[1] |
Doyle J J, Doyle J L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull, 19:11-15.
|
[2] |
Fan Tao, Li Zhi, Jiang Qing, Chen Shulin, Ou Xia, Chen Yongyan. 2021. Development and effect evaluation of KASP markers closely linked to major QTLs of spike number per unit area and grain length in wheat. Scientia Agricultura Sinica, 54 (14):11. (in Chinese)
|
|
范涛, 李治, 蒋庆, 陈姝霖, 欧霞, 陈永艳. 2021. 小麦单位面积穗数和粒长主效QTL紧密连锁KASP标记的开发及其效应评价. 中国农业科学, 54 (14):11.
|
[3] |
Geng X, Jiang C, Yang J, Wang L, Wu X, Wei W. 2016. Rapid identification of candidate genes for seed weight using the SLAF-Seq method in Brassica napus. PLoS ONE, 11 (1):e0147580.
|
[4] |
Jiang S, Luo J, Wang X Q, An H S, Zhang J Y, Li S G. 2022. QTL mapping and transcriptome analysis to identify genes associated with green/russet peel in Pyrus pyrifolia. Scientia Horticulturae, 293:110714.
|
[5] |
Khera P, Upadhyaya H D, Pandey M K, Roorkiwal M, Sriswathi M, Janila P, Guo Y, McKain M R, Nagy E D, Knapp S J, Leebens-Mack J, Conner J A, Ozias-Akins P, Varshney R K. 2013. Single nucleotide polymorphism-based genetic diversity in the reference set of peanut (Arachis spp.) by developing and applying cost-effective kompetitive allele specific polymerase chain reaction genotyping assays. The Plant Genome, 6 (3):0019.
|
[6] |
Kumar S, Kirk C, Deng C, Wiedow C, Knaebel M, Brewer L. 2017. Genotyping-by-sequencing of pear(Pyrus spp.)accessions unravels novel patterns of genetic diversity and selection footprints. Horticulture Research, 4:17015.
|
[7] |
Lian Yun, Li Hai-chao, Li Jin-ying. 2021. Marker-assisted screening of soybean cyst nematode germplasms harboring resistance loci rhg1 and Rhg4. Journal of Plant Genetic Resources, 22 (2):399-406. (in Chinese)
|
|
练云, 李海朝, 李金英. 2021. 利用KASP标记筛选含rhg1和Rhg4位点的大豆抗病资源. 植物遗传资源学报, 22 (2):399-406.
|
[8] |
Meng Junren, Ceng Wenfang, Deng Li, Pan Lei, Lu Zhenhua, Cui Guochao, Wang Zhiqiang, Niu Liang. 2021. Development and application of KASP molecular markers of some important traits for peach. Scientia Agricultura Sinica,(15):3295-3307. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2021.15.013
|
|
孟君仁, 曾文芳, 邓丽, 潘磊, 鲁振华, 崔国朝, 王志强, 牛良. 2021. 桃若干重要性状的KASP分子标记开发与应用. 中国农业科学,(15):3295-3307.
doi: 10.3864/j.issn.0578-1752.2021.15.013
|
[9] |
Ren Hailong, Xu Donglin, Zhang Jing, Zou Jiwen, Li Guangguang, Zhou Xianyu, Xiao Wanyu, Sun Yijia. 2023. Establishment of SNP fingerprinting and identification of Chinese flowering cabbage varieties based on KASP genotyping. Acta Horticulturae Sinica, 50 (2):307-318. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2021-1046
|
|
任海龙, 许东林, 张晶, 邹集文, 李光光, 周贤玉, 肖婉钰, 孙艺嘉. 2023. 菜薹KASP-SNP指纹图谱构建及品种鉴定. 园艺学报, 50 (2):307-318.
doi: 10.16420/j.issn.0513-353x.2021-1046
|
[10] |
Shi P, Xu Z, Zhang S Y, Wang X J, Ma X F, Zheng J C, Xing L B, Zhang D, Ma J J, Han M Y, Zhao C P. 2020. Construction of a high-density SNP-based genetic map and identification of fruit-related QTLs and candidate genes in peach [Prunus persica (L.) Batsch]. BMC Plant Biology, 20 (1):438.
|
[11] |
Singh N, Choudhury D R, Singh A K, Kumar S, Srinivasan K, Tyagi R K, Singh N K, Singh R. 2013. Comparison of SSR and SNP markers in estimation of genetic diversity and population structure of Indian rice varieties. PLoS ONE, 8 (12):e84136.
|
[12] |
Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, Jiang C, Ning G, Ma C, Zeng H. 2013. SLAF-seq:an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE, 8 (3):e58700.
|
[13] |
Wang L, Li X, Wang L, Xue H, Wu J, Yin H, Zhang S. 2017. Construction of a high-density genetic linkage map in pear(Pyrus communis × Pyrus pyrifolia Nakai)using SSRs and SNPs developed by SLAF-seq. Scientia Horticulturae, 218:198-204.
|
[14] |
Wu J, Li L T, Li M, Khan M A, Li X G, Chen H, Yin H, Zhang S L. 2014. High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers. Journal of Experimental Botany, 65 (20):5771-5781.
doi: 10.1093/jxb/eru311
pmid: 25129128
|
[15] |
Wu Zhijun, Li Wei, Wang Xinghua, Zhang Cheng, Jiang Xun, Li Sheng, Luo Liyong, Sun Kang, Zeng Liang. 2022. Genetic relationship analysis of the population germplasms of section Thea with unstable ovary locule number based on SLAF-seq. Acta Horticulturae Sinica, 49 (11):2455-2470. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2021-0876
|
|
吴致君, 李伟, 王兴华, 张成, 蒋勋, 黎盛, 罗理勇, 孙康, 曾亮. 2022. 基于SLAF-seq的茶组子房室数不稳定居群种质亲缘关系分析. 园艺学报, 49 (11):2455-2470.
doi: 10.16420/j.issn.0513-353x.2021-0876
|
[16] |
Xu X, Xu R, Zhu B, Yu T, Qu W, Lu L, Xu Q, Qi X, Chen X. 2014. A high-density genetic map of cucumber derived from Specific Length Amplified Fragment sequencing(SLAF-seq). Frontiers in Plant Science, 5:768.
|
[17] |
Yang J J, Zhang J, Du H S, Zhao H, Mao A J, Zhang X F, Jiang L, Zhang H Y, Wen C L, Xu Y. 2022. Genetic relationship and pedigree of Chinese watermelon varieties based on diversity of perfect SNPs. Horticultural Plant Journal, 8 (4):489-498.
|
[18] |
Zhang J, Yang J J, Fu S Z, Ren J, Zhang X F, Xia C X, Zhao H, Yang K, Wen C L. 2022. Comparison of DUS testing and SNP fingerprinting for variety identification in cucumber. Horticultural Plant Journal, 8 (5):575-582.
|