen. 1999. Origin and genetic diversity of cucumber germplasm resources in China. Journal of Crop Germplasm Resources, 3:29-30. (in Chinese) |
李锡香, 沈镝, 宋江萍, 张春震. 1999. 中国黄瓜种质资源的来源及遗传多样性表现. 作物品种资源, 3:29-30. | |
[26] | Li Xiao-zun. 2007. QTL mapping and analysis of important traits in cucumber(Cucumis sativus L.)[Ph. D. Dissertation]. Shanghai: Shanghai Jiao Tong University. (in Chinese) |
李效尊. 2007. 黄瓜重要性状的QTL定位与分析[博士论文]. 上海: 上海交通大学. | |
[27] |
Li Y, Yang L, Pathak M, Li D, He X, Weng Y. 2011. Fine genetic mapping of cp:a recessive gene for compact(dwarf)plant architecture in cucumber,Cucumis sativus L. Theor Appl Genet, 123:973-983.
doi: 10.1007/s00122-011-1640-6 URL |
[28] |
Liljegren S, Gustafson-Brown C, Pinyopich A, Ditta G, Yanofsky M. 1999. Interactions among APETALA1,LEAFY,and TERMINAL FLOWER1 specify meristem fate, Plant Cell, 11 (6):1007-1018.
doi: 10.1105/tpc.11.6.1007 pmid: 10368173 |
[29] |
Lin T, Wang S, Zhong Y, Gao D, Cui Q, Chen H, Zhang Z, Shen H, Weng Y, Huang S. 2016. A truncated F-Box protein confers the dwarfism in cucumber. J Genet Genomics, 43:223-226.
doi: 10.1016/j.jgg.2016.01.007 pmid: 27090606 |
[30] |
Liu B, Weng J, Guan D, Zhang Y, Niu Q, López-Juez E, Lai Y, Garcia-Mas J, Huang D. 2021. A domestication-associated gene,CsLH,encodes a phytochrome B protein that regulates hypocotyl elongation in cucumber. Mol Horticulture, 1:3.
doi: 10.1186/s43897-021-00005-w URL |
[31] |
Liu X, Hao N, Li H, Ge D, Du Y, Liu R, Wen C, Li Y, Zhang X, Wu T. 2019. PINOID is required for lateral organ morphogenesis and ovule development in cucumber. J Exp Bot, 70:5715-5730.
doi: 10.1093/jxb/erz354 pmid: 31407012 |
[32] |
Lu Z, Yu H, Xiong G, Wang J, Jiao Y, Liu G, Jing Y, Meng X, Hu X, Qian Q, Fu X, Wang Y, Li J. 2013. Genome-wide binding analysis of the transcription activator IDEAL PLANT ARCHITECTURE1 reveals a complex network regulating rice plant architecture. Plant Cell, 25:3743-3759.
doi: 10.1105/tpc.113.113639 URL |
[33] | Miao Han, Gu Xing-fang, Zhang Sheng-ping, Zhang Zhong-hua, Huang San-wen, Wang Ye. 2012a. Detection of quantitative trait loci for plant height in different environments using an RIL population in cucumber. Scientia Agricultura Sinica, 45 (22):4552-4560. (in Chinese) |
苗晗, 顾兴芳, 张圣平, 张忠华, 黄三文, 王烨. 2012a. 利用永久群体在不同环境下定位黄瓜株高QTL. 中国农业科学, 45 (22):4552-4560. | |
[34] | Miao Han, Gu Xing-fang, Zhang Sheng-ping, Zhang Zhong-hua, Huang San-wen, Wang Ye, Fang Zhi-yuan. 2012b. Mapping QTLs for Seedling-associated Traits in cucumber. Acta Horticulturae Sinica, 39 (5):879-887. (in Chinese) |
苗晗, 顾兴芳, 张圣平, 张忠华, 黄三文, 王烨, 方智远. 2012b. 黄瓜苗期主要农艺性状相关QTL定位分析. 园艺学报, 39 (5):879-887. | |
[35] |
Nanasato Y, Tabei Y. 2020. A method of transformation and current progress in transgenic research on cucumbers and cucurbita species. Plant Biotechnol, 37:141-146.
doi: 10.5511/plantbiotechnology.20.0225a URL |
[36] | Niemirowicz-Szczytt K, Rucinska M, Korzeniewsia A. 1996. An induced mutation in cucumber:super compact. Cucurbit Genetic Coop Report, 19:1-3. |
[37] | Niu H, Liu X, Tong C, Wang H, Li S, Lu L, Pan Y, Zhang X, Weng Y, Li Z. 2018. The WUSCHEL-related homeobox1 gene of cucumber regulates reproductive organ development. J Exp Bot, 69:5373-5387. |
[38] |
Njogu M K, Yang F, Li J, Wang X, Ogweno J O, Chen J. 2020. A novel mutation in TFL1 homolog sustaining determinate growth in cucumber(Cucumis sativus L.). Theor Appl Genet, 133:3323-3332.
doi: 10.1007/s00122-020-03671-4 URL |
[39] |
Peng S, Khush G S, Virk P, Tang Q, Zou Y. 2008. Progress in ideotype breeding to increase rice yield potential. Field Crops Research, 108:32-38.
doi: 10.1016/j.fcr.2008.04.001 URL |
[40] |
Qi J, Liu X, Shen D, Miao H, Xie B, Li X, Zeng P, Wang S, Shang Y, Gu X, Du Y, Li Y, Lin T, Yuan J, Yang X, Chen J, Chen H, Xiong X, Huang K, Fei Z, Mao L, Tian L, Städler T, Renner S S, Kamoun S, Lucas W J, Zhang Z, Huang S. 2013. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet, 45:1510-1515.
doi: 10.1038/ng.2801 pmid: 24141363 |
[41] |
Ren Y, Zhang Z, Liu J, Staub J E, Han Y, Cheng Z, Li X, Lu J, Miao H, Kang H, Xie B, Gu X, Wang X, Du Y, Jin W, Huang S. 2009. An integrated genetic and cytogenetic map of the cucumber genome. PLoS ONE, 4:e5795.
doi: 10.1371/journal.pone.0005795 URL |
[42] |
Rong F, Chen F, Huang L, Zhang J, Zhang C, Hou D, Cheng Z, Weng Y, Chen P, Li Y. 2019. A mutation in class III homeodomain-leucine zipper(HD-ZIP III) transcription factor results in curly leaf(cul) in cucumber(Cucumis sativus L.). Theor Appl Genet, 132:113-123.
doi: 10.1007/s00122-018-3198-z URL |
[43] | Ren Guo-liang, Yang Xu-qin, He Huan-le, Cai Run, Pan Jun-song. 2013. Genetic mapping of the non-lateral branch gene(nlb)in cucumber. Acta Horticulturae Sinica, 40 (7):1375-1381. (in Chinese) |
任国良, 杨绪勤, 何欢乐, 蔡润, 潘俊松. 2013. 黄瓜无侧枝基因nlb的初步定位. 园艺学报, 40 (7):1375-1381. | |
[44] |
Serquen F C, Bacher J, Staub J E. 1997. Mapping and QTL analysis of horticultural traits in a narrow cross in cucumber(Cucumis sativus L.) using random-amplified polymorphic DNA markers. Mol Breed, 3:257-268.
doi: 10.1023/A:1009689002015 URL |
[45] |
Shen J, Ge D, Song X, Xiao J, Liu X, Che G, Gu R, Wang Z, Cheng Z, Song W, Liu L, Chen J, Han L, Yan L, Liu R, Zhou Z, Zhang X. 2021. Roles of CsBRC1-like in leaf and lateral branch development in cucumber. Plant Sci, 302:110681.
doi: 10.1016/j.plantsci.2020.110681 URL |
[46] |
Shen J, Zhang Y, Ge D, Wang Z, Song W, Gu R, Che G, Cheng Z, Liu R, Zhang X. 2019. CsBRC 1 inhibits axillary bud outgrowth by directly repressing the auxin efflux carrier CsPIN3 in cucumber. Proc Natl Acad Sci U S A, 116:17105-17114.
doi: 10.1073/pnas.1907968116 URL |
[47] | Shi Jian-lei, Chen Jin-feng, Lou Qun-feng, Qian Chun-tao, Meng Jia-li. 2012. Analysis of genetic variation and qtl detection in cucumber introgression progenies. Acta Horticulturae Sinica, 39 (4):687-694. (in Chinese) |
史建磊, 陈劲枫, 娄群峰, 钱春桃, 孟佳丽. 2012. 黄瓜渐渗后代遗传变异分析及QTL检测. 园艺学报, 39 (4):687-694. | |
[48] | Shi Ting-ting, Wang Shen-hao, Lin Tao, Yang Qing, Huang San-wen. 2014. Genetic mapping of little leaf 2 (ll2),a major QTL controlling leaf area in cucumber(Cucumis sativus L.). Journal of Agricultural Biotechnology, 22 (4):415-421. (in Chinese) |
史婷婷, 王深浩, 林涛, 杨清, 黄三文. 2014. 黄瓜叶面积主效QTL小叶2基因(ll2)的遗传定位. 农业生物技术学报, 22 (4):415-421. | |
[49] | Soltysiak U, Kubicki B, Korzeniewska A. 1986. Induced mutations in cucumber(Cucumis sativus L.)determinate type of growth. Genetica Polonica, 27:299-308. |
[50] |
Song M, Cheng F, Wang J, Wei Q, Fu W, Yu X, Li J, Chen J, Lou Q. 2019. A leaf shape mutant provides insight into PINOID Serine/Threonine Kinase function in cucumber(Cucumis sativus L.). J Integr Plant Biol, 61:1000-1014.
doi: 10.1111/jipb.12739 URL |
[51] | Sun Xiao-lei, Wu Shu-tong, Song Xu-e. 1990. Studies on characters and genetic effects of determinate cucumber. Acta Horticulturae Sinica, 17 (1):59-64. (in Chinese) |
孙小镭, 邬树桐, 宋绪峨. 1990. 中国矮生刺黄瓜品系特性的研究初报. 园艺学报, 17 (1):59-64. | |
[52] |
Tsukaya H. 2006. Mechanism of leaf-shape determination. Annu Rev Plant Biol, 57:477-496.
pmid: 16669771 |
[53] |
Tian J, Wang C, Xia J, Wu L, Xu G, Wu W, Li D, Qin W, Han X, Chen Q, Jin W, Tian F. 2019. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science, 365:658-664.
doi: 10.1126/science.aax5482 pmid: 31416957 |
[54] | van der Linden L. 2018. Marker for compact growth in cucumber. US2018/0187244A1. |
[55] |
Wang B, Smith S M, Li J. 2018. Genetic regulation of shoot architecture. Annu Rev Plant Biol, 69:437-468.
doi: 10.1146/annurev-arplant-042817-040422 pmid: 29553800 |
[56] |
Wang G, Pan J, Li X, He H, Wu A, Cai R. 2005. Construction of a cucumber genetic linkage map with SRAP markers and location of the genes for lateral branch traits. Sci China C Life Sci, 48:213-220.
doi: 10.1007/BF03183614 URL |
[57] |
Wang H, Li W, Qin Y, Pan Y, Wang X, Weng Y, Chen P, Li Y. 2017. The cytochrome P450 gene CsCYP85A1 is a putative candidate for Super Compact-1(Scp-1)plant architecture mutation in cucumber(Cucumis sativus L.). Front Plant Sci, 8:266.
doi: 10.3389/fpls.2017.00266 pmid: 28303144 |
[58] |
Wang M, Liu S, Zhang S, Miao H, Tian G, Lu H, Liu P, Wang Y, Gu X. 2016. QTL mapping of seedling traits in cucumber using recombinant inbred lines. Plant Breed, 135:124-129.
doi: 10.1111/pbr.12331 URL |
[59] |
Wang S, Yang X, Xu M, Lin X, Lin T, Qi J, Shao G, Tian N, Yang Q, Zhang Z, Huang S. 2015. A rare SNP Identified a TCP Transcription Factor essential for tendril development in cucumber. Mol Plant, 8:1795-1808.
doi: 10.1016/j.molp.2015.10.005 pmid: 26597500 |
[60] | Wang Xue-yan, Yang Fan, Zhu Ping-yu, Ren Yue-bo, Wang Tuan-tuan, Li Ji, Chen Jin-feng. 2020. Cloning and functional analysis of the promoter of CsCML25 gene related to determinate growth in cucumber. Journal of Nanjing Agricultural University, 43 (4):621-628. (in Chinese) |
王雪艳, 杨帆, 朱拼玉, 任跃波, 王团团, 李季, 陈劲枫. 2020. 黄瓜有限生长调控基因CsCML25的启动子克隆及功能分析. 南京农业大学学报, 43 (4):621-628. | |
[61] |
Wang Y, Li J. 2008. Molecular basis of plant architecture. Annu Rev Plant Biol, 59:253-279.
doi: 10.1146/annurev.arplant.59.032607.092902 pmid: 18444901 |
[62] | Wen C, Zhao W, Liu W, Yang L, Wang Y, Liu X, Xu Y, Ren H, Guo Y, Li C, Li J, Weng Y, Zhang X. 2019. CsTFL1inhibits determinate growth and terminal flower formation through interaction with CsNOT2a in cucumber. Dev, 146(14):dev.180166. |
[63] |
Wen H, Pan J, Chen Y, Chen G, Du H, Zhang L, Zhang K, He H, Wang G, Cai R, Pan J. 2021. TERMINAL FLOWER 1 and TERMINAL FLOWER 1d responds to temperature and photoperiod signals to inhibit determinate growth in cucumber. Plant Cell Environ, 44:2580-2592.
doi: 10.1111/pce.14075 URL |
[64] |
Weng Y, Johnson S, Staub J E, Huang S. 2010. An extended intervarietal microsatellite linkage map of cucumber,Cucumis sativus L. HortScience. 45:882-886.
doi: 10.21273/HORTSCI.45.6.882 URL |
[65] | Weng Y, Wehner T C. 2017. Cucumber Gene Catalog 2017. Cucurbit Genet Coop Rep, 40:17-54. |
[66] | Wu Peng, Qin Zhi-wei, Xia Yuan, Zhou Xiu-yan, Wu Tao. 2009. Cucumber leaf area genetics and qtl analysis. China Vegetables,(24):43-46. (in Chinese) |
吴鹏, 秦智伟, 夏媛, 周秀艳, 武涛. 2009. 黄瓜叶面积遗传及QTL定位分析. 中国蔬菜,(24):43-46. | |
[67] | Wu Zhi-xiang. 2012. Gene mapping of non-lateral-branch gene nlb in Cucumis Sativus L. and cluster analysis of genetic diversity of Petunia hybrida Vilm by ISSR[M. D. Dissertation]. Shanghai: Shanghai Jiao Tong University. (in Chinese) |
吴志祥. 2012. 黄瓜无侧枝基因nlb的定位及矮牵牛种质资源多样性分析[硕士论文]. 上海: 上海交通大学. | |
[68] | Xin Ming, Qin Zhi-wei, Zhou Xiu-yan. 2008. Molecular marker and genetic analysis of plant height in cucumber. Journal of Northeast Agricultural University,(5):34-38. (in Chinese) |
辛明, 秦智伟, 周秀艳. 2008. 黄瓜植株高度遗传分析及其分子标记. 东北农业大学学报,(5):34-38. | |
[69] |
Xu L, Wang C, Cao W, Zhou S, Wu T. 2018. CLAVATA1-type receptor-like kinase CsCLAVATA1is a putative candidate gene for dwarf mutation in cucumber. Mol Genet Genomics, 293 (6):1393-1405.
doi: 10.1007/s00438-018-1467-9 URL |
[70] |
Yan S, Ning K, Wang Z, Liu X, Zhong Y, Ding L, Zi H, Cheng Z, Li X, Shan H, Lü Q, Luo L, Liu R, Yan L, Zhou Z, Lucas W, Zhang X. 2020. CsIVP functions in vasculature development and downy mildew resistance in cucumber. PLoS Biology, 18 (30):e3000671.
doi: 10.1371/journal.pbio.3000671 URL |
[71] |
Yang L, Liu H, Zhao J, Pan Y, Cheng S, Lietzow C D, Wen C, Zhang X, Weng Y. 2018. LITTLELEAF(LL)encodes a WD40 repeat domain-containing protein associated with organ size variation in cucumber. Plant J, 95:834-847.
doi: 10.1111/tpj.13991 URL |
[72] |
Yang X, Yan J, Zhang Z, Lin T, Xin T, Wang B, Wang S, Zhao J, Zhang Z, Lucas W J, Li G, Huang S. 2020. Regulation of plant architecture by a new histone acetyltransferase targeting gene bodies. Nat Plants, 6:809-822.
doi: 10.1038/s41477-020-0715-2 pmid: 32665652 |
[73] | Yuan L H, Pan J S, Wang G, Zhu J, Zhang W W, Li Z, He H L, Yang Z N, Cai R, Zhu L H. 2010. The cucumber lateral Suppressor gene(CLS)is functionally associated with axillary meristem initiation. Plant Mol Biol Report, 28:421-429. |
[74] |
Zhang C, Chen F, Zhao Z, Hu L, Liu H, Cheng Z, Weng Y, Chen P, Li Y. 2018. Mutations in CsPID encoding a Ser/Thr protein kinase are responsible for round leaf shape in cucumber(Cucumis sativus L.). Theor Appl Genet, 131:1379-1389.
doi: 10.1007/s00122-018-3084-8 URL |
[75] | Zhang Guan-ying, Si Long-ting, Li Dan-dan. 2011. QTL analysis for hypocotyl traits of cucumber seedlings under low light stress. Acta Horticulturae Sinica, 38 (2):295-302. (in Chinese) |
张冠英, 司龙亭, 李丹丹. 2011. 弱光胁迫下黄瓜幼苗下胚轴性状QTL分析. 园艺学报, 38 (2):295-302. | |
[76] | Zhang Hai-ying, Chen Qing-jun, Wang Yong-jian, Xu Yong, Zhang Feng. 2004. Identification of QTLs for cucumber poor light tolerance. Molecular Plant Breeding,(6):795-799. (in Chinese) |
张海英, 陈青君, 王永健, 许勇, 张峰. 2004. 黄瓜耐弱光性状的QTL定位. 分子植物育种,(6):795-799. | |
[77] |
Zhang K, Pan J, Chen Y, Wei Y, Du H, Sun J, Lü D, Wen H, He H, Wang G, Cai R. 2021a. Mapping and identification of CsSh5.1,a gene encoding a xyloglucan galactosyltransferase required for hypocotyl elongation in cucumber(Cucumis sativus L.). Theor Appl Genet, 134:979-991.
doi: 10.1007/s00122-020-03754-2 URL |
[78] |
Zhang M, Song M, Cheng F, Yang Z, Dovoudi M, Chen J, Lou Q. 2021b. Identification of a putative candidate gene encoding 7-dehydrocholesterol reductase involved in brassinosteroids biosynthesis for Compact Plant Architecture in cucumber(Cucumis sativus L.). Theor Appl Genet, 134: 2023-2034.
doi: 10.1007/s00122-021-03802-5 URL |
[79] | Zhang Wei-hua, Liu Wen-bao, Du Yong-li, Cao Qi-wei, Sun Xiao-lei. 2011. Preliminary analysis on plant height inheritance of cucumber. Shandong Agricultural Sciences, 242 (10):12-14. (in Chinese) |
张卫华, 刘文宝, 杜永丽, 曹齐卫, 孙小镭. 2011. 黄瓜株高性状遗传规律的初步分析. 山东农业科学, 242 (10):12-14. | |
[80] | Zhang Yun-nan, Cao Qi-wei, Li Li-bin, Wang Xiu-feng, Wang Yong-qiang, Sun Xiao-lei. 2015. Genetic analysis of leaf size using mixed major-gene plus polygene inheritance model in Cucumis sativus L. Acta Horticulturae Sinica, 42 (5):897-906. (in Chinese) |
张允楠, 曹齐卫, 李利斌, 王秀峰, 王永强, 孙小镭. 2015. 黄瓜叶面积的主 + 多基因混合遗传模型分析. 园艺学报, 42 (5):897-906. | |
[81] | Zhang Zi-mo. 2019. Genetic analysis and QTL mapping of hypocotyl length of cucumber seedlings under high temperature stress (Cucumis sativus L.)[M. D. Dissertation]. Yangzhou: Yangzhou University. (in Chinese) |
张子默. 2019. 高温胁迫下黄瓜幼苗下胚轴长遗传分析和QTL定位[硕士论文]. 扬州: 扬州大学. | |
[82] |
Zhao W, Chen Z, Liu X, Che G, Gu R, Zhao J, Wang Z, Hou Y, Zhang X. 2018. CsLFY is required for shoot meristem maintenance via interaction with WUSCHEL in cucumber(Cucumis sativus). New Phytol, 218:344-356.
doi: 10.1111/nph.14954 URL |
[1] | 崔建, 钟雄辉, 刘泽慈, 陈登辉, 李海龙, 韩睿, 乐祥庆, 康俊根, 王超. 结球甘蓝染色体片段替换系构建[J]. 园艺学报, 2023, 50(1): 65-78. |
[2] | 罗天宽, 吴海涛, 张圣美, 黄宗安, 孙 继, 水德聚, 陈先知. 黄瓜新品种‘瓯翠1号’[J]. 园艺学报, 2022, 49(S2): 125-126. |
[3] | 王鹤冰, 向华丰, 陈新中, 张 生, 张洪成. 华南型黄瓜新品种‘新燕095’[J]. 园艺学报, 2022, 49(S1): 79-80. |
[4] | 许春梅, 张作标, 柳景兰, 王 昕, 杨 龙, 赵 丹, 刘思宇, 贾云鹤, 孟雪娇, 崔嵩岑. 黄瓜新品种‘绿春2号’[J]. 园艺学报, 2022, 49(S1): 81-82. |
[5] | 张利东, 黄洪宇, 孔维良, 李加旺, 李愚鹤, . 华北型黄瓜新品种‘津优355’[J]. 园艺学报, 2022, 49(S1): 83-84. |
[6] | 王惠哲, 杨瑞环, 邓 强, 曹明明, 李淑菊, . 抗黑星病黄瓜新品种‘津冬369’[J]. 园艺学报, 2022, 49(S1): 85-86. |
[7] | 王沙, 张心慧, 赵玉洁, 李变变, 招雪晴, 沈雨, 董建梅, 苑兆和. 石榴花青苷合成相关基因PgMYB111的克隆与功能分析[J]. 园艺学报, 2022, 49(9): 1883-1894. |
[8] | 邱子文, 刘林敏, 林永盛, 林晓洁, 李永裕, 吴少华, 杨超. 千层金MbEGS基因的克隆与功能分析[J]. 园艺学报, 2022, 49(8): 1747-1760. |
[9] | 聂鑫淼, 栾恒, 冯改利, 王超, 李岩, 魏珉. 硅营养和嫁接砧木对黄瓜幼苗耐冷性的影响[J]. 园艺学报, 2022, 49(8): 1795-1804. |
[10] | 郑林, 王帅, 刘语诺, 杜美霞, 彭爱红, 何永睿, 陈善春, 邹修平. 柑橘响应黄龙病菌侵染的NAC基因的克隆及表达分析[J]. 园艺学报, 2022, 49(7): 1441-1457. |
[11] | 刘瑶瑶, 吴严严, 石岩, 毛天宇, 包满珠, 张俊卫, 张杰. 垂枝与直枝梅花PmTAC1启动子序列差异与垂枝性状的关系初探[J]. 园艺学报, 2022, 49(6): 1327-1338. |
[12] | 韩鲁杰, 冯一清, 杨秀华, 张宁, 毕焕改, 艾希珍. 有机肥化肥配施对大棚黄瓜根区土壤与根系特征的影响[J]. 园艺学报, 2022, 49(5): 1047-1059. |
[13] | 白二俊, 刘莉铭, 郝小苑, 彭斌, 吴会杰, 古勤生, 康保珊. 抗小西葫芦黄花叶病毒的西瓜自交系抗性遗传特征研究[J]. 园艺学报, 2022, 49(3): 633-640. |
[14] | 权建华, 段誉, 罗天, 袁强, 齐鑫, 王勤礼. 黄瓜新品种‘裕研9号’[J]. 园艺学报, 2022, 49(3): 703-704. |
[15] | 方天, 刘继红. 主要果树重要性状QTL鉴定研究进展[J]. 园艺学报, 2022, 49(12): 2622-2640. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司