https://www.ahs.ac.cn/images/0513-353X/images/top-banner1.jpg|#|苹果
https://www.ahs.ac.cn/images/0513-353X/images/top-banner2.jpg|#|甘蓝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner3.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner4.jpg|#|灵芝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner5.jpg|#|桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner6.jpg|#|黄瓜
https://www.ahs.ac.cn/images/0513-353X/images/top-banner7.jpg|#|蝴蝶兰
https://www.ahs.ac.cn/images/0513-353X/images/top-banner8.jpg|#|樱桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner9.jpg|#|观赏荷花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner10.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner11.jpg|#|月季
https://www.ahs.ac.cn/images/0513-353X/images/top-banner12.jpg|#|菊花

园艺学报 ›› 2024, Vol. 51 ›› Issue (10): 2255-2266.doi: 10.16420/j.issn.0513-353x.2023-0799

• 遗传育种·种质资源·分子生物学 • 上一篇    下一篇

‘脆红李’及其早熟芽变全基因组重测序分析

姚远1, 邓利君1, 胡娟2, 唐晓雨1, 王铁1, 李航1, 孙国超1, 熊博1, 廖玲1, 汪志辉1,*()   

  1. 1 四川农业大学园艺学院,成都 611130
    2 蒲江县农业农村局,四川蒲江 611600
  • 收稿日期:2024-05-30 修回日期:2024-08-08 出版日期:2024-12-13 发布日期:2024-10-21
  • 通讯作者:
  • 基金资助:
    四川省科技成果转移转化示范项目(2021ZHCG0084); 国家现代农业产业技术体系四川水果创新团队项目(SCCXTD-2024-4)

Whole Genome Resequencing Analysis of‘Cuihongli’Plum and Its Early-Ripening Bud Sport Mutation

YAO Yuan1, DENG Lijun1, HU Juan2, TANG Xiaoyu1, WANG Tie1, LI Hang1, SUN Guochao1, XIONG Bo1, LIAO Ling1, WANG Zhihui1,*()   

  1. 1 College of Horticulture,Sichuan Agricultural University,Chengdu 611130,China
    2 Pujiang County Agriculture and Rural Bureau,Pujiang,Sichuan 611600,China
  • Received:2024-05-30 Revised:2024-08-08 Published:2024-12-13 Online:2024-10-21

摘要:

为揭示‘脆红李’早熟芽变形成的分子基础,采用高通量重测序技术对‘脆红李’及其早熟芽变材料进行了全基因组重测序,测序深度分别为19.40× 和22.82×,基因组覆盖度85%以上。与参考基因组相比,‘脆红李’及其早熟芽变分别检测到1 860 745和1 931 603个单核苷酸多态性点(SNP),419 134和444 892个小片段插入/缺失位点(InDel),其中发生在编码区的非同义突变位点分别为61 997个和63 498个。分析两者间的差异非同义突变,共引起2 391个基因变异。KEGG代谢通路富集分析发现,基因变异主要富集在真核生物核糖体生物发生、RNA运输、苯丙类生物合成、植物—病原体互作等途径上,此外在植物激素转导通路上共注释到12个变异基因。这些基因和其他相关基因变异后能影响其相应蛋白或酶的活性或特异性,从而导致生长发育过程发生变化,使‘脆红李’早熟芽变单株果实成熟期提前。

关键词: 李, 芽变, 早熟, 全基因组重测序

Abstract:

In order to reveal the molecular basis of formation of‘Cuihongli’plum’s early-ripening bud sport mutation,this study used high-throughput re-sequencing technology to resequence the whole genomes of‘Cuihongli’and its early-ripening bud sport mutation,with an average sequencing depth of 19.40× and 22.82×,with a genome coverage of over 85%. The results showed compared with the reference genome,1 860 745 and 1 931 603 single nucleotide polymorphisms(SNPs),419 134 and 444 892 small fragment insertion/deletion sites(InDels)were detected in‘Cuihongli’and its early-ripening bud sport mutation. There are 61 997 and 63 498 nonsynonymous mutations in the coding region,causing a total of 2 391 gene mutations. Metabolic pathway analysis(KEGG)indicated that these genetic variations were mainly involved in the pathways of Ribosome biogenesis in eukaryotes,RNA transport,phenylpropanoid biosynthesis and plant-pathogen interaction. In addition,12 variant genes were annotated with functions in the plant hormone signal transduction pathway. These genes and other related genes variations can affect the activity or specificity of their corresponding proteins or enzymes,leading to changes in the growth and development process,and advancing the mature period of‘Cuihongli’plum’s early-ripening single plant.

Key words: plum, bud sport mutation, early-ripening, whole genome re-sequencing