Acta Horticulturae Sinica ›› 2023, Vol. 50 ›› Issue (6): 1355-1367.doi: 10.16420/j.issn.0513-353x.2022-0296
• Plant Protection • Previous Articles Next Articles
ZHANG Lehuan, ZOU Changyu, WANG Zhaohao, YANG Wen, ZOU Xiuping, HE Yongrui, CHEN Shanchun(), LONG Qin(
)
Received:
2022-11-10
Revised:
2023-01-26
Online:
2023-06-25
Published:
2023-06-27
Contact:
* (E-mail:CLC Number:
ZHANG Lehuan, ZOU Changyu, WANG Zhaohao, YANG Wen, ZOU Xiuping, HE Yongrui, CHEN Shanchun, LONG Qin. Cloning and Expression Analysis of CsAOS1-2 in Responding to Citrus Canker Disease[J]. Acta Horticulturae Sinica, 2023, 50(6): 1355-1367.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2022-0296
用途 Use | 引物 Primer | 引物序列 Primer sequence |
---|---|---|
cDNA扩增cDNA amplification | CsAOS1-2 | F:GGACTAGTATGGCATCCACTTCTCTA;R:CGGAATTCTCAAAAGCTTGCTCTCTT |
启动子引物Promoter | CsAOS1-2-P | F:GCAGATCGAACCCGAGGAGT;R:CTGAATGAGAAACGCGACGC |
FjAOS1-2-P | F:ATAGAGTCGTGGAAGGTGTGCG;R:GCGGAATCAAACAAGGGTCC | |
基因表达 | Actin-qRT | F:CATCCCTCAGCACCTTCC;R:CCAACCTTAGCACTTCTCC |
Gene expression | CsAOS1-1-qRT | F:AGCTTTTGGGTCAATTTCGGAT;R:TCACGAAATGTTCCAAATAGAAACT |
CsAOS1-2-qRT | F:TTGGTTCGGTAAGAACCCCG;R:GGTAGGCCCAGGGAGAGTAA | |
CsAOS1-3-qRT | F:CGGCTCTCTCCATCTTTCCC;R:ATCAATTGCGACCAGCGGTA |
Table 1 Primers used in this study
用途 Use | 引物 Primer | 引物序列 Primer sequence |
---|---|---|
cDNA扩增cDNA amplification | CsAOS1-2 | F:GGACTAGTATGGCATCCACTTCTCTA;R:CGGAATTCTCAAAAGCTTGCTCTCTT |
启动子引物Promoter | CsAOS1-2-P | F:GCAGATCGAACCCGAGGAGT;R:CTGAATGAGAAACGCGACGC |
FjAOS1-2-P | F:ATAGAGTCGTGGAAGGTGTGCG;R:GCGGAATCAAACAAGGGTCC | |
基因表达 | Actin-qRT | F:CATCCCTCAGCACCTTCC;R:CCAACCTTAGCACTTCTCC |
Gene expression | CsAOS1-1-qRT | F:AGCTTTTGGGTCAATTTCGGAT;R:TCACGAAATGTTCCAAATAGAAACT |
CsAOS1-2-qRT | F:TTGGTTCGGTAAGAACCCCG;R:GGTAGGCCCAGGGAGAGTAA | |
CsAOS1-3-qRT | F:CGGCTCTCTCCATCTTTCCC;R:ATCAATTGCGACCAGCGGTA |
基因 Gene | CAP序号 CAP ID | 氨基酸数 Number of amino acid | 分子量 Molecular weigh | 等电点 pI | 亚细胞定位 Subcellular localization | 外显子数 | 内含子数 | 开放阅读框/bp |
---|---|---|---|---|---|---|---|---|
Exon number | Intron number | Open reading frame | ||||||
CsAOS1-1 | Cs_ont_2g018770 | 499 | 55 760.06 | 5.99 | 未知 Unknown | 2 | 1 | 1 500 |
CsAOS1-2 | Cs_ont_3g004330.1 | 532 | 59 499.81 | 9.10 | 叶绿体 Chloroplast | 1 | 0 | 1 599 |
CsAOS1-3 | Cs_ont_8g022950.1 | 481 | 54 195.31 | 8.53 | 内质网 Endoplasmic reticulum | 1 | 0 | 1 446 |
Table 2 Sequence analysis of AOS gene family in Citrus
基因 Gene | CAP序号 CAP ID | 氨基酸数 Number of amino acid | 分子量 Molecular weigh | 等电点 pI | 亚细胞定位 Subcellular localization | 外显子数 | 内含子数 | 开放阅读框/bp |
---|---|---|---|---|---|---|---|---|
Exon number | Intron number | Open reading frame | ||||||
CsAOS1-1 | Cs_ont_2g018770 | 499 | 55 760.06 | 5.99 | 未知 Unknown | 2 | 1 | 1 500 |
CsAOS1-2 | Cs_ont_3g004330.1 | 532 | 59 499.81 | 9.10 | 叶绿体 Chloroplast | 1 | 0 | 1 599 |
CsAOS1-3 | Cs_ont_8g022950.1 | 481 | 54 195.31 | 8.53 | 内质网 Endoplasmic reticulum | 1 | 0 | 1 446 |
Fig. 2 Multiple sequence alignment of AOS protein AGP25595.1:Aquilaria sinensis AOS;Prupe.1G386300.1:Prunus persica AOS;SapurV1A.0017s0540.1:Salix purpurea AOS;Gorai.009G274700.1:Gossypium raimondii AOS;AT5G42650:Arabidopsis thaliana AOS;LOC Os03g55800.1:Oryza sativa AOS;KAE8799605.1:Hordeum vulgare AOS. The AOS gene motifs of I-Helix region, ETLR-motif and Heme-Binding domain are red boxed. Represents the cytochrome P450 binding domain by ▼.
Fig. 3 The expression of CsAOS induced by canker pathogen in citrus susceptible variety‘Wanjincheng’and resistant variety‘Jindan’ Two-tailed student’s t-test(* P < 0.05;** P < 0.01),compared with mock control.
Fig. 4 Expression of CsAOS1-2 in different tissues of‘Wangjincheng’and‘Jindan’ Different letters indicate‘Wanjincheng’and‘Jindan’significant different at P < 0.05 in different tissues of the same varieties(Duncan’s test).
顺式元件 cis-Element | 特性 Characteristic | 序列 Sequence | 起始位/bp Strat position | 方向Strand | ||
---|---|---|---|---|---|---|
晚锦橙 Wanjincheng | 金弹 Jindan | 晚锦橙 Wanjincheng | 金弹 Jindan | |||
ABRE | 脱落酸响应 Abscisic acid responsiveness | CACGTG ACGTG ACGTG ACGTG ACGTG CACGTG CACGTG | 311 913 694 1 093 312 1 092 912 | + + + + + - - | ||
AE-box | 光响应元件的一部分 Part of a light responsive element | AGAAACTT | 622 | 788 | + | + |
ARE | 厌氧诱导 Anaerobic induction | AAACCA AAACCA | 663 | 830 1 137 | + | + + |
Box4 | 光响应元件的一部分 Part of a light responsive element | ATTAAT ATTAAT | 1 416 | 451 1 420 | - | + - |
CGTCA-motif | 茉莉酸甲酯响应 Methyl jasmonate responsiveness | CGTCA CGTCA CGTCA | 105 798 | 222 958 255 | - + | - + - |
G-box | 光响应元件 Light-responsiveness element | CACGTG CACGAC CACGTG CACGAC CACGTG | 311 1 208 912 1 092 | 1 198 1 290 | + + - - | + - |
GA-motif | 光响应元件的一部分 Part of a light responsive element | ATAGATAA | 872 1 052 | 1 032 | + + | + |
MBS | 干旱响应Drought response | CAACTG | 1 534 | + | ||
MRE | 光响应元件 Light-responsiveness element | AACCTAA AACCTAA | 1 223 | 98 1 213 | - | - - |
P-box | 赤霉素响应 Gibberellin-responsive | CCTTTTG | 496 | + | ||
TATC-box | 赤霉素响应元件 Gibberellin-responsive element | TATCCCA | 841 | - | ||
TCA-element | 水杨酸响应 Salicylic acid responsiveness | CCATCTTTTT | 1 515 | + | ||
TCT-motif | 光响应元件的一部分 Part of a light responsive element | TCTTAC | 127 | 277 | + | + |
TGACG-motif | 茉莉酸甲酯响应元件 Methyl jasmonate-responsive element | TGACG TGACG TGACG | 105 798 | 222 958 255 | + - | + - + |
circadian | 昼夜规律元件 Involved in circadian control | CAAAGATATC | 73 | + | ||
W-box | WRKY转录因子结合位点 WRKY transcription factor binding site | TTGACC | 112 | + |
Table 3 cis-Acting regulatory elements in promoter of AOS1-2 predicted by PlantCARE
顺式元件 cis-Element | 特性 Characteristic | 序列 Sequence | 起始位/bp Strat position | 方向Strand | ||
---|---|---|---|---|---|---|
晚锦橙 Wanjincheng | 金弹 Jindan | 晚锦橙 Wanjincheng | 金弹 Jindan | |||
ABRE | 脱落酸响应 Abscisic acid responsiveness | CACGTG ACGTG ACGTG ACGTG ACGTG CACGTG CACGTG | 311 913 694 1 093 312 1 092 912 | + + + + + - - | ||
AE-box | 光响应元件的一部分 Part of a light responsive element | AGAAACTT | 622 | 788 | + | + |
ARE | 厌氧诱导 Anaerobic induction | AAACCA AAACCA | 663 | 830 1 137 | + | + + |
Box4 | 光响应元件的一部分 Part of a light responsive element | ATTAAT ATTAAT | 1 416 | 451 1 420 | - | + - |
CGTCA-motif | 茉莉酸甲酯响应 Methyl jasmonate responsiveness | CGTCA CGTCA CGTCA | 105 798 | 222 958 255 | - + | - + - |
G-box | 光响应元件 Light-responsiveness element | CACGTG CACGAC CACGTG CACGAC CACGTG | 311 1 208 912 1 092 | 1 198 1 290 | + + - - | + - |
GA-motif | 光响应元件的一部分 Part of a light responsive element | ATAGATAA | 872 1 052 | 1 032 | + + | + |
MBS | 干旱响应Drought response | CAACTG | 1 534 | + | ||
MRE | 光响应元件 Light-responsiveness element | AACCTAA AACCTAA | 1 223 | 98 1 213 | - | - - |
P-box | 赤霉素响应 Gibberellin-responsive | CCTTTTG | 496 | + | ||
TATC-box | 赤霉素响应元件 Gibberellin-responsive element | TATCCCA | 841 | - | ||
TCA-element | 水杨酸响应 Salicylic acid responsiveness | CCATCTTTTT | 1 515 | + | ||
TCT-motif | 光响应元件的一部分 Part of a light responsive element | TCTTAC | 127 | 277 | + | + |
TGACG-motif | 茉莉酸甲酯响应元件 Methyl jasmonate-responsive element | TGACG TGACG TGACG | 105 798 | 222 958 255 | + - | + - + |
circadian | 昼夜规律元件 Involved in circadian control | CAAAGATATC | 73 | + | ||
W-box | WRKY转录因子结合位点 WRKY transcription factor binding site | TTGACC | 112 | + |
[1] |
Agrawal G K, Rakwal R, Jwa N S, Han K S, Agrawal V P. 2002. Molecular cloning and mRNA expression analysis of the first rice jasmonate biosynthetic pathway gene allene oxide synthase. Plant Physiology and Biochemistry, 40 (9):771-782.
doi: 10.1016/S0981-9428(02)01429-8 URL |
[2] |
Brunings A M, Gabriel D W. 2003. Xanthomonas citri:breaking the surface. Molecular Plant Pathology, 4 (3):141-157.
doi: 10.1046/j.1364-3703.2003.00163.x pmid: 20569374 |
[3] | Cao Yan-bin, Bai Su-hua, Dang Hong-yi. 2014. Cloning and expression analysis of an allene oxide synthase gene MdAOS from Malus domestica. Genomics and Applied Biology, 33 (2):273-281. (in Chinese) |
曹晏彬, 柏素花, 戴洪义. 2014. 苹果丙二烯氧化物合酶MdAOS的克隆和表达分析. 基因组学与应用生物学, 33 (2):273-281. | |
[4] |
Cui H, Qiu J, Zhou Y, Bhandari D D, Zhao C, Bautor J, Parker J E. 2018. Antagonism of transcription factor MYC 2 by EDS1/PAD4 complexes bolsters salicylic acid defense in Arabidopsis effector-triggered immunity. Molecular Plant, 11 (8):1053-1066.
doi: 10.1016/j.molp.2018.05.007 URL |
[5] | Deng Xiu-xin. 2005. Advances in world wide citrus breeding. Acta Horticulturae Sinica, 32 (6):1140-1146. (in Chinese) |
邓秀新. 2005. 世界柑橘品种改良的进展. 园艺学报, 32 (6):1140-1146. | |
[6] |
Deng Xiuxin. 2022. A review and perspective for citrus breeding in China during the last six decades. Acta Horticulturae Sinica, 49 (10):2063-2074. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2021-0701 URL |
邓秀新. 2022. 中国柑橘育种60年回顾与展望. 园艺学报, 49 (10):2063-2074.
doi: 10.16420/j.issn.0513-353x.2021-0701 URL |
|
[7] |
Distefano G, La Malfa S, Vitale A, Lorito M, Deng Z, Gentile A. 2008. Defence-related gene expression in transgenic lemon plants producing an antimicrobial Trichoderma harzianum endochitinase during fungal infection. Transgenic Research, 17 (5):873-879.
doi: 10.1007/s11248-008-9172-9 pmid: 18306055 |
[8] |
Fan J, Hill L, Crooks C, Doerner P, Lamb C. 2009. Abscisic acid has a key role in modulating diverse plant-pathogen interactions. Plant Physiology, 150 (4):1750-1761.
doi: 10.1104/pp.109.137943 pmid: 19571312 |
[9] |
Farmaki T, Sanmartin M, Jimenez P, Paneque M, Sanz C, Vancanneyt G, Leon J, Sanchez-Serrano J J. 2007. Differential distribution of the lipoxygenase pathway enzymes within potato chloroplasts. Journal of Experimental Botany, 58 (3):555-568.
doi: 10.1093/jxb/erl230 pmid: 17210991 |
[10] | Feng Ying-ying, Zhang Zhong-xiu, Dong Xian-juan, Liu Xiao, Yan Ya-ru, Wang Jin-ling, Wang Xiao-hui, Shi She-po. 2017. Expression analysis of allene oxide synthase gene from Aquilaria sinensis. Acta Pharmaceutica Sinica, 52 (12):1962-1969. (in Chinese) |
冯莹莹, 张钟秀, 董先娟, 刘晓, 闫雅如, 王金铃, 王晓晖, 史社坡. 2017. 白木香丙二烯氧化物合酶基因的表达分析. 药学学报, 52 (12):1962-1969. | |
[11] | Han Tong-kai, Zhou Jin-jun, Xue Yan-jiu, Chen Cui-xia, Xie Xian-zhi. 2013. Expression analysis of allene oxide synthase gene,OsAOS1,in rice. Shangdong Agricultural Sciences, 45 (5):1-5. (in Chinese) |
韩同凯, 周晋军, 薛彦久, 陈翠霞, 谢先芝. 2013. 水稻丙二烯氧化物合成酶基因OsAOS1的表达研究. 山东农业科学, 45 (5):1-5. | |
[12] |
Hickman R, Van Verk M C, Van Dijken A J H, Mendes M P, Vroegop-Vos I A, Caarls L, Steenbergen M, van der Nagel I, Wesselink G J, Jironkin A, Talbot A, Rhodes J, de Vries M, Schuurink R C, Denby K, Pieterse C M J, van Wees SCM. 2017. Architecture and dynamics of the jasmonic acid gene regulatory network. Plant Cell, 29 (9):2086-2105.
doi: 10.1105/tpc.16.00958 URL |
[13] |
Hou Y X, Wang Y F, Tang L Q, Tong X H, Wang L, Liu L M, Huang S W, Zhang J. 2019. SAPK10-mediated phosphorylation on WRKY72 releases its suppression on jasmonic acid biosynthesis and bacterial blight resistance. iScience, 16:499-510.
doi: S2589-0042(19)30191-9 pmid: 31229897 |
[14] | Jiang Ke-ji. 2007. Cloning and studies of jasmonate biosynthetc pathway key genes from medicinal plants[Ph. D. Dissertation]. Shanghai: Fudan University:63-88. (in Chinese) |
蒋科技. 2007. 植物茉莉酸合成途径关键酶基因的克隆与研究[博士学位论文]. 上海: 复旦大学:63-88. | |
[15] | Jiang Ke-ji, Pi Yan, Hou Rong, Tang Ke-xuan. 2010. Biosynthetic pathway of endogenous jasmonates in plants and its biological significance. Bulletin of Botany, 45 (2):137-148. (in Chinese) |
蒋科技, 皮妍, 侯嵘, 唐克轩. 2010. 植物内源茉莉酸类物质的生物合成途径及其生物学意义. 植物学报, 45 (2):137-148. | |
[16] |
Jiang Y J, Yu D Q. 2016. The WRKY 57 transcription factor affects the expression of jasmonate ZIM-domain genes transcriptionally to compromise Botrytis cinerea resistance. Plant Physiology, 171 (4):2771-2782.
doi: 10.1104/pp.16.00747 URL |
[17] |
Laudert D, Pfannschmidt U, Lottspeich F, Hollander-Czytko H, Weiler E W. 1996. Cloning, molecular and functional characterization of Arabidopsis thaliana allene oxide synthase(CYP 74),the first enzyme of the octadecanoid pathway to jasmonates. Plant Molecular Biology, 31 (2):323-335.
pmid: 8756596 |
[18] |
Laudert D, Schaller F, Weiler E W. 2000. Transgenic nicotiana tabacum and Arabidopsis thaliana plants overexpressing allene oxide synthase. Planta, 211 (1):163-165.
pmid: 10923718 |
[19] |
Laudert D, Weiler E W. 1998. Allene oxide synthase:a major control point in Arabidopsis thaliana octadecanoid signaling. Plant Journal, 15 (5): 675-684.
doi: 10.1046/j.1365-313x.1998.00245.x pmid: 9778849 |
[20] |
Li Qiang, Qi Jingjing, Dou Wanfu, Qin Xiujuan, He Yongrui, Chen Shanchun. 2020. Overexpression of CsNBS-LRR in citrus confers bacterial canker resistance by regulating SA signaling pathway. Acta Horticulturae Sinica, 47 (5):817-826. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2019-0625 |
李强, 祁静静, 窦万福, 秦秀娟, 何永睿, 陈善春. 2020. 超量表达CsNBS-LRR通过调节SA信号途径增强柑橘对溃疡病抗性. 园艺学报, 47 (5):817-826.
doi: 10.16420/j.issn.0513-353x.2019-0625 |
|
[21] |
Liu Chun-hao, Liang Nan-song, Yu lei, Zhao Xing-tang, Cao Yang, Zhan Ya-guang. 2018. Sequence and expression pattern analysis of allene oxide synthase gene from Fraxinus mandschurica. Plant Physiology Journal, 54 (5):855-862. (in Chinese)
doi: 10.1104/pp.54.6.855 URL |
刘春浩, 梁楠松, 于磊, 赵兴堂, 曹羊, 詹亚光. 2018. 水曲柳丙二烯氧化物合成酶基因FmAOS序列与表达模式分析. 植物生理学报, 54 (5):855-862. | |
[22] |
Long Q, Du M X, Long J H, Xie Y, Zhang J Y, Xu L Z, He Y R, Li Q, Chen S C, Zou X P. 2021. Transcription factor WRKY 22 regulates canker susceptibility in sweet orange(Citrus sinensis Osbeck)by enhancing cell enlargement and CsLOB1 expression. Horticulture Research, 8 (1):50.
doi: 10.1038/s41438-021-00486-2 pmid: 33642585 |
[23] |
Long Q, Xie Y, He Y R, Li Q, Zou X P, Chen S C. 2019. Abscisic acid promotes jasmonic acid accumulation and plays a key role in citrus canker development. Frontiers in Plant Science, 10:1634.
doi: 10.3389/fpls.2019.01634 pmid: 31921273 |
[24] |
Long Q, Yue F, Liu R, Song S, Li X, Ding B, Yan X, Pei Y. 2018. The phosphatidylinositol synthase gene(GhPIS)contributes to longer, stronger,and finer fibers in cotton. Molecular Genetics and Genomics, 293 (5):1139-1149.
doi: 10.1007/s00438-018-1445-2 pmid: 29752547 |
[25] | Long Qin, Du Mei-xia, Long Jun-hong, He Yong-rui, Zou Xiu-ping, Chen Shan-chun. 2020a. Effect of transcription factor CsWRKY 61 on citrus bacterial canker resistance. Scientia Agricultura Sinica, 53 (8):62-77. (in Chinese) |
龙琴, 杜美霞, 龙俊宏, 何永睿, 邹修平, 陈善春. 2020a. 转录因子CsWRKY61对柑橘溃疡病抗性的影响. 中国农业科学, 53 (8):62-77. | |
[26] | Long Qin, Xie Yu,Xu Lan-zhen, He Yong-rui, Zou Xiu-ping, Chen Shan-chun. 2020b. Characteristics and mechanism of programmed cell death in response to citrus canker pathogen in the early stage of infection. Acta Horticulture Sinica, 47 (6):1047-1058. (in Chinese) |
龙琴, 谢宇, 许兰珍, 何永睿, 邹修平, 陈善春. 2020b. 溃疡病菌侵染早期柑橘细胞程序性死亡的响应特征及机制. 园艺学报, 47 (6):1047-1058. | |
[27] |
Maucher H, Hause B, Feussner I, Ziegler J, Wasternack C. 2000. Allene oxide synthases of barley(Hordeum vulgare cv. Salome):tissue specific regulation in seedling development. Plant Journal, 21 (2):199-213.
doi: 10.1046/j.1365-313x.2000.00669.x pmid: 10743660 |
[28] |
Mei C S, Qi M, Sheng G Y, Yang Y N. 2006. Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level,PR gene expression,and host resistance to fungal infection. Molecular Plant-microbe Interactions, 19 (10):1127-1137.
doi: 10.1094/MPMI-19-1127 URL |
[29] |
Meng F, Yang C, Cao J D, Chen H, Pang J H, Zhao Q Q, Wang Z Y, Zheng Q F, Liu J. 2020. A bHLH transcription activator regulates defense signaling by nucleo-cytosolic trafficking in rice. Journal of Integrative Plant Biology, 62 (10):1552-1573.
doi: 10.1111/jipb.v62.10 URL |
[30] | Ohkawa H, Imaishi H, Shiota N, Yamada T, Inui H, Ohkawa Y. 1998. Molecular mecha-nisms of herbicide resistance with special emphasis on cytochrome P450 monooxygenases. Plant Biotechnology, 15 (4):168-173. |
[31] |
Pajerowska-Mukhtar K M, Mukhtar M S, Guex N, Halim V A, Rosahl S, Somssich I E, Gebhardt C. 2008. Natural variation of potato allene oxide synthase 2 causes differential levels of jasmonates and pathogen resistance in Arabidopsis. Planta, 228 (2):293-306.
doi: 10.1007/s00425-008-0737-x pmid: 18431595 |
[32] | Peng Ai-hong, He Yong-rui, Xu Lan-zhen, Zou Xiu-ping, Liu Xiao-feng, Yao Li-xiao, Lei Tian-gang, Chen Shan-chun. 2011. Progress of transgenic research in citrus. Journal of Tropical Crops, 32 (7):1381-1387. (in Chinese) |
彭爱红, 何永睿, 许兰珍, 邹修平, 刘小丰, 姚利晓, 雷天刚, 陈善春. 2011. 柑桔转基因研究进展. 热带作物学报, 32 (7):1381-1387. | |
[33] |
Raza A, Charagh S, Zahid Z, Mubarik M S, Javed R, Siddiqui M H, Hasanuzzaman M. 2021. Jasmonic acid:a key frontier in conferring abiotic stress tolerance in plants. Plant Cell Reports, 40 (8):1513-1541.
doi: 10.1007/s00299-020-02614-z pmid: 33034676 |
[34] |
Ren H R, Bai M J, Sun J J, Liu J Y, Ren M, Dong Y W, Wang N, Ning G G, Wang C Q. 2020. RcMYB84 and RcMYB 123 mediate jasmonate-induced defense responses against Botrytis cinerea in rose(Rosa chinensis). Plant Journal, 103 (5):1839-1849.
doi: 10.1111/tpj.v103.5 URL |
[35] |
Sembdner G, Parthier B. 1993. The biochemistry and the physiological and molecular actions of jasmonates. Annual Review of Plant Physiology and Plant Molecular Biology, 44 (1):569-589.
doi: 10.1146/arplant.1993.44.issue-1 URL |
[36] |
Song W C, Brash A R. 1991. Purification of an allene oxide synthase and identification of the enzyme as a cytochrome P-450. Science, 253 (5021):781-784.
pmid: 1876834 |
[37] | Song W C, Funk C D, Brash A R. 1993. Molecular cloning of an allene oxide synthase:a cytochrome P450 specialized for the metabolism of fatty acid hydroperoxides. Proceedings of the National Academy of Sciences of the United States of America, 90 (18):8519-8523. |
[38] |
Wu De-wei, Wang Jiao-jiao, Xie Dao-xin. 2018. Jasmonate action and biotic stress response in plants. Biotechnology Bulletin, 34 (7):14-23. (in Chinese)
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0442 |
吴德伟, 汪姣姣, 谢道昕. 2018. 茉莉素与植物生物胁迫反应. 生物技术通报, 34 (7):14-23.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0442 |
|
[39] | Wu Juan-juan. 2008. Clonging and functional analysis of soybean GmAOS gene[Ph. D. Dissertation]. Nanjing: Nanjing Agricultural University. (in Chinese) |
吴娟娟. 2008. 大豆丙二烯氧化物合酶基因(GmAOS)的克隆和功能研究[博士论文]. 南京: 南京农业大学. | |
[40] | Xie Yu, Zhang Qingwen, Qi Jingjing, Zou Xiuping, He Yongrui, Xu Lanzhen, Lei Tiangang, Peng Aihong, Li Qiang, Yao Lixiao, Chen Shanchun, Long Qin. 2020. Cloning and expression analysis of CsNCED3-2 in responding to citrus canker disease. Acta Horticulturae Sinica, 47 (12):2405-2414. (in Chinese) |
谢宇, 张庆雯, 祁静静, 邹修平, 何永睿, 许兰珍, 雷天刚, 彭爱红, 李强, 姚利晓, 陈善春, 龙琴. 2020. 柑橘CsNCED3-2的克隆及其响应溃疡病菌侵染的表达分析. 园艺学报, 47 (12):2405-2414. | |
[41] | Xiong J, Liu L, Xiao C M, Ma X C, Li F F, Tang C L, Li Z H, Lu B W, Zhou T, Lian X F, Chang Y Y, Tang M J, Xie S X, Lu X P. 2020. Characterization of PtAOS 1 promoter and three novel interacting proteins responding to drought in Poncirus trifoliate. Molecular Plant Sciences, 21 (3):4705. |
[42] | Zhao X L, Lu X P, Nie Q, Huang C N, Xiao Y M, Xie S X. 2013. Effect of water stress on physiological characteristics JA biosynthesis and correlative genes expression in citrus. Acta Agriculturae Universitatis Jiangxiensis, 35 (3):530-535. |
[43] | Zhang Tong-fang. 2013. Role of allene oxide synthases,OsAOS1 and OsAOS2,in regulating the production of herbivore-induced jasmonic acid and herbivore resistance in rice[Ph. D. Dissertation]. Hangzhou: Zhejiang University. (in Chinese) |
张同芳. 2013. 水稻丙二烯氧化合酶基因OsAOS1和OsAOS2在调控虫害诱导茉莉酸合成及抗虫性中的作用[博士论文]. 杭州: 浙江大学. | |
[44] | Zheng X, Spivey N W, Zeng W, Liu P P, Fu Z Q, Klessig D F, He S Y, Dong X N. 2012. Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host & Microbe, 11 (6):587-596. |
[45] | Zhu Chen-zeng. 2018. Functional study of BoMSl and BoAOS genes controlling male sterility in cabbage[M. D. Dissertation]. Chongqing: Southwest University. (in Chinese) |
朱陈曾. 2018. BoMS1和BoAOS基因控制甘蓝雄性不育的功能研究[硕士论文]. 重庆: 西南大学. |
[1] | CAO Yiyang, XIA Chaoshui , CHEN Weiting, GAN Weixin, LIN Huifeng, and LIN Fazhuang. A New Cultivar‘Minghui Fendai’of Gerbera Cut Flower [J]. Acta Horticulturae Sinica, 2023, 50(S1): 121-122. |
[2] | GAO Pengfei, GAO Bing, FENG Zhenghong, WU Jianhui. Cloning and Cd-resistant Analysis of PsWRKY40 in Potentilla sericea [J]. Acta Horticulturae Sinica, 2023, 50(6): 1269-1283. |
[3] | GUO Jing, LIAO Manyu, JIN Yan, MA Xiaochuan, ZHANG Fen, LU Xiaopeng, DENG Ziniu, SHENG Ling. Functional Analysis of Transcription Factor CsbHLH3 in Regulating Citric Acid Metabolism of Citrus Fruit [J]. Acta Horticulturae Sinica, 2023, 50(5): 947-958. |
[4] | LIU Jiaqi, GONG Feifei, ZHANG Hao, JING Weikun, QU Suping, MA Nan, GAO Junping, SUN Xiaoming. Jasmonic Acid Carboxy Methyltransferase Gene RhJMT Regulates Petal Senescence in Rosa hybrida [J]. Acta Horticulturae Sinica, 2023, 50(5): 1025-1036. |
[5] | LÜ Ruoya, LI Yun, ZHENG Yongqin, DENG Xiaoling, ZHENG Zheng. The Distribution Pattern of Candidatus Liberibacter asiaticus in Fruit Pith [J]. Acta Horticulturae Sinica, 2023, 50(5): 1110-1117. |
[6] | WANG Ping, SHENG Ling, YANG Jinpeng, ZHOU Linglei, JIN Yan, LUO Xuzhao, MA Xianfeng, DENG Ziniu. Evaluation of Resistance to Citrus Canker Disease in Hybrid Progeny of Red Pomelo and American Citron [J]. Acta Horticulturae Sinica, 2023, 50(4): 765-777. |
[7] | WANG Tonghuan, WU Yuxin, WU Yiyuan, LI Xinxin, LIU Mengyang, YANG Lianlian, LI Jiapeng, ZHANG Zhongshan, CAO Fang, ZHONG Xueting, WANG Zhanqi. Genome-wide Identification and Expression Analysis of the GRAS Gene Family in Response to Cold Stress in Chrysanthemum nankingense [J]. Acta Horticulturae Sinica, 2023, 50(4): 815-830. |
[8] | ZOU Yunqian, LUO Qujuan, ZHANG Jin, XU Rangwei, CHENG Yunjiang. Coating Containing Shellac,Rosin Significantly Improves Commercial Value of Satsuma Mandarins and Lane Late Navel Orange During Shelf Life [J]. Acta Horticulturae Sinica, 2023, 50(4): 853-863. |
[9] | LAI Hengxin, LI Wenguang, PENG Liangzhi, HE Yizhong, ZHU Panpan, YANG Wanyun, LING Lili, FU Xingzheng, CHUN Changpin, CAO Li. Quality Changes of On-tree Storage Fruit of Orah Mandarin(Citrus reticulata Blanco)During Spring and Summer Seasons [J]. Acta Horticulturae Sinica, 2023, 50(3): 485-494. |
[10] | LIU Yunuo, CAO Ya, WANG Shuai, DU Meixia, ZHENG Lin, CHEN Shanchun, ZOU Xiuping. Expression Analysis of CsMYB41 and CsMYB63 Genes in Response to Citrus Canker [J]. Acta Horticulturae Sinica, 2023, 50(3): 495-507. |
[11] | MAO Kexin, AN Miao, WANG Hairong, WANG Shijin, LÜ Wei, GUO Yingtian, LI Jian, LI Guotian. Identification and Low Temperature Expression Analysis of MYB Transcription Factor Family in Kiwifruit [J]. Acta Horticulturae Sinica, 2023, 50(3): 534-548. |
[12] | LIU Yuhan, TAO Ning, WANG Qingguo, LI Qingqing. ABC Transporter SlABCG23 Regulates Jasmonic Acid Signaling Pathway in Tomato [J]. Acta Horticulturae Sinica, 2023, 50(3): 559-568. |
[13] | WANG Quancheng, WU Jun, LI Lei, SHI Yanxia, XIE Xuewen, LI Baoju, CHAI Ali. Exploration on the Function of Pathogenicity-related Gene CcTLS1 in Corynespora cassiicola From Cucumber [J]. Acta Horticulturae Sinica, 2023, 50(3): 569-582. |
[14] | WANG Xiaochen, NIE Ziye, LIU Xianju, DUAN Wei, FAN Peige, LIANG Zhenchang. Effects of Abscisic Acid on Monoterpene Synthesis in‘Jingxiangyu’Grape Berries [J]. Acta Horticulturae Sinica, 2023, 50(2): 237-249. |
[15] | YE Zimao, SHEN Wanxia, LIU Mengyu, WANG Tong, ZHANG Xiaonan, YU Xin, LIU Xiaofeng, ZHAO Xiaochun. Effect of R2R3-MYB Transcription Factor CitMYB21 on Flavonoids Biosynthesis in Citrus [J]. Acta Horticulturae Sinica, 2023, 50(2): 250-264. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd