园艺学报 ›› 2021, Vol. 48 ›› Issue (9): 1731-1742.doi: 10.16420/j.issn.0513-353x.2020-0855
收稿日期:
2020-11-25
修回日期:
2021-03-05
出版日期:
2021-09-25
发布日期:
2021-09-30
通讯作者:
李季
E-mail:liji1981@njau.edu.cn
基金资助:
WANG Tuantuan, GOU Chenxing, XIA Lei, ZHU Pinyu, LI Ji*(), CHEN Jinfeng
Received:
2020-11-25
Revised:
2021-03-05
Online:
2021-09-25
Published:
2021-09-30
Contact:
LI Ji
E-mail:liji1981@njau.edu.cn
摘要:
以10个不同基因型黄瓜(Cucumis sativus L.)子叶节外植体为材料,研究外植体内源激素水平、诱导分化阶段不同外源激素及配比对外植体分化率、不定芽数量和形态的影响,揭示影响不同基因型黄瓜离体再生活力的关键激素因素,并进一步优化黄瓜再生体系。结果表明:MS培养基不添加植物生长调节剂时,10个材料的分化率差异显著,内源CTK水平与分化率呈显著正相关,相关系数分别为0.4544(培养0 d)和0.6110(培养14 d)。MS培养基添加外源1.5 mg · L-16-BA后,不同基因型的分化率从5.95% ~ 20.45%提高到了42.39% ~ 80.43%。不定芽形态观察发现:外植体再生过程形成了两种不同类型的不定芽:Ⅰ型芽为正常芽,叶片舒展,茎秆明显;Ⅱ型芽为畸形芽,有叶片形态,但无明显的茎秆结构。不同基因型材料分化形成Ⅰ型和Ⅱ型不定芽的比例差异显著,Ⅰ型/Ⅱ型不定芽比值高的基因型最终再生苗率显著高于比值低的基因型。相关性分析显示不同材料中产生Ⅰ型/Ⅱ型外植体比例与其IAA/ABA比值的相关性最高(R2= 0.4214),Ⅰ型/Ⅱ型不定芽比值与再生苗率呈显著正相关(R2= 0.5623)。对Ⅰ型/Ⅱ型外植体比值低(0.52和0.46)、不定芽比值低且再生苗率较低的基因型C5和C6,通过添加不同比例外源NAA和ABA进行诱导,发现C5和C6均在NAA/ABA比值为0.01/0.1时Ⅰ型/Ⅱ型外植体比例(1.65和1.15)、不定芽比值(1.81和1.17)和再生苗率(48.57%和53.33%)均得到显著提高。
中图分类号:
王团团, 缑晨星, 夏磊, 朱拼玉, 李季, 陈劲枫. 黄瓜10个基因型材料外植体内源激素水平及比例对其离体再生的影响[J]. 园艺学报, 2021, 48(9): 1731-1742.
WANG Tuantuan, GOU Chenxing, XIA Lei, ZHU Pinyu, LI Ji, CHEN Jinfeng. Effect of Endogenous Hormone Levels and Ratios in Explants of Ten Genotypes of Cucumber on Their Regeneration in Vitro[J]. Acta Horticulturae Sinica, 2021, 48(9): 1731-1742.
基因描述 Gene description | 基因 Gene | 引物序列(5′-3′) Primer sequence |
---|---|---|
内参基因 Reference gene | Actin | TTCTGGTGATGGTGTGAGTC/GGCAGTGGTGGTGAACATG |
生长素相关 Auxin-related | PYROX | AGCCCTGTCGCAAATTAGAT/ CAACTTGGCACATTGCTTCT |
AUX1-1 | GAAATAATGGACGCGATGTG/GGAGTGGGTGAGAAGTTGGT | |
AUX1-2 | GTGAGGCTTCCGGTTGTTAT/ TAACAAGAAGGGCACCAACA | |
细胞分裂素相关 Cytokinin-related | CYP735A | GCTGAAGGAGATGAATGGGT/ ATTAAGCTTGCCATTGCCTT |
CRE1-1 | AGCCATGCTTTCTTCCTGAT/ GTTAACGTTGCTGTGCCATC | |
CRE1-2 | CGCCTTCAACGATTACTTCA/TGGCTTGAGAAATTCCCATT | |
赤霉素相关 Gibberellin-related | KAUOX | AGGCCAAGGAAGAACAAGAA/ACTTAGGCCAAGCGTCTCAT |
DEL | AAGTGGAGGAGATGTTTGGG/GATCGTCGTGAATCCTGATG | |
GIDW1 | GCACCATAGCTCGAAGTGAA/TAGCCTCTTGTACCCTCCCA | |
脱落酸相关 Abscisic acid-related | NCED1 | TCACTCAAACCCAACGCT/ACCAACCCGAAAACTCCT |
NCED2 | AAGCATTCCCACACCACA/CATTCTCAACCGCATCAAG | |
NCED 6 | CTCCCGCTGACACATTCT/CCTCGTCTCGTTCGTTGA | |
茉莉酸相关 Jasmonic acid-related | COI1 | GAACGGGACAGTAGAAGAG/TGGTGGTGTAGCAAAGAG |
PDF1 | GCTTTTCCTTTTGGCTCTCA/ATCGCAATGCTTCGTGTTCC | |
PDF3 | CGAGCACGGTGTTTCAGGGA/CGCATTTATCAGCCGAGCAA |
表1 激素相关基因的荧光定量PCR引物
Table 1 The primers of hormone-related genes designed for qRT-PCR
基因描述 Gene description | 基因 Gene | 引物序列(5′-3′) Primer sequence |
---|---|---|
内参基因 Reference gene | Actin | TTCTGGTGATGGTGTGAGTC/GGCAGTGGTGGTGAACATG |
生长素相关 Auxin-related | PYROX | AGCCCTGTCGCAAATTAGAT/ CAACTTGGCACATTGCTTCT |
AUX1-1 | GAAATAATGGACGCGATGTG/GGAGTGGGTGAGAAGTTGGT | |
AUX1-2 | GTGAGGCTTCCGGTTGTTAT/ TAACAAGAAGGGCACCAACA | |
细胞分裂素相关 Cytokinin-related | CYP735A | GCTGAAGGAGATGAATGGGT/ ATTAAGCTTGCCATTGCCTT |
CRE1-1 | AGCCATGCTTTCTTCCTGAT/ GTTAACGTTGCTGTGCCATC | |
CRE1-2 | CGCCTTCAACGATTACTTCA/TGGCTTGAGAAATTCCCATT | |
赤霉素相关 Gibberellin-related | KAUOX | AGGCCAAGGAAGAACAAGAA/ACTTAGGCCAAGCGTCTCAT |
DEL | AAGTGGAGGAGATGTTTGGG/GATCGTCGTGAATCCTGATG | |
GIDW1 | GCACCATAGCTCGAAGTGAA/TAGCCTCTTGTACCCTCCCA | |
脱落酸相关 Abscisic acid-related | NCED1 | TCACTCAAACCCAACGCT/ACCAACCCGAAAACTCCT |
NCED2 | AAGCATTCCCACACCACA/CATTCTCAACCGCATCAAG | |
NCED 6 | CTCCCGCTGACACATTCT/CCTCGTCTCGTTCGTTGA | |
茉莉酸相关 Jasmonic acid-related | COI1 | GAACGGGACAGTAGAAGAG/TGGTGGTGTAGCAAAGAG |
PDF1 | GCTTTTCCTTTTGGCTCTCA/ATCGCAATGCTTCGTGTTCC | |
PDF3 | CGAGCACGGTGTTTCAGGGA/CGCATTTATCAGCCGAGCAA |
图1 MS基本培养基上不同基因型黄瓜的分化率及平均分化芽数 小写字母表示差异显著(P < 0.05)。下同。
Fig. 1 Differentiation rate and average bud number of different genotype cucumbers on MS basic medium Lowercase letters indicate differences(P < 0.05). The same below.
基因型 Genotype | IAA(μg · g-1) | CTK(μg · g-1) | ABA(μg · g-1) | ||||||
---|---|---|---|---|---|---|---|---|---|
0 d | 14 d | 0 d | 14 d | 0 d | 14 d | ||||
C1 | 173.95 ± 1.54 c | ↘ | 169.60 ± 1.54 c | 532.96 ± 2.83 a | ↘ | 516.24 ± 7.54 b | 2 167.08 ± 19.34 d | ↗ | 2 245.26 ± 17.73 b |
C2 | 194.82 ± 1.13 b | ↘ | 158.90 ± 3.15 d | 515.73 ± 10.73 b | ↗ | 579.21 ± 10.38 a | 1 990.62 ± 29.21 e | ↗ | 2 146.98 ± 20.47 c |
C3 | 215.63 ± 3.59 a | ↘ | 138.69 ± 2.47 e | 326.10 ± 6.11 f | ↗ | 441.15 ± 9.45 c | 1 930.31 ± 24.16 f | ↘ | 1 447.84 ± 26.80 f |
C4 | 150.22 ± 2.89 d | ↘ | 124.02 ± 4.73 f | 324.91 ± 7.17 f | - | 325.31 ± 4.51 e | 1 970.52 ± 33.51 ef | ↗ | 2 086.67 ± 33.73 d |
C5 | 119.38 ± 3.77 f | ↗ | 176.71 ± 2.30 b | 370.93 ± 8.99 e | ↘ | 313.01 ± 7.17 e | 2 332.38 ± 13.40 c | ↗ | 2 419.49 ± 30.71 a |
C6 | 169.23 ± 1.81 c | ↘ | 141.24 ± 2.99 e | 438.77 ± 10.38 c | ↗ | 501.45 ± 9.62 b | 2 339.08 ± 29.21 c | ↘ | 2 151.45 ± 30.71 c |
C7 | 122.38 ± 2.26 f | ↗ | 190.03 ± 5.73 a | 364.98 ± 11.48 e | ↗ | 430.84 ± 10.26 c | 1 858.83 ± 43.60 g | ↗ | 1 961.58 ± 33.73 e |
C8 | 150.52 ± 2.38 d | ↘ | 144.38 ± 1.58 e | 513.75 ± 4.76 b | ↘ | 364.98 ± 10.91 d | 2 486.50 ± 24.16 b | ↘ | 2 188.30 ± 14.22 c |
C9 | 129.41 ± 5.46 e | ↗ | 195.42 ± 3.59 a | 437.18 ± 12.50 c | ↘ | 371.33 ± 9.98 d | 2 167.08 ± 43.08 d | ↘ | 1 396.46 ± 43.60 g |
C10 | 171.02 ± 5.05 c | ↘ | 141.39 ± 3.49 e | 402.67 ± 13.90 d | ↗ | 580.80 ± 11.25 a | 2 654.03 ± 9.48 a | ↘ | 2 040.88 ± 4.74 d |
基因型 Genotype | GA | JA | |||||||
0 d | 14 d | 0 d | 14 d | ||||||
C1 | 55.98 ± 0.76 f | ↗ | 70.99 ± 1.09 c | 42.07 ± 0.61 c | ↘ | 39.97 ± 0.38 e | |||
C2 | 53.39 ± 1.07 g | ↗ | 60.53 ± 0.12 f | 30.95 ± 0.48 f | ↗ | 53.46 ± 1.65 a | |||
C3 | 41.92 ± 1.64 i | ↗ | 83.47 ± 0.54 a | 40.54 ± 0.75 d | ↘ | 29.77 ± 0.97 g | |||
C4 | 86.78 ± 0.54 a | ↘ | 65.72 ± 0.98 e | 28.44 ± 0.32 gh | ↗ | 48.16 ± 0.55 c | |||
C5 | 83.18 ± 0.57 b | ↘ | 67.96 ± 0.12 d | 51.17 ± 1.18 a | ↘ | 48.20 ± 0.75 c | |||
C6 | 84.33 ± 1.23 b | ↘ | 61.32 ± 1.15 f | 29.37 ± 0.86 g | ↗ | 50.35 ± 0.64 b | |||
C7 | 60.38 ± 0.33 e | ↘ | 46.10 ± 0.12 g | 27.76 ± 0.66 h | ↗ | 45.84 ± 0.70 d | |||
C8 | 77.98 ± 0.94 c | ↘ | 74.52 ± 0.92 b | 48.02 ± 0.94 b | ↘ | 29.12 ± 0.43 g | |||
C9 | 46.75 ± 1.37 h | ↗ | 70.91 ± 0.70 c | 33.42 ± 0.65 e | - | 34.49 ± 1.57 f | |||
C10 | 74.30 ± 0.61 d | - | 74.63 ± 0.46 b | 50.92 ± 1.20 a | ↘ | 35.10 ± 0.81 f |
表2 不同基因型黄瓜子叶节外植体离体培养后内源激素含量变化
Table 2 Changes of endogenous hormone content in cotyledon node explants of different genotype cucumber after in vitro culture
基因型 Genotype | IAA(μg · g-1) | CTK(μg · g-1) | ABA(μg · g-1) | ||||||
---|---|---|---|---|---|---|---|---|---|
0 d | 14 d | 0 d | 14 d | 0 d | 14 d | ||||
C1 | 173.95 ± 1.54 c | ↘ | 169.60 ± 1.54 c | 532.96 ± 2.83 a | ↘ | 516.24 ± 7.54 b | 2 167.08 ± 19.34 d | ↗ | 2 245.26 ± 17.73 b |
C2 | 194.82 ± 1.13 b | ↘ | 158.90 ± 3.15 d | 515.73 ± 10.73 b | ↗ | 579.21 ± 10.38 a | 1 990.62 ± 29.21 e | ↗ | 2 146.98 ± 20.47 c |
C3 | 215.63 ± 3.59 a | ↘ | 138.69 ± 2.47 e | 326.10 ± 6.11 f | ↗ | 441.15 ± 9.45 c | 1 930.31 ± 24.16 f | ↘ | 1 447.84 ± 26.80 f |
C4 | 150.22 ± 2.89 d | ↘ | 124.02 ± 4.73 f | 324.91 ± 7.17 f | - | 325.31 ± 4.51 e | 1 970.52 ± 33.51 ef | ↗ | 2 086.67 ± 33.73 d |
C5 | 119.38 ± 3.77 f | ↗ | 176.71 ± 2.30 b | 370.93 ± 8.99 e | ↘ | 313.01 ± 7.17 e | 2 332.38 ± 13.40 c | ↗ | 2 419.49 ± 30.71 a |
C6 | 169.23 ± 1.81 c | ↘ | 141.24 ± 2.99 e | 438.77 ± 10.38 c | ↗ | 501.45 ± 9.62 b | 2 339.08 ± 29.21 c | ↘ | 2 151.45 ± 30.71 c |
C7 | 122.38 ± 2.26 f | ↗ | 190.03 ± 5.73 a | 364.98 ± 11.48 e | ↗ | 430.84 ± 10.26 c | 1 858.83 ± 43.60 g | ↗ | 1 961.58 ± 33.73 e |
C8 | 150.52 ± 2.38 d | ↘ | 144.38 ± 1.58 e | 513.75 ± 4.76 b | ↘ | 364.98 ± 10.91 d | 2 486.50 ± 24.16 b | ↘ | 2 188.30 ± 14.22 c |
C9 | 129.41 ± 5.46 e | ↗ | 195.42 ± 3.59 a | 437.18 ± 12.50 c | ↘ | 371.33 ± 9.98 d | 2 167.08 ± 43.08 d | ↘ | 1 396.46 ± 43.60 g |
C10 | 171.02 ± 5.05 c | ↘ | 141.39 ± 3.49 e | 402.67 ± 13.90 d | ↗ | 580.80 ± 11.25 a | 2 654.03 ± 9.48 a | ↘ | 2 040.88 ± 4.74 d |
基因型 Genotype | GA | JA | |||||||
0 d | 14 d | 0 d | 14 d | ||||||
C1 | 55.98 ± 0.76 f | ↗ | 70.99 ± 1.09 c | 42.07 ± 0.61 c | ↘ | 39.97 ± 0.38 e | |||
C2 | 53.39 ± 1.07 g | ↗ | 60.53 ± 0.12 f | 30.95 ± 0.48 f | ↗ | 53.46 ± 1.65 a | |||
C3 | 41.92 ± 1.64 i | ↗ | 83.47 ± 0.54 a | 40.54 ± 0.75 d | ↘ | 29.77 ± 0.97 g | |||
C4 | 86.78 ± 0.54 a | ↘ | 65.72 ± 0.98 e | 28.44 ± 0.32 gh | ↗ | 48.16 ± 0.55 c | |||
C5 | 83.18 ± 0.57 b | ↘ | 67.96 ± 0.12 d | 51.17 ± 1.18 a | ↘ | 48.20 ± 0.75 c | |||
C6 | 84.33 ± 1.23 b | ↘ | 61.32 ± 1.15 f | 29.37 ± 0.86 g | ↗ | 50.35 ± 0.64 b | |||
C7 | 60.38 ± 0.33 e | ↘ | 46.10 ± 0.12 g | 27.76 ± 0.66 h | ↗ | 45.84 ± 0.70 d | |||
C8 | 77.98 ± 0.94 c | ↘ | 74.52 ± 0.92 b | 48.02 ± 0.94 b | ↘ | 29.12 ± 0.43 g | |||
C9 | 46.75 ± 1.37 h | ↗ | 70.91 ± 0.70 c | 33.42 ± 0.65 e | - | 34.49 ± 1.57 f | |||
C10 | 74.30 ± 0.61 d | - | 74.63 ± 0.46 b | 50.92 ± 1.20 a | ↘ | 35.10 ± 0.81 f |
激素类型 Hormone types | 分化率 Differentiation rate | 平均分化芽数 Average bud number | ||
---|---|---|---|---|
0 d | 14 d | 0 d | 14 d | |
IAA | 0.1076 | 0.0086 | 0.0012 | -0.0164 |
CTK | 0.4544 | 0.6110 | 0.1863 | -0.0184 |
ABA | 0.0266 | 0.1172 | 0.0043 | 0.0001 |
GA | -0.0392 | -0.0074 | -0.0083 | 0.1070 |
JA | 0.0057 | 0.0307 | 0.0214 | -0.1026 |
表3 不同基因型材料的内源激素含量与分化率和平均分化芽数的相关性(R2)分析
Table 3 Correlation of endogenous hormones content of different genotype materials with differentiation rate and average bud number
激素类型 Hormone types | 分化率 Differentiation rate | 平均分化芽数 Average bud number | ||
---|---|---|---|---|
0 d | 14 d | 0 d | 14 d | |
IAA | 0.1076 | 0.0086 | 0.0012 | -0.0164 |
CTK | 0.4544 | 0.6110 | 0.1863 | -0.0184 |
ABA | 0.0266 | 0.1172 | 0.0043 | 0.0001 |
GA | -0.0392 | -0.0074 | -0.0083 | 0.1070 |
JA | 0.0057 | 0.0307 | 0.0214 | -0.1026 |
图2 不同分化活力黄瓜基因型C1和C3子叶节0 d时激素相关基因的表达分析
Fig. 2 Expression analysis of hormone-related genes in cucumber cotyledon nodes of different genotype C1 and C3 on 0 d **P < 0.01,*P < 0.05,n = 3.
图3 MS+(MS + 1.5 mg · L-1 6-BA)培养基上黄瓜不同基因型材料子叶节的分化率及平均分化芽数
Fig. 3 Differentiation rate and average bud number of different genotype cucumber cotyledon nodes on MS+(MS + 1.5 mg · L-1 6-BA)medium
基因型 Genotype | 外植体总数 Total number of explant | Ⅰ | Ⅱ | Ⅰ/Ⅱ | 成苗数 Number of rege- nerated seedling | 再生苗 率/% Regene- ration rate | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
外植体 总数 Total number of explant | 芽总数 Total number of bud | 平均芽数 Average bud number | 外植体 总数 Total number of explant | 芽总数 Total number of bud | 平均芽数 Average bud number | 外植体 比例 Explant ratio | 芽比例 Bud ratio | ||||
C1 | 106 | 52 | 78 | 1.50 | 32 | 30 | 0.94 | 1.63 | 2.60 | 74 | 69.81 a |
C2 | 104 | 28 | 32 | 1.14 | 24 | 23 | 0.96 | 1.17 | 1.39 | 35 | 33.65 e |
C3 | 103 | 32 | 39 | 1.22 | 26 | 26 | 1.00 | 1.23 | 1.50 | 42 | 40.78 cd |
C4 | 91 | 38 | 50 | 1.32 | 28 | 27 | 0.96 | 1.36 | 1.85 | 51 | 56.04 b |
C5 | 88 | 13 | 9 | 0.69 | 25 | 42 | 1.68 | 0.52 | 0.21 | 24 | 27.27 f |
C6 | 80 | 16 | 16 | 1.00 | 35 | 53 | 1.51 | 0.46 | 0.30 | 34 | 42.50 c |
C7 | 70 | 12 | 8 | 0.67 | 25 | 35 | 1.40 | 0.48 | 0.23 | 20 | 28.57 ef |
C8 | 98 | 34 | 35 | 1.03 | 42 | 60 | 1.43 | 0.81 | 0.58 | 52 | 53.06 b |
C9 | 96 | 28 | 25 | 0.89 | 22 | 30 | 1.36 | 1.27 | 0.83 | 32 | 33.33 e |
C10 | 86 | 18 | 14 | 0.78 | 37 | 47 | 1.27 | 0.49 | 0.30 | 30 | 34.88 e |
表4 黄瓜不同基因型材料分化正常芽(Ⅰ)和畸形芽(Ⅱ)的外植体统计
Table 4 Statistics of explants of different genotype materials of cucumber differentiated from normal buds(Ⅰ)and abnormal buds(Ⅱ)
基因型 Genotype | 外植体总数 Total number of explant | Ⅰ | Ⅱ | Ⅰ/Ⅱ | 成苗数 Number of rege- nerated seedling | 再生苗 率/% Regene- ration rate | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
外植体 总数 Total number of explant | 芽总数 Total number of bud | 平均芽数 Average bud number | 外植体 总数 Total number of explant | 芽总数 Total number of bud | 平均芽数 Average bud number | 外植体 比例 Explant ratio | 芽比例 Bud ratio | ||||
C1 | 106 | 52 | 78 | 1.50 | 32 | 30 | 0.94 | 1.63 | 2.60 | 74 | 69.81 a |
C2 | 104 | 28 | 32 | 1.14 | 24 | 23 | 0.96 | 1.17 | 1.39 | 35 | 33.65 e |
C3 | 103 | 32 | 39 | 1.22 | 26 | 26 | 1.00 | 1.23 | 1.50 | 42 | 40.78 cd |
C4 | 91 | 38 | 50 | 1.32 | 28 | 27 | 0.96 | 1.36 | 1.85 | 51 | 56.04 b |
C5 | 88 | 13 | 9 | 0.69 | 25 | 42 | 1.68 | 0.52 | 0.21 | 24 | 27.27 f |
C6 | 80 | 16 | 16 | 1.00 | 35 | 53 | 1.51 | 0.46 | 0.30 | 34 | 42.50 c |
C7 | 70 | 12 | 8 | 0.67 | 25 | 35 | 1.40 | 0.48 | 0.23 | 20 | 28.57 ef |
C8 | 98 | 34 | 35 | 1.03 | 42 | 60 | 1.43 | 0.81 | 0.58 | 52 | 53.06 b |
C9 | 96 | 28 | 25 | 0.89 | 22 | 30 | 1.36 | 1.27 | 0.83 | 32 | 33.33 e |
C10 | 86 | 18 | 14 | 0.78 | 37 | 47 | 1.27 | 0.49 | 0.30 | 30 | 34.88 e |
图4 黄瓜C1中直接分化(Ⅰ)和愈伤分化(Ⅱ)不定芽的形成过程
Fig. 4 The formation process of direct differentiation(Ⅰ)and callus differentiation(Ⅱ)of adventitious bud formation in cucumber C1
基因型 Genotype | IAA | CTK | ABA | GA | JA |
---|---|---|---|---|---|
C1 | 169.60 ± 2.15 c | 557.55 ± 5.65 b | 2 026.36 ± 33.73 fg | 59.66 ± 0.54 e | 38.42 ± 0.30 f |
C2 | 139.97 ± 2.22 d | 444.72 ± 3.37 f | 1 653.34 ± 13.95 h | 59.88 ± 0.87 e | 41.33 ± 0.76 e |
C3 | 192.05 ± 2.86 a | 353.67 ± 5.89 g | 2 231.86 ± 6.70 d | 85.05 ± 0.66 a | 38.43 ± 0.61 f |
C4 | 195.20 ± 2.86 a | 494.11 ± 9.26 de | 2 484.27 ± 30.22 b | 42.20 ± 1.47 g | 43.53 ± 0.84 cd |
C5 | 172.97 ± 1.91 c | 472.69 ± 12.62 e | 2 122.41 ± 20.47 e | 66.15 ± 0.50 c | 44.66 ± 0.91 c |
C6 | 128.52 ± 1.91 e | 578.02 ± 11.78 a | 2 272.07 ± 24.16 d | 67.81 ± 0.22 b | 48.84 ± 0.61 b |
C7 | 181.05 ± 1.91 b | 507.21 ± 7.57 cd | 2 687.53 ± 43.94 a | 66.30 ± 0.75 c | 31.34 ± 1.06 h |
C8 | 124.25 ± 2.86 e | 475.67 ± 6.73 e | 2 355.83 ± 14.22 c | 62.19 ± 0.21 d | 34.19 ± 0.38 g |
C9 | 194.75 ± 2.86 a | 476.26 ± 12.62 e | 2 050.93 ± 24.16 f | 43.79 ± 1.42 f | 42.72 ± 0.61 de |
C10 | 137.94 ± 3.81 d | 524.46 ± 10.10 c | 1 980.57 ± 61.60 g | 67.05 ± 0.46 bc | 54.00 ± 0.15 a |
表5 MS+培养基诱导培养14 d不同基因型黄瓜子叶节外植体的内源激素含量
Table 5 Endogenous hormone content of cotyledon node explants of different genotypes of cucumber induced by MS+ medium for 14 d ng · g-1
基因型 Genotype | IAA | CTK | ABA | GA | JA |
---|---|---|---|---|---|
C1 | 169.60 ± 2.15 c | 557.55 ± 5.65 b | 2 026.36 ± 33.73 fg | 59.66 ± 0.54 e | 38.42 ± 0.30 f |
C2 | 139.97 ± 2.22 d | 444.72 ± 3.37 f | 1 653.34 ± 13.95 h | 59.88 ± 0.87 e | 41.33 ± 0.76 e |
C3 | 192.05 ± 2.86 a | 353.67 ± 5.89 g | 2 231.86 ± 6.70 d | 85.05 ± 0.66 a | 38.43 ± 0.61 f |
C4 | 195.20 ± 2.86 a | 494.11 ± 9.26 de | 2 484.27 ± 30.22 b | 42.20 ± 1.47 g | 43.53 ± 0.84 cd |
C5 | 172.97 ± 1.91 c | 472.69 ± 12.62 e | 2 122.41 ± 20.47 e | 66.15 ± 0.50 c | 44.66 ± 0.91 c |
C6 | 128.52 ± 1.91 e | 578.02 ± 11.78 a | 2 272.07 ± 24.16 d | 67.81 ± 0.22 b | 48.84 ± 0.61 b |
C7 | 181.05 ± 1.91 b | 507.21 ± 7.57 cd | 2 687.53 ± 43.94 a | 66.30 ± 0.75 c | 31.34 ± 1.06 h |
C8 | 124.25 ± 2.86 e | 475.67 ± 6.73 e | 2 355.83 ± 14.22 c | 62.19 ± 0.21 d | 34.19 ± 0.38 g |
C9 | 194.75 ± 2.86 a | 476.26 ± 12.62 e | 2 050.93 ± 24.16 f | 43.79 ± 1.42 f | 42.72 ± 0.61 de |
C10 | 137.94 ± 3.81 d | 524.46 ± 10.10 c | 1 980.57 ± 61.60 g | 67.05 ± 0.46 bc | 54.00 ± 0.15 a |
激素 Hormone | 相关系数R2 Correlation coefficient R2 | 激素比例 Hormone ratio | 相关系数R2 Correlation coefficient R2 | 激素比值 Hormone ratio | 相关系数R2 Correlation coefficient R2 |
---|---|---|---|---|---|
IAA | 0.2230 | IAA/CTK | 0.1492 | CTK/GA | 0.1172 |
CTK | -0.0217 | IAA/ABA | 0.4214 | CTK/JA | 0.0007 |
ABA | -0.0667 | IAA/GA | 0.2798 | ABA/GA | 0.0660 |
GA | -0.0137 | IAA/JA | 0.1261 | ABA/JA | -0.0125 |
JA | 0.0487 | CTK/ABA | 0.0098 | GA/JA | -0.0363 |
表6 形成Ⅰ型(正常)与Ⅱ型(畸型)不定芽的外植体比例与内源激素水平及其比值的相关性
Table 6 Correlation between the proportion of explants forming typeⅠ(normal)and typeⅡ(abnormal) adventitious buds and the level and ratio of endogenous hormones
激素 Hormone | 相关系数R2 Correlation coefficient R2 | 激素比例 Hormone ratio | 相关系数R2 Correlation coefficient R2 | 激素比值 Hormone ratio | 相关系数R2 Correlation coefficient R2 |
---|---|---|---|---|---|
IAA | 0.2230 | IAA/CTK | 0.1492 | CTK/GA | 0.1172 |
CTK | -0.0217 | IAA/ABA | 0.4214 | CTK/JA | 0.0007 |
ABA | -0.0667 | IAA/GA | 0.2798 | ABA/GA | 0.0660 |
GA | -0.0137 | IAA/JA | 0.1261 | ABA/JA | -0.0125 |
JA | 0.0487 | CTK/ABA | 0.0098 | GA/JA | -0.0363 |
基因型 Geno- type | NAA/ ABA | 外植体 总数 Total number of explant | Ⅰ | Ⅱ | Ⅰ/Ⅱ | 成苗数 Number of regenerated seedlings | 再生苗 率/% Regenera- tion rate | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
外植体 总数 Total number of explant | 芽总数 Total number of bud | 平均 芽数 Average bud number | 外植体 总数 Total number of explant | 芽总数 Total number of bud | 平均 芽数 Average bud number | 外植体 比例 Explant ratio | 芽比例 Bud ratio | |||||
C5 | 0.1/1 | 67 | 5 | 4 | 0.80 | 9 | 12 | 1.33 | 0.56 | 0.33 | 8 | 11.94 e |
1/0.1 | 60 | 3 | 3 | 1.00 | 6 | 8 | 1.33 | 0.50 | 0.38 | 6 | 10.00 e | |
0.01/0.1 | 70 | 28 | 33 | 1.18 | 17 | 18 | 1.06 | 1.65 | 1.81 | 34 | 48.57 b | |
0.1/0.01 | 68 | 2 | 1 | 0.60 | 9 | 11 | 1.22 | 0.22 | 0.11 | 5 | 7.35 f | |
1/0 | 58 | 4 | 3 | 0.75 | 7 | 10 | 1.43 | 0.57 | 0.30 | 6 | 10.34 e | |
0/1 | 60 | 21 | 19 | 0.90 | 19 | 22 | 1.17 | 1.11 | 0.86 | 24 | 40.00 c | |
0/0 | 57 | 10 | 7 | 0.70 | 18 | 27 | 1.50 | 0.56 | 0.26 | 16 | 28.07 d | |
C6 | 0.1/1 | 58 | 4 | 3 | 0.75 | 11 | 11 | 1.00 | 0.36 | 0.27 | 7 | 12.07 e |
1/0.1 | 56 | 3 | 2 | 0.67 | 11 | 6 | 0.55 | 0.27 | 0.33 | 4 | 7.14 f | |
0.01/0.1 | 60 | 23 | 28 | 1.22 | 20 | 24 | 1.20 | 1.15 | 1.17 | 32 | 53.33 a | |
0.1/0.01 | 50 | 1 | 1 | 0.83 | 5 | 6 | 1.20 | 0.20 | 0.14 | 3 | 6.00 f | |
1/0 | 60 | 2 | 2 | 1.00 | 6 | 9 | 1.50 | 0.33 | 0.22 | 5 | 8.33 ef | |
0/1 | 70 | 21 | 24 | 1.14 | 23 | 35 | 1.52 | 0.91 | 0.69 | 33 | 47.14 b | |
0/0 | 56 | 11 | 11 | 1.00 | 25 | 38 | 1.52 | 0.44 | 0.29 | 24 | 42.86 c |
表7 C5和C6基因型子叶节在不同生长素和脱落酸比例培养基上再生芽统计
Table 7 Statistics of regenerated buds of C5 and C6 on medium with different ratios of auxin and abscisic acid
基因型 Geno- type | NAA/ ABA | 外植体 总数 Total number of explant | Ⅰ | Ⅱ | Ⅰ/Ⅱ | 成苗数 Number of regenerated seedlings | 再生苗 率/% Regenera- tion rate | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
外植体 总数 Total number of explant | 芽总数 Total number of bud | 平均 芽数 Average bud number | 外植体 总数 Total number of explant | 芽总数 Total number of bud | 平均 芽数 Average bud number | 外植体 比例 Explant ratio | 芽比例 Bud ratio | |||||
C5 | 0.1/1 | 67 | 5 | 4 | 0.80 | 9 | 12 | 1.33 | 0.56 | 0.33 | 8 | 11.94 e |
1/0.1 | 60 | 3 | 3 | 1.00 | 6 | 8 | 1.33 | 0.50 | 0.38 | 6 | 10.00 e | |
0.01/0.1 | 70 | 28 | 33 | 1.18 | 17 | 18 | 1.06 | 1.65 | 1.81 | 34 | 48.57 b | |
0.1/0.01 | 68 | 2 | 1 | 0.60 | 9 | 11 | 1.22 | 0.22 | 0.11 | 5 | 7.35 f | |
1/0 | 58 | 4 | 3 | 0.75 | 7 | 10 | 1.43 | 0.57 | 0.30 | 6 | 10.34 e | |
0/1 | 60 | 21 | 19 | 0.90 | 19 | 22 | 1.17 | 1.11 | 0.86 | 24 | 40.00 c | |
0/0 | 57 | 10 | 7 | 0.70 | 18 | 27 | 1.50 | 0.56 | 0.26 | 16 | 28.07 d | |
C6 | 0.1/1 | 58 | 4 | 3 | 0.75 | 11 | 11 | 1.00 | 0.36 | 0.27 | 7 | 12.07 e |
1/0.1 | 56 | 3 | 2 | 0.67 | 11 | 6 | 0.55 | 0.27 | 0.33 | 4 | 7.14 f | |
0.01/0.1 | 60 | 23 | 28 | 1.22 | 20 | 24 | 1.20 | 1.15 | 1.17 | 32 | 53.33 a | |
0.1/0.01 | 50 | 1 | 1 | 0.83 | 5 | 6 | 1.20 | 0.20 | 0.14 | 3 | 6.00 f | |
1/0 | 60 | 2 | 2 | 1.00 | 6 | 9 | 1.50 | 0.33 | 0.22 | 5 | 8.33 ef | |
0/1 | 70 | 21 | 24 | 1.14 | 23 | 35 | 1.52 | 0.91 | 0.69 | 33 | 47.14 b | |
0/0 | 56 | 11 | 11 | 1.00 | 25 | 38 | 1.52 | 0.44 | 0.29 | 24 | 42.86 c |
[1] | Aydin . 2013. Plant regeneration in wheat mature embryo culture. African Journal of Biotechnology, 10(70):15749-15755. |
[2] | Bömer M, O'Brien J, Perez-Salamo I, Krasauskas J, Finch P, Briones A, Daudi A, Souda P, Tsui T L, Whitelegge J P, Bolwell G P, Devoto A. 2018. COI1-dependent jasmonate signaling affects growth,metabolite production and cell wall protein composition in Arabidopsis. Annals of Botany, 122(7):1117-1129. |
[3] | Du Sheng-li, Wei Hui-jun, Wei Ai-min, Wang Yan-fei, Ma De-hua, Huo Zhen-rong. 2000. Effects of seedling stage,genotype and explant type on in vitro somatic organogenesis of cucumber. Tianjin Agricultural Sciences,(4):1-5. (in Chinese) |
杜胜利, 魏惠军, 魏爱民, 王艳飞, 马德华, 霍振荣. 2000. 苗龄、基因型和外植体类型对黄瓜离体器官发生的影响. 天津农业科学,(4):1-5. | |
[4] |
Gao Z H, Zhang H Y, Cao C X, Han J, Li H, Ren Z H. 2020. QTL mapping for cucumber fruit size and shape with populations from long and round fruited inbred lines. Horticultural Plant Journal, 6(3):132-144.
doi: 10.1016/j.hpj.2020.04.004 URL |
[5] |
Grozeva S, Velkov N. 2014. In vitro plant regeneration of two cucumber(Cucumis sativum L.) genotypes:effects of explant types and culture medium. Genetika, 46(2):485-493.
doi: 10.2298/GENSR1402485G URL |
[6] | Gu Rui-sheng, Jiang Xiang-ning, Guo Zhong-chen. 1999. Advances in the studies on the mechanism of plant organogenesis in vitro. Chinese Bulletin of Botany,(3):3-5. (in Chinese) |
谷瑞升, 蒋湘宁, 郭仲琛. 1999. 植物离体培养中器官发生调控机制的研究进展. 植物学通报,(3):3-5. | |
[7] | Hiroshi H, Takakazu M, Izumi C M, Miki Y, Kazuhiro S. 2016. Endogenous hormone levels affect the regeneration ability of callus derived from different organs in barley. Plant Physiology & Biochemistry, 99:66-72. |
[8] | Hu W, Fagundez S, Katin-Grazzini L, Li Y J, Li W, Chen Y N, Wang X M, Deng Z N, Xie S X, McAvoy R J, Li Y. 2017. Endogenous auxin and its manipulation influence in vitro shoot organogenesis of citrus epicotyl explants. Horticulture Research, 4(1):471-483. |
[9] | Jia Jin-sheng, Si Long-ting, Han Gui-chao, Yang Hao-ning. 2008. Regeneration in vitro and its influential factors of cucumber(Cucumis sativus L.). Journal of Henan Agricultural Sciences,(6):99-102. (in Chinese) |
贾金生, 司龙亭, 韩贵超, 杨皓宁. 2008. 不同基因型黄瓜离体再生及其影响因素的研究. 河南农业科学,(6):99-102. | |
[10] |
Kim K H, Park J S, Lee B M. 2011. Regeneration potential of immature embryos during seed development in spring and winter wheat genotypes. Korean Journal of Crop Science, 56(3):279-283.
doi: 10.7740/kjcs.2011.56.3.279 URL |
[11] | Li J, Wu Z, Cui L, Zhang T, Guo Q, Xu J, Jia L, Lou Q, Huang S, Li Z, Chen J F. 2014. Transcriptome comparison of global distinctive features between pollination and parthenocarpic fruit set reveals transcriptional phytohormone cross-talk in cucumber(Cucumis sativus L.). Plant & Cell Physiology, 55(7):1325-1342. |
[12] | Liu Chao, Han Li-hong, Chu Hong-long, Dai Dong-qin, Wang Hai-bo, Tang Li-zhou. 2019. Identification and expression analysis of abscisic acid biosynthesis related enzyme genes from pepper. Molecular Plant Breeding, 17(15):4908-4914. (in Chinese) |
刘潮, 韩利红, 褚洪龙, 代冬琴, 王海波, 唐利洲. 2019. 辣椒脱落酸合成相关酶基因的鉴定与表达分析. 分子植物育种, 17(15):4908-4914. | |
[13] | Liu Jia-fei, Zhang Lu, Meng Yong-jiao, Duan Li-li, Luo Yu-wei, Li Ji, Chen Jin-feng. 2019. Study on cucumber parthenocarpy induced by over-expressing of calmodulin-like protein gene CML25-like. Journal of Nanjing Agricultural University, 42(3):421-429. (in Chinese) |
刘嘉斐, 张璐, 孟永娇, 段莉莉, 罗雨薇, 李季, 陈劲枫. 2019. 过表达钙调素类似蛋白基因CML25-like诱导黄瓜单性结实的研究. 南京农业大学学报, 42(3):421-429. | |
[14] | Liu Xingwang, Zhai Xuling, Zhang Yaqi, Yin Shuai, Feng Zhongxuan, Ren Huazhong. 2020. A review on genetic and molecular biology of fruit morphogenesis in cucumber. Acta Horticulturae Sinica, 47(9):1793-1809. (in Chinese) |
刘兴旺, 翟许玲, 张亚琦, 尹帅, 冯钟萱, 任华中. 2020. 黄瓜果实形态建成的遗传及分子基础研究进展. 园艺学报, 47(9):1793-1809. | |
[15] | Liu Yu-xia, Ye De-you, Ou Qiao-ming, Li Min-quan. 2014. Regeneration system establishment from cotyledons in vitro of Cucumis sativus L. Northern Horticulture,(19):113-117. (in Chinese) |
刘玉霞, 叶德友, 欧巧明, 李敏权. 2014. 黄瓜离体子叶再生体系的建立. 北方园艺,(19):113-117. | |
[16] | Meng Q, Feng H. 2014. Improvement of a high frequency regeneration system for in vitro cultured cotyledons of Chinese cabbage(Brassica rapa L. ssp. pekinensis). Research Journal of Biotechnology, 9(7):85-92. |
[17] |
Mostafa H, Wang H P, Song J P, Li X X. 2020. Effects of genotypes and explants on garlic callus production and endogenous hormones. Scientific Reports, 10(8):175-183.
doi: 10.1038/s41598-019-56899-6 URL |
[18] | Park O S, Bae S H, Kim S G, Seo P J. 2019. JA-pretreated hypocotyl explants potentiate de novo shoot regeneration in Arabidopsis. Plant Signaling & Behavior, 14(8):e1618180. |
[19] | Pfaffl M W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nuclc Acids Research, 9(9):2002-2007. |
[20] |
Qi X H, Zhu Y M, Li S F, Zhou H X, Xu X W, Xu Q, Chen X H. 2020. Identification of genes related to mesocarp development in cucumber. Horticultural Plant Journal, 6(5):293-300.
doi: 10.1016/j.hpj.2020.08.001 URL |
[21] | Ren Gui-jie, Dong He-zhong, Chen Yong-zhe, Zhuang Yun-long, Shao Feng-zhi, Liu Zhi-fang. 2002. Studies on endogenous hormone changes in the stem terminal of Gossypium hirsutum during flower bud differentiation. Acta Botanica Boreali-Occidentalia Sinica, 22(2):113-118. (in Chinese) |
任桂杰, 董合忠, 陈永喆, 庄云龙, 邵凤之, 刘志方. 2002. 棉花花芽分化时期茎尖内源激素的变化. 西北植物学报, 22(2):113-118. | |
[22] | Su Y H, Zhang X S. 2014. The hormonal control of regeneration in plants. Current Topics in Developmental Biology, 108:35-69. |
[23] | Takahashi H, Kanayama Y, Zheng M S, Kusano T, Hase S, Ikegami M, Shah J. 2004. Antagonistic interactions between the SA and JA signaling pathways in Arabidopsis modulate expression of defense genes and gene-for-gene resistance to cucumber mosaic virus. Plant & Cell Physiology, 45(6):803-809. |
[24] | Tang Y, Liu J, Li X M, Liu B, Li H X. 2011. The influence of endogenous hormones on the formation of buds from stems of bitter melon (Momordca charanta L.). African Journal of Biotechnology, 10(31):5856-5860. |
[25] | Tang Y, Liu J, Liu B, Li X M, Li H X. 2010. Endogenous hormone concentrations in explants and calluses of bitter melon(Momordica charantia L.). Interciencia, 35(9):680-683. |
[26] |
Wang X, Yamada T, Kong F J, Abe Y, Hoshino Y, Sato H, Takamizo T, Kanazawa A, Yamada T. 2011. Establishment of an efficient in vitro culture and particle bombardment-mediated transformation systems in Miscanthus sinensis Anderss.,a potential bioenergy crop. Global Change Biology Bioenergy, 3(4):322-332.
doi: 10.1111/gcbb.2011.3.issue-4 URL |
[27] |
Wang Y, Zhou Q, Zhu G T, Wang S H, Ma Y S, Miao H, Zhang S P, Huang S W, Zhang Z H, Gu X F. 2018. Genetic analysis and identification of a candidate gene associated with in vitro regeneration ability of cucumber. Theoretical and Applied Genetics, 131:2663-2675.
doi: 10.1007/s00122-018-3182-7 pmid: 30244395 |
[28] | Xie Qi-xin, Huang Mei-lian, Wu Xiao-ping, Zhuang Dong-hong. 2008. Plant regeneration from leaves of date plum(Diospyros lotus L.). Scientia Agricultura Sinica,(2):607-612. (in Chinese) |
谢启鑫, 黄美连, 吴晓萍, 庄东红. 2008. 君迁子叶片培养再生植株的研究. 中国农业科学,(2):607-612. | |
[29] | Zhang Ruo-wei, Gu Xing-fang, Wang Ye, Zhang Sheng-ping, Zhang Bao-xi. 2010. Regeneration system establishment from cotyledons in different cucumber(Cucumis sativus L.)genotypes. Acta Agriculturae Boreali-Sinica, 25(S1):50-54. (in Chinese) |
张若纬, 顾兴芳, 王烨, 张圣平, 张宝玺. 2010. 不同黄瓜基因型子叶再生体系的建立. 华北农学报, 25(S1):50-54. |
[1] | 罗天宽, 吴海涛, 张圣美, 黄宗安, 孙 继, 水德聚, 陈先知. 黄瓜新品种‘瓯翠1号’[J]. 园艺学报, 2022, 49(S2): 125-126. |
[2] | 王鹤冰, 向华丰, 陈新中, 张 生, 张洪成. 华南型黄瓜新品种‘新燕095’[J]. 园艺学报, 2022, 49(S1): 79-80. |
[3] | 许春梅, 张作标, 柳景兰, 王 昕, 杨 龙, 赵 丹, 刘思宇, 贾云鹤, 孟雪娇, 崔嵩岑. 黄瓜新品种‘绿春2号’[J]. 园艺学报, 2022, 49(S1): 81-82. |
[4] | 张利东, 黄洪宇, 孔维良, 李加旺, 李愚鹤, . 华北型黄瓜新品种‘津优355’[J]. 园艺学报, 2022, 49(S1): 83-84. |
[5] | 王惠哲, 杨瑞环, 邓 强, 曹明明, 李淑菊, . 抗黑星病黄瓜新品种‘津冬369’[J]. 园艺学报, 2022, 49(S1): 85-86. |
[6] | 聂鑫淼, 栾恒, 冯改利, 王超, 李岩, 魏珉. 硅营养和嫁接砧木对黄瓜幼苗耐冷性的影响[J]. 园艺学报, 2022, 49(8): 1795-1804. |
[7] | 韩鲁杰, 冯一清, 杨秀华, 张宁, 毕焕改, 艾希珍. 有机肥化肥配施对大棚黄瓜根区土壤与根系特征的影响[J]. 园艺学报, 2022, 49(5): 1047-1059. |
[8] | 权建华, 段誉, 罗天, 袁强, 齐鑫, 王勤礼. 黄瓜新品种‘裕研9号’[J]. 园艺学报, 2022, 49(3): 703-704. |
[9] | 宋蒙飞, 查高辉, 陈劲枫, 娄群峰. 黄瓜株型性状分子基础研究进展[J]. 园艺学报, 2022, 49(12): 2683-2702. |
[10] | 赵昌博, 郑世伟, 边婷, 王爽, 张小兰, 富宏丹, 孙周平, 李天来. 日光温室黄瓜不同连作茬次土壤的中量与微量元素含量变化[J]. 园艺学报, 2021, 48(9): 1805-1814. |
[11] | 胡伟, 刘昱希, 赵勤政, 陈劲枫, 娄群峰. 黄瓜—酸黄瓜异附加系的创制与鉴定[J]. 园艺学报, 2021, 48(7): 1349-1358. |
[12] | 程凤, 宋蒙飞, 曹蕾, 张孟茹, 杨志歌, 陈劲枫, 娄群峰. 黄瓜的一个中短果突变体基因的初步定位[J]. 园艺学报, 2021, 48(7): 1359-1370. |
[13] | 贾会霞, 李锡香, 宋江萍, 林毓娥, 张晓辉, 邱杨, 阳文龙, 娄群峰, 王海平. 黄瓜核心种质白粉病抗性的全基因组关联分析[J]. 园艺学报, 2021, 48(7): 1371-1385. |
[14] | 林毓娥, 梁肇均, 何晓明, 王瑞, 刘文睿, 吴廷全, 彭庆务, 江彪, 王敏, 谢大森. 华南型黄瓜新品种‘力丰2号’[J]. 园艺学报, 2021, 48(7): 1431-1432. |
[15] | 汪淑雯, 杨爱怡, 王华森, 徐云敏. 黄瓜miR156/157-SPL途径基因鉴定和表达分析[J]. 园艺学报, 2021, 48(11): 2227-2238. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司