Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (8): 1689-1698.doi: 10.16420/j.issn.0513-353x.2021-0591
• Research Papers • Previous Articles Next Articles
WANG Yu1, ZHANG Xue1, ZHANG Xueying1, ZHANG Siyu1, WEN Tingting1, WANG Yingjun1, GAN Caixia2, PANG Wenxing1,**()
Received:
2022-02-25
Revised:
2022-06-14
Online:
2022-08-25
Published:
2022-09-05
Contact:
PANG Wenxing
E-mail:pwxsyau@syau.edu.cn
CLC Number:
WANG Yu, ZHANG Xue, ZHANG Xueying, ZHANG Siyu, WEN Tingting, WANG Yingjun, GAN Caixia, PANG Wenxing. The Effect of Camalexin on Chinese Cabbage Resistance to Clubroot[J]. Acta Horticulturae Sinica, 2022, 49(8): 1689-1698.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-0591
用途 Usage | 基因 Gene | 引物序列(5′-3′) Primer sequence | |
---|---|---|---|
内参基因 Internal genes | GAPDH | F:CAGGTTTGGAATTGTCGAGG | R:GAGCTGTGGAAGCACCTTTC |
茉莉酸途径 | PDF1.2 | F:ACCATGTCCCACTTGGCTTCT | R:ATCACCCTTATCTTCGCTGCTC |
Jasmonic acid synthesis | AOS | F:CCTAGTCGCAAGCGGTTGAT | R:AGGGATTGAGCAGATGGAGC |
pathway | COI1 | F:CCTCTTTGTGAGACTAAGCCTTCT | R:AACTATGTTGTCTGGGCCTTTC |
JAZ | F:GGCCACCTTCATAATGTCCTC | R:TGCTAACCCTTCCGATACCTC | |
水杨酸途径 | NPR1 | F:TTGGACCTCACTGATCCTGTTTT | R:ACGGTATTTCCCACGCTGCTC |
Salicylic acid synthesis pathway | ESD5 | F:CTTGGGAAGGTTACGGTTCG | R:CATCATCTACTGTGCTACCTCCAT |
WRKY70 | F:ACCACAACCATAAATAGCCTCA | R:AACACTAAAGAAGTATCACCCAAGA | |
TGA | F:TTGCGATGATTGCTGGAGGT | R:TATCGGGCATGTGGCGAACT | |
乙烯途径 | CTR1 | F:ACAGGAGATGTATTGGGAGGGA | R:GGACAGTGAAGGTTTGCGATTT |
Ethylene synthesis pathway | ETR | F:CAACAGGATGCTGCTGACGAA | R:GCTGGACAGGGAGATGGGATT |
EIN2 | F:CCACTGCTAGTGTTGTCCCTTA | R:TGTCTGCGATTCTTGATGAGTT | |
病程蛋白相关基因 Pathogenesis related proteins | PR1 | F:CCCTCGAGAGCTCAAAACAG | R:TCTCGTTGACCCAAAGGTTC |
PR2 | F:CTCGGAGTTCCACCCTTCACA | R:CAAACCTCTTCGACGCCAATC | |
PR5 | F:AATGAACCAGGATGGTCAGG | R:CGGTGACGGTGCATTTTAG | |
PR9 | F:AGCTGCTGGATGTAACCTGAAT | R:CCATGATATGGGCAATGACTGA |
Table 1 Primers of genes involved in jasmonic acid,salicylic acid,ethylene synthesis pathway and pathogenesis-related proteins
用途 Usage | 基因 Gene | 引物序列(5′-3′) Primer sequence | |
---|---|---|---|
内参基因 Internal genes | GAPDH | F:CAGGTTTGGAATTGTCGAGG | R:GAGCTGTGGAAGCACCTTTC |
茉莉酸途径 | PDF1.2 | F:ACCATGTCCCACTTGGCTTCT | R:ATCACCCTTATCTTCGCTGCTC |
Jasmonic acid synthesis | AOS | F:CCTAGTCGCAAGCGGTTGAT | R:AGGGATTGAGCAGATGGAGC |
pathway | COI1 | F:CCTCTTTGTGAGACTAAGCCTTCT | R:AACTATGTTGTCTGGGCCTTTC |
JAZ | F:GGCCACCTTCATAATGTCCTC | R:TGCTAACCCTTCCGATACCTC | |
水杨酸途径 | NPR1 | F:TTGGACCTCACTGATCCTGTTTT | R:ACGGTATTTCCCACGCTGCTC |
Salicylic acid synthesis pathway | ESD5 | F:CTTGGGAAGGTTACGGTTCG | R:CATCATCTACTGTGCTACCTCCAT |
WRKY70 | F:ACCACAACCATAAATAGCCTCA | R:AACACTAAAGAAGTATCACCCAAGA | |
TGA | F:TTGCGATGATTGCTGGAGGT | R:TATCGGGCATGTGGCGAACT | |
乙烯途径 | CTR1 | F:ACAGGAGATGTATTGGGAGGGA | R:GGACAGTGAAGGTTTGCGATTT |
Ethylene synthesis pathway | ETR | F:CAACAGGATGCTGCTGACGAA | R:GCTGGACAGGGAGATGGGATT |
EIN2 | F:CCACTGCTAGTGTTGTCCCTTA | R:TGTCTGCGATTCTTGATGAGTT | |
病程蛋白相关基因 Pathogenesis related proteins | PR1 | F:CCCTCGAGAGCTCAAAACAG | R:TCTCGTTGACCCAAAGGTTC |
PR2 | F:CTCGGAGTTCCACCCTTCACA | R:CAAACCTCTTCGACGCCAATC | |
PR5 | F:AATGAACCAGGATGGTCAGG | R:CGGTGACGGTGCATTTTAG | |
PR9 | F:AGCTGCTGGATGTAACCTGAAT | R:CCATGATATGGGCAATGACTGA |
Camalexin/(ng · mL-1) | 病情指数 Disease index | |||
---|---|---|---|---|
7 d | 14 d | 21 d | 28 d | |
0 | 0 | 0 | 74.33 ± 4.00 a | 97.00 ± 1.00 a |
250 | 0 | 0 | 74.67 ± 2.50 a | 95.67 ± 1.35 a |
500 | 0 | 0 | 65.68 ± 2.90 b | 95.33 ± 1.68 a |
1 000 | 0 | 0 | 63.22 ± 2.55 b | 96.58 ± 2.58 a |
2 000 | 0 | 0 | 44.50 ± 1.76 bc | 93.05 ± 2.31 a |
5 000 | 0 | 0 | 38.12 ± 2.21 bc | 81.25 ± 3.50 b |
Table 2 Disease index of Chinese cabbage after camalexin treatments with Plasmodiophora brassicae inoculation
Camalexin/(ng · mL-1) | 病情指数 Disease index | |||
---|---|---|---|---|
7 d | 14 d | 21 d | 28 d | |
0 | 0 | 0 | 74.33 ± 4.00 a | 97.00 ± 1.00 a |
250 | 0 | 0 | 74.67 ± 2.50 a | 95.67 ± 1.35 a |
500 | 0 | 0 | 65.68 ± 2.90 b | 95.33 ± 1.68 a |
1 000 | 0 | 0 | 63.22 ± 2.55 b | 96.58 ± 2.58 a |
2 000 | 0 | 0 | 44.50 ± 1.76 bc | 93.05 ± 2.31 a |
5 000 | 0 | 0 | 38.12 ± 2.21 bc | 81.25 ± 3.50 b |
Fig. 1 Clubroot symptoms and microscopic observation of Chinese cabbage at different stage Red arrow indicates the cells infected by Plasmodiophora brassicae,the circular microscopic observation image is enlarged for the area marked with ※.
[1] |
Ahuja I, Kissen R, Bones A M. 2012. Phytoalexins in defense against pathogens. Trends in Plant Science, 17 (2):73-90.
doi: 10.1016/j.tplants.2011.11.002 URL |
[2] | Ausubel F M, Katagiri F, Mindrinos M, Glazebrook J. 1995. Use of Arabidopsis thaliana defense-related mutants to dissect the plant response to pathogens. Proceedings of the National Academy of Sciences, 92 (10):4189-4196. |
[3] |
Baarlen P V, Woltering E J, Staats M, JALV Kan. 2007. Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species:an important role for cell death control. Molecular Plant Pathology, 8 (1):41-54.
doi: 10.1111/j.1364-3703.2006.00367.x pmid: 20507477 |
[4] |
Bohman S, Staal J, Thomma B P, Wang M, Dixelius C. 2004. Characterisation of an Arabidopsis-Leptosphaeria maculans pathosystem:resistance partially requires camalexin biosynthesis and is independent of salicylic acid,ethylene and jasmonic acid signalling. The Plant Journal, 37 (1):9-20.
doi: 10.1046/j.1365-313X.2003.01927.x URL |
[5] |
Ferrari S, Galletti R, Denoux C, Lorenzo G D, Ausubel F M, Dewdney J. 2007. Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid,ethylene,or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3. Plant Physiology, 144 (1):367-379.
pmid: 17384165 |
[6] |
Ferrari S, Plotnikova J M, Lorenzo G D, Ausubel F M. 2003. Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2,but not SID2,EDS 5 or PAD4. The Plant Journal, 35 (2):193-205.
doi: 10.1046/j.1365-313X.2003.01794.x URL |
[7] | Gao Ting-ting. 2013. Expression analysis of major genes involved in signaling pathways during infection of Chinese cabbage with Hyaloperonospora parasitica. Yangzhou: Yangzhou University. (in Chinese) |
高婷婷. 2013. 大白菜抗霜霉病防御信号途径中相关基因的表达分析. 扬州: 扬州大学. | |
[8] |
Glawischnig E. 2007. Camalexin. Phytochemistry, 68:401-406.
pmid: 17217970 |
[9] |
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆Ct method. Methods, 25 (4):402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[10] |
Kliebenstein D J, Rowe H C, Denby K J. 2005. Secondary metabolites influence Arabidopsis/Botrytis interactions:variation in host production and pathogen sensitivity. The Plant Journal, 44 (1):25-36.
doi: 10.1111/j.1365-313X.2005.02508.x URL |
[11] | Kong Fan-tao, Shen Chen, Yu Yu-qin, Wang Dong-jie. 2014. Study on vegetable price operation and production and marketing matching in China—taking Chinese cabbage as an example. China Vegetables,(6):1-5. (in Chinese) |
孔繁涛, 沈辰, 余玉芹, 王东杰. 2014. 我国蔬菜价格运行及产销匹配研究——以大白菜为例. 中国蔬菜,(6):1-5. | |
[12] | Lemarié S, Robert-Seilaniantz A, Lariagon C, Lemoine J, Marnet N, Levrel A, Gravot A. 2015. Camalexin contributes to the partial resistance of Arabidopsis thaliana to the biotrophic soilborne protist Plasmodiophora brassicae. Frontiers in Plant Science, 6:539. |
[13] |
Monde K, Tamura K, Takasugi M. 1995. No involvement of methoxybrassinin in the biosynthesis of cyclobrassinin. Phytochemistry, 39 (3):587-589.
doi: 10.1016/0031-9422(95)00096-P URL |
[14] |
Nafisi M, Goregaoker S, Botanga C J, Glawischnig E, Olsen C E, Halkier B A, Glazebrook J. 2007. Arabidopsis cytochrome P 450 monooxygenase 71A13 catalyzes the conversion of indole-3-acetaldoxime in camalexin synthesis. The Plant Cell, 19 (6):2039-2052.
doi: 10.1105/tpc.107.051383 URL |
[15] | Pang W, Liang Y, Zhan Z, Li X, Piao Z. 2020. Development of a sinitic clubroot differential set for the pathotype classification of Plasmodiophora brassicae. Front Plant Sci, 11:568771. |
[16] | Pang W, Shan L, Li X, Li P, Sha Y, Yong P L. 2014. Genetic detection of clubroot resistance loci in a new population of Brassica rapa. Horticulture Environment & Biotechnology, 55 (6):540-547. |
[17] |
Pedras M S C, Abdoli A. 2013. Metabolism of the phytoalexins camalexins,their bioisosteres and analogues in Alternaria brassicicola. Bioorganic & Medicinal Chemistry, 21:4541e4549.
doi: 10.1016/j.bmc.2013.05.026 URL |
[18] |
Pedras M S C, Ahiahonu P W K. 2005. Metabolism and detoxification of phytoalexins and analogs by phytopathogenic fungi. Phytochemistry, 66:391e411.
doi: 10.1016/j.phytochem.2004.12.032 URL |
[19] |
Pedras M S C, Hossain S, Snitynsky R B. 2011. Detoxification of cruciferous phytoalexins in Botrytis cinerea:spontaneous dimerization of a camalexin metabolite. Phytochemistry, 72:199e206.
doi: 10.1016/j.phytochem.2010.11.018 URL |
[20] |
Pedras M S C, Minic Z, Abdoli A. 2014. The phytoalexin camalexin induces fundamental changes in the proteome of Alternaria brassicicola different from those caused by brassinin. Fungal Biology, 118 (1):83-93.
doi: 10.1016/j.funbio.2013.11.005 URL |
[21] | Pedras M S C, Zheng Q A, Strelkov S. 2008. Metabolic changes in roots of the oilseed canola infected with the biotroph Plasmodiophora brassicae:phytoalexins and phytoanticipins. Journal of Agricultural & Food Chemistry, 56 (21):9949-9961. |
[22] |
Rajniak J, Barco B, Clay N K, Sattely ES. 2015. A new cyanogenic metabolite in Arabidopsis required for inducible pathogen defence. Nature, 525 (7569):376.
doi: 10.1038/nature14907 URL |
[23] |
Schlaeppi K, Abou-Mansour E, Buchala A, Mauch F. 2010. Disease resistance of Arabidopsis to Phytophthora brassicae is established by the sequential action of indole glucosinolates and camalexin. The Plant Journal, 62 (5):840-851.
doi: 10.1111/j.1365-313X.2010.04197.x pmid: 20230487 |
[24] |
Schuhegger R, Nafisi M, Mansourova M, Petersen B L, Olsen C E, Svatoš A, Glawischnig E. 2006. CYP71B15(PAD3)catalyzes the final step in camalexin biosynthesis. Plant Physiology, 141 (4):1248-1254.
pmid: 16766671 |
[25] |
Smith B, Randle D, Mezencev R, Thomas L S, Hinton C, Odero-Marah V. 2014. Camalexin-induced apoptosis in prostate cancer cells involves alterations of expression and activity of lysosomal protease cathepsin D. Molecules, 19 (4):3988-4005.
doi: 10.3390/molecules19043988 URL |
[26] |
Staal J, Kaliff M, Bohman S, Dixelius C. 2006. Transgressive segregation reveals two Arabidopsis TIR-NB-LRR resistance genes effective against Leptosphaeria maculans,causal agent of blackleg disease. The Plant Journal, 46 (2):218-230.
doi: 10.1111/j.1365-313X.2006.02688.x URL |
[27] |
Thomma B P, Nelissen I, Eggermont K, Broekaert W F. 1999. Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola. The Plant Journal, 19 (2):163-171.
doi: 10.1046/j.1365-313X.1999.00513.x URL |
[28] | Yang Shuangjuan, Yuan Yuxiang, Zhao Yanyan, Wei Xiaochun, Wang Zhiyong, Zhao Xiaobin, Zhang Xiaowei. 2021a. Development and application of KASP markers for clubroot resistance gene CRs in Chinese cabbage. Acta Horticulturae Sinica, 48 (6):1094-1106. (in Chinese) |
杨双娟, 原玉香, 赵艳艳, 魏小春, 王志勇, 赵肖斌, 张晓伟. 2021a. 大白菜抗根肿病基因位点CRs的KASP标记开发及应用. 园艺学报, 48 (6):1094-1106. | |
[29] | Yang Shuangjuan, Zhang Xiaowei, Wei Xiaochun, Zhao Yanyan, Wang Zhiyong, Zhao Xiaobin, Li Lin, Yuan Yuxiang. 2021b. Mapping and KASP markers development for clubroot resistance gene BraA.Pb.8.4 in Chinese cabbage. Acta Horticulturae Sinica, 48 (7):1317-1328. (in Chinese) |
杨双娟, 张晓伟, 魏小春, 赵艳艳, 王志勇, 赵肖斌, 李林, 原玉香. 2021b. 大白菜抗根肿病基因BraA.Pb.8.4的定位及KASP标记开发. 园艺学报, 48 (7):1317-1328. | |
[30] | Zhang Hui, Zhang Shujiang, Li Fei, Zhang Shifan, Li Guoliang, Ma Xiaochao, Liu Xitong, Sun Rifei. 2020. Research progress on clubroot disease resistance breeding of Brassica rapa. Acta Horticulturae Sinica, 47 (9):1648-1662. (in Chinese) |
张慧, 张淑江, 李菲, 章时蕃, 李国亮, 马小超, 刘希童, 孙日飞. 2020. 大白菜抗根肿病育种研究进展. 园艺学报, 47 (9):1648-1662. | |
[31] | Zhu Fa-di, Xie Xue-wen, Li Bao-ju. 2013. Chemical control technology of Chinese cabbage clubroot disease. China Vegetables,(19):25-26. (in Chinese) |
朱发娣, 谢学文, 李宝聚. 2013. 大白菜根肿病简易药剂防治技术. 中国蔬菜,(19):25-26. |
[1] | HAN Shuhui, HAN Caifeng, HAN Shurong, HAN Caimei, and HAN Xu. A New Autumn Chinese Cabbage Hybrid‘Jiaoyan Qiubao’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 83-84. |
[2] | WANG Weihong, ZHANG Fenglan, YU Yangjun, ZHANG Deshuang, ZHAO Xiuyun, YU Shuancang, SU Tongbing, LI Peirong, and XIN Xiaoyun. A New Chinese Cabbage Cultivar‘Jingqiu 1518’for Autumn Cultivation [J]. Acta Horticulturae Sinica, 2022, 49(S2): 85-86. |
[3] | YU Yangjun, WANG Weihong, SU Tongbing, ZHANG Fenglan, ZHANG Deshuang, ZHAO Xiuyun, YU Shuancang, LI Peirong, XIN Xiaoyun, and WANG Jiao. A New Chinese Cabbage Cultivar‘Jingchun CR3’with Clubroot Resistance and Bolting Tolerance [J]. Acta Horticulturae Sinica, 2022, 49(S2): 87-88. |
[4] | WANG Lili, WANG Xin, WU Haidong, WEN Qiang, and Yang Xiaofei. A New Chinese Cabbage Cultivar‘Liaobai 28’with Resistance to Clubroot Disease [J]. Acta Horticulturae Sinica, 2022, 49(S2): 89-90. |
[5] | YU Yangjun, SU Tongbing, ZHANG Fenglan, ZHANG Deshuang, ZHAO Xiuyun, YU Shuancang, WANG Weihong, LI Peirong, XIN Xiaoyun, WANG Jiao, and WU Changjian. A New Purple Seedling-Edible Chinese Cabbage F1 Hybrid‘Jingyan Zikuaicai’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 91-92. |
[6] | HUANG Li, CHEN Caizhi, YU Xiaolin, YAO Xiangtan, and CAO Jiashu, . A New Early-mid Maturing Chinese Cabbage Pak-choi Cultivar‘Zhedaqing’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 93-94. |
[7] | XU Ligong, HAN Taili, SUN Jifeng, YANG Xiaodong, and TAN Jinxia. A New Seedling-edible Chinese Cabbage Cultivar‘Jinlü 2’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 67-68. |
[8] | ZHANG Lugang, LU Qianqian, HE Qiong, XUE Yihua, MA Xiaomin, MA Shuai, NIE Shanshan, YANG Wenjing. Creation of Novel Germplasm of Purple-orange Heading Chinese Cabbage [J]. Acta Horticulturae Sinica, 2022, 49(7): 1582-1588. |
[9] | RUI Tingting, GAO Qingyun, LI Xiaojing, SHI Yanxia, XIE Xuewen, LI Lei, ZHANG Hongjie, XU Wenjuan, CHAI Ali, LI Baoju. Methylene Blue Combined Agarose Assay for Single-spore Isolation of Plasmodiophora brassicae and Pathotype Differentiation [J]. Acta Horticulturae Sinica, 2022, 49(6): 1290-1300. |
[10] | WANG Guangpeng, LIU Tongkun, XU Xinfeng, LI Zhubo, GAO Zhanyuan, HOU Xilin. Identification of LEA Family and Expression Analysis of Some Members Under Low-temperature Stress in Chinese Cabbage [J]. Acta Horticulturae Sinica, 2022, 49(2): 304-318. |
[11] | WANG Ronghua, WANG Shubin, LIU Shuantao, LI Qiaoyun, ZHANG Zhigang, WANG Lihua, ZHAO Zhizhong. Transcriptome Analysis of Waxy Near-isogenic Lines in Chinese Cabbage Floral Axis [J]. Acta Horticulturae Sinica, 2022, 49(1): 62-72. |
[12] | XU Ligong, HAN Taili, SUN Jifeng, YANG Xiaodong, TAN Jinxia, SONG Yinhang, LI Meng, ZHOU Luhong, and SUN Shasha. A New Spring Chinese Cabbage Cultivar‘Weichun 22’ [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2825-2826. |
[13] | WANG Weihong, ZHANG Fenglan, YU Yangjun, ZHANG Deshuang, ZHAO Xiuyun, YU Shuancang, SU Tongbing, LI Peirong, and XIN Xiaoyun. A New Chinese Cabbage Cultivar‘Jingqiu 5’for Autumn Cultivation [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2827-2828. |
[14] | WANG Mingqiu, MENG Chuan, MU Jingui, WANG Yuhai, LIU Xuemin, CHEN Zhanliang, and LIU Xiaodong. A New Chinese Cabbage Cultivar‘Jibai 6’with Disease Resistance [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2829-2830. |
[15] | WANG Weihong, ZHANG Fenglan, ZHANG Deshuang, YU Yangjun, ZHAO Xiuyun, YU Shuancang, SU Tongbing, LI Peirong, and XIN Xiaoyun. A New Seedling-edible Chinese Cabbage F1 Cultivar‘Lükuai 4’ [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2831-2832. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd