https://www.ahs.ac.cn/images/0513-353X/images/top-banner1.jpg|#|苹果
https://www.ahs.ac.cn/images/0513-353X/images/top-banner2.jpg|#|甘蓝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner3.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner4.jpg|#|灵芝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner5.jpg|#|桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner6.jpg|#|黄瓜
https://www.ahs.ac.cn/images/0513-353X/images/top-banner7.jpg|#|蝴蝶兰
https://www.ahs.ac.cn/images/0513-353X/images/top-banner8.jpg|#|樱桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner9.jpg|#|观赏荷花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner10.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner11.jpg|#|月季
https://www.ahs.ac.cn/images/0513-353X/images/top-banner12.jpg|#|菊花

ACTA HORTICULTURAE SINICA ›› 2014, Vol. 41 ›› Issue (12): 2419-2426.

• Vegetables • Previous Articles     Next Articles

Effects of Silicon on Ultrastructure and Active Oxygen Metabolism in Mitochondria of Tomato Roots Under Drought Stress

CAO Bi-Li, LIU Can-Yu, XU Kun   

  1. College of Horticulture Science and Engineering,Shandong Agricultural University,State Key Laboratory of Crop Biology,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region,Ministry of Agriculture,Tai’an,Shandong 271018,China
  • Online:2014-12-25 Published:2014-12-25

Abstract: The effects of silicon on ultrastructure and active oxygen metabolism in root mitochondria were studied with a tomato(Solanum lycopersicum)cultivar‘Jinpeng 1’in cultured hydroponics under PEG-6000 simulated drought. The results showed that with the extension of drought stress,the root activity of tomato plants gradually decreased. Malondialdehyde(MDA)content,mitochondrial superoxide anion()productivity rate and hydrogen peroxide(H2O2)content gradually increased,but the activities of superoxide dismutase(SOD),peroxidase(POD)and catalase(CAT)rapidly increased in the early stage of drought stress,and then rapidly decreased after peak. The application of silicon significantly effected the change of the related indicators caused by drought stress. After 12 days of drought stress,the content ofMDA,and H2O2 in roots of tomato with silicon were lower than that of tomato without silicon by 25.14%,8.34%,20.25%,respectively. But root activity,SOD activity,POD activity and CAT activity were higher by 139.62%,243.19%,65.53%,125.55%,respectively. In addition,the application of silicon not only reduced plasmolysis of tomato root cells,but also relieved the damage of mitochondria,nuclei and biofilms.

Key words: tomato, silicon, drought, cell ultrastructure, mitochondria, active oxygen metabolism

CLC Number: