[1]
|
Adamowski M,Friml J. 2015. PIN-dependent auxin
transport:action,regulation,and evolution. The Plant Cell,27:20–32.
|
[2]
|
Banasiak A,Biedron M,Dolzblasz
A,Berezowski M. 2019.
Ontogenetic changes in auxin biosynthesis and distribution determine the
organogenic activity of the shoot apical meristem in pin1 mutants. Int J Mol Sci,20:1–20.
|
[3]
|
Beaudry A,Severson R,Black C. 1989. Banana ripening:implications of changes in glycolytie intermediate
concentrations,glycolytic
and gluconeogenic carbon flux,and fructose 2,6-bisphosphate concentration. Plant Physipl,91:1436–1444.
|
[4]
|
Burger Y,Schaffer A. 2007. The contribution of sucrose metabolism
enzymes to sucrose accumulation in Cucumis melo. L. Journal of the American Society for Horticultural Science,132 (5):704–712.
|
[5]
|
Busatto N,Farneti B,Tadiello
A,Oberkofler V,Cellini A,Biasioli F,Delledonne
M,Cestaro A,Noutsos C,Costa F. 2019. Wide transcriptional investigation unravel novel
insights of the on-tree maturation and postharvest ripening of‘Abate Fetel’pear fruit. Horticulture Research,6:32.
|
[6]
|
Cao H,Chen J,Yue
M,Xu C,Jian W,Liu Y,Song
B,Gao Y,Cheng Y,Li Z. 2020. Tomato transcriptional repressor MYB70 directly
regulates ethylene‐dependent fruit ripening. The Plant Journal,104:1568–1581.
|
[7]
|
Chen
C,Chen H,Zhang Y,Thomas H,Frank
M,He Y,Xia R. 2020. TBtools:an integrative toolkit developed
for interactive analyses of big biological data. Mol Plant,13:1194–1202.
|
[8]
|
Cheng H,Kong W,Tang
T,Ren K,Zhang K,Wei H,Lin
T. 2022. Identification of key gene networks controlling soluble sugar and
organic acid metabolism during oriental melon fruit development by integrated
analysis of metabolic and transcriptomic analyses. Frontiers in Plant Science,13:830517.
|
[9]
|
Dai C,Sahar U,Portnoy
V,Tzuri G,Ophir R,Sherman A,Katzir
N,Schaffer A,Hovav R. 2011. Metabolism of soluble sugars in developing melon fruit.
Plant Mol Biol,76:1–18.
|
[10]
|
Dai N,Petreikov M,Portnoy V,Katzir
N,Pharr D,Schaffer A. 2006. Cloning and
expression analysis of a UDP-Galactose/Glucose pyrophosphorylase from melon
fruit provides evidence for the major metabolic pathway of galactose
metabolism in raffinose oligosaccharide metabolizing plants. Plant Physiology,142:294–304.
|
[11]
|
Diao Q,Tian S,Cao
Y,Yao D,Fan H,Zhang Y. 2023. Transcriptome analysis reveals association of
carotenoid metabolism pathway with fruit color in melon. Scientific Reports,13:5004.
|
[12]
|
Diaz A,Fergany M,Formisano
G. 2011. A consensus linkage map for molecular markers and Quantitative Trait
Loci associated with economically important traits in melon(Cucumis melo L.). BMC
Plant Biol,11:111.
|
[13]
|
Dos-Santos N,Bueso M,Díaz
A,Moreno E,Garcia-Mas J,Monforte A,Fernández-Trujillo J. 2023. Thorough Characterization of ETHQB3.5,a
QTL involved in melon fruit climacteric behavior and aroma volatile
composition. Foods,12
(2):376.
|
[14]
|
Fan D,Wang W,Hao
Q,Jia W. 2022. Do
non-climacteric fruits share a common ripening mechanism of hormonal
regulation? Frontiers in Plant Science,13:923484.
|
[15]
|
Fenn M A,Giovannoni J J. 2021. Phytohormones
in fruit development and maturation. Plant J,105 (2):446–458.
|
[16]
|
Fortes A,Teixeira R,Agudelo-Romero
P. 2015. Complex interplay of hormonal signals during grape berry ripening.
Molecules,20:9326–9343.
|
[17]
|
Ge S,Son E,Yao
R. 2018. iDEP:an
integrated web application for differential expression and pathway analysis
of RNA-Seq data. BMC Bioinformatics,19 (1):534.
|
[18]
|
Green M,Sambrook J. 2018. Analysis and normalization of Real-Time
Polymerase Chain Reaction(PCR)experimental
data. Cold Spring Harb
Protoc,(10):10.1101/pdb.top095000.
|
[19]
|
Huggett J,Dheda K,Bustin
S,Zumla A. 2005. Real-time RT-PCR normalisation;strategies and considerations.
Genes Immun,6:279–284.
|
[20]
|
Jiang Bo,Lü Yuanda,Liu
Shumei,Yan Huaxue.
2024. Research advances in the regulation of plant hormones in citrus fruit
maturation. Acta Horticulturae Sinica,51 (12):2928–2944. (in Chinese)
|
|
姜 波,吕远达,刘淑梅,闫化学. 2024. 植物激素调控柑橘果实成熟的研究进展. 园艺学报,51 (12):2928–2944.
|
[21]
|
Kanehisa M,Furumichi M,Sato Y,Kawashima
M,Ishiguro-Watanabe M.
2023. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids
Research,51:587–592.
|
[22]
|
Karlova R,Chapman N,David
K,Angenent G,Seymour G,de Maagd R. 2014. Transcriptional control of fleshy fruit
development and ripening. Journal of Experimental Botany,65:4527–4541.
|
[23]
|
Kou X,Zhou J,Wu
C,Yang S,Liu Y,Chai L,Xue
Z. 2021. The interplay between ABA/ethylene and NAC TFs in tomato fruit
ripening:a review.
Plant Molecular Biology,106:223–238.
|
[24]
|
Langfelder P,Horvath S. 2008. WGCNA:an R package for weighted
correlation network analysis. BMC Bioinformatics,9:559.
|
[25]
|
Leida C,Moser C,Esteras
C,Sulpice R,Lunn J,de Langen F,Monforte A,Picó
B. 2015. Variability of candidate genes,genetic structure and association with sugar accumulation and
climacteric behavior in a broad germplasm collection of melon(Cucumis melo L.). BMC
Genetics,16:28.
|
[26]
|
Li T,Dai Z,Zeng
B,Li J,Ouyang J,Kang L,Wang
W,Jia W. 2022.
Autocatalytic biosynthesis of abscisic acid and its synergistic action with
auxin to regulate strawberry fruit ripening. Horticulture Research,9 (9):uhab076.
|
[27]
|
Li Y,He L,Song
Y,Zhang P,Chen D,Guan L,Liu
S. 2023. Comprehensive study of volatile compounds and transcriptome data
providing genes for grape aroma. BMC Plant Biology,23 (1):171.
|
[28]
|
Liu B,Santo Domingo M,Mayobre C,Martín-Hernández
A,Pujol M,Garcia-Mas J. 2022. Knock-out of CmNAC-NOR affects melon climacteric
fruit ripening. Frontiers in Plant Science,13:878037.
|
[29]
|
Liu M,Pirrello J,Chervin
C,Roustan J,Bouzayen M. 2015. Ethylene control
of fruit ripening:revisiting
the complex network of transcriptional regulation. Plant Physiology,169 (4):2380–2390.
|
[30]
|
Livak K,Schmittgen T. 2001. Analysis of relative gene expression data
using real-time quantitative PCR and the 2-ΔΔCT method. Methods,25:402–408.
|
[31]
|
Lü P,Yu S,Zhu
N,Chen Y,Zhou B,Pan Y,Tzeng
D,Fabi J,Argyris J,Garcia-Mas J. 2018. Genome encode analyses reveal the basis of convergent
evolution of fleshy fruit ripening. Nature Plants,4:784–791.
|
[32]
|
Ma X C,Chang Y Y,Li
F F,Yang J F,Ye L,Zhou T,Jin
Y,Sheng L,Lu X P. 2024. CsABF3-activated CsSUT1 pathway is implicated in
pre-harvest water deficit inducing sucrose accumulation in citrus fruit.
Horticultural Plant Journal,10 (1):103–114.
|
[33]
|
Monforte J. 2013. Interaction between QTLs
induces an advance in ethylene biosynthesis during melon fruit ripening.
Theor Appl Genet,126:1531–1544.
|
[34]
|
Nishiyama K,Guis M,Rose
J,Kubo Y,Bennett K,Wang L,Kato
K,Ushijima K,Nakano R,Inaba A. 2007. Ethylene regulation of fruit softening and cell wall disassembly in Charentais melon. Journal of
Experimental Botany,58:1281–1290.
|
[35]
|
Nonaka S,Ito M,Ezura
H. 2023. Targeted modification of CmACO1 by CRISPR/Cas9 extends the shelf-life of Cucumis melo var. reticulatus melon. Frontiers in
Genome Editing,5:1176125.
|
[36]
|
Pan L,Zeng W,Niu
L,Lu,Z,Liu H,Cui
G,Zhu Y,Chu J,Li W,Fang
W. 2015. PpYUC11,a
strong candidate gene for the stony hard phenotype in peach(Prunus persica L. Batsch),participates
in IAA biosynthesis during fruit ripening. Journal of Experimental Botany,66:7031–7044.
|
[37]
|
Paul V,Pandey R,Srivastava
G. 2011. The fading distinctions between classical patterns of ripening in
climacteric and non-climacteric fruit and the ubiquity of ethylene-an
overview. Journal of Food Science and Technology,49:1–21.
|
[38]
|
Perpiñá G,Cebolla-Cornejo J,Esteras C,Monforte
A,Picó B. 2017. ‘MAK-10’:a long shelf-life charentais breeding nine developed by
introgression of a genomic region from Makuwa Melon. HortScience,52:1633–1638.
|
[39]
|
Pujol M,Garcia-Mas J,Costa F. 2023. Regulation of climacteric fruit ripening in
melon:recent advances
and future challenges. Journal of Experimental Botany,74:6224–6236.
|
[40]
|
Shao Fengqing,Luo Xiurong,Wang Qi,Zhang
Xianzhi,Wang Wencai.
2023. Advances in research of DNA methylation regulation during fruit
ripening. Acta Horticulturae Sinica,50 (1):197–208. (in Chinese)
|
|
邵凤清,罗秀荣,王 奇,张宪智,王文彩. 2023. 果实成熟过程中的DNA 甲基化调控研究进展. 园艺学报,50
(1):197–208.
|
[41]
|
Shen Q,Wu X,Tao
Y,Yan G,Wang X,Cao S,Wang
C,He W. 2022. Mining
candidate genes related to heavy metals in mature melon(Cucumis melo L.)peel
and pulp using WGCNA. Genes(Basel),13
(10):1767.
|
[42]
|
Stepanova A,Yun J,Likhacheva
A,Alonso J. 2007.
Multilevel interactions between ethylene and auxin in Arabidopsis roots. The Plant Cell,19:2169–2185.
|
[43]
|
Wang J,Tian S,Yu
Y,Ren Y,Guo S,Zhang J,Li
M,Zhang H,Gong G,Wang M. 2022. Natural variation in the NAC transcription factor
NONRIPENING contributes to melon fruit ripening. Journal of Integrative Plant
Biology,64:1448–1461.
|
[44]
|
Wang X,Meng J,Deng
L,Wang Y,Liu H,Yao J,Nieuwenhuizen
N,Wang Z,Zeng W. 2021a. Diverse functions of
IAA-leucine resistant PpILR1 provide a genic basis for auxin-ethylene
crosstalk during peach fruit ripening. Frontiers in Plant Science,12:655758.
|
[45]
|
Wang X,Zeng W,Ding
Y,Wang Y,Niu L,Yao J,Pan
L,Lu Z,Cui G,Li G. 2019. PpERF3 positively regulates ABA biosynthesis by activating PpNCED2/3
transcription during fruit ripening in peach. Horticulture Research,6:19.
|
[46]
|
Wang Y,Deng L,Meng
J,Niu L,Pan L,Lu Z,Cui
G,Wang Z,Zeng W. 2021b. Transcriptomic and
metabolic analyses reveal the mechanism of ethylene production in stony hard
peach fruit during cold storage. International Journal of Molecular Sciences,22 (21):11308.
|
[47]
|
Xu M,Zhou W,Geng
W,Zhao S,Pan Y,Fan G,Zhang
S,Wang Y,Liao K. 2021. Transcriptome
analysis insight into ethylene metabolism and pectinase activity of apricot(Prunus armeniaca L.)development
and ripening. Scientific Reports,11 (1):13569.
|
[48]
|
Yang T,Deng L,Wang
Q,Sun C,Ali M,Wu F,Zhai
H,Xu Q,Xin P,Cheng S. 2024. Tomato CYP94C1 inactivates bioactive JA-Ile to attenuate
jasmonate-mediated defense during fruit ripening. Molecular Plant,17:509–512.
|
[49]
|
Yin H N,Wang Z X,Wang
L,Cao J H,Wang J K,Xi Z M. 2024. Effects of mesoclimate and microclimate
variations mediated by high altitude and row orientation on sucrose
metabolism and anthocyanin synthesis in grape berries. Horticultural Plant
Journal,10 (3):713–731.
|
[50]
|
Young M D,Wakefield M J,Smyth G K,Oshlack
A. 2010. Gene ontology analysis for RNA-seq accounting for selection bias.
Genome Biology,11 (2):R14.
|
[51]
|
Zhang Y,Su Z,Luo
L,Wang P,Zhu X,Liu J,Wang
C. 2023. Exogenous auxin regulates the growth and development of peach fruit
at the expansion stage by mediating multiple-hormone signaling. BMC Plant
Biology,23 (1):499.
|
[52]
|
Zhang Yin,Hu Luyan,Wang
Shuming,Jing Danlong,Guo Qigao,Liang Guolu. 2023. Research advances in ABA-mediated fruit
ripening. Acta Horticulturae Sinica,50 (9):1889–1898. (in Chinese)
|
|
张 印,胡路艳,王淑明,景丹龙,郭启高,梁国鲁. 2023. ABA调控果实成熟研究进展. 园艺学报,50 (9):1889–1898.
|
[53]
|
Zhao G,Lian Q,Zhang
Z,Fu Q,He Y,Ma S,Ruggieri
V,Monforte A,Wang P,Julca I. 2019. A comprehensive genome variation map of melon identifies multiple
domestication events and loci influencing agronomic traits. Nat Genet,51:1607–1615.
|
[54]
|
Zhong S,Fei Z,Chen
Y,Zheng Y,Huang M,Vrebalov J,McQuinn
R,Gapper N,Liu B,Xiang J. 2013. Single-base resolution methylomes of tomato fruit development reveal
epigenome modifications associated with ripening. Nature Biotechnology,31:154–159.
|