园艺学报 ›› 2021, Vol. 48 ›› Issue (10): 1983-2000.doi: 10.16420/j.issn.0513-353x.2021-0497
收稿日期:
2021-05-28
修回日期:
2021-08-06
出版日期:
2021-10-25
发布日期:
2021-11-01
通讯作者:
戴思兰
E-mail:silandai@sina.com
基金资助:
HONG Yan, WU Yuwei, SONG Xiang, LI Mengling, DAI Silan**()
Received:
2021-05-28
Revised:
2021-08-06
Online:
2021-10-25
Published:
2021-11-01
Contact:
DAI Silan
E-mail:silandai@sina.com
摘要:
综述了近30年来有关光强、光质和光周期等光照因素调控园艺作物花青素苷生物合成的研究进展,并侧重总结了该生物学过程中关键转录因子及其作用机制,梳理其分子调控网络。
中图分类号:
洪艳, 武宇薇, 宋想, 李梦灵, 戴思兰. 光照调控园艺作物花青素苷生物合成的分子机制[J]. 园艺学报, 2021, 48(10): 1983-2000.
HONG Yan, WU Yuwei, SONG Xiang, LI Mengling, DAI Silan. Molecular Mechanism of Light-induced Anthocyanin Biosynthesis in Horticultural Crops[J]. Acta Horticulturae Sinica, 2021, 48(10): 1983-2000.
园艺作物 Horticultural crop | 响应光诱导表达的结构基因Light-induced structural gene | 参考文献 Reference | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
CHS | CHI | F3H | F3'H | F3'5'H | DFR | ANS | MT | UFGT(GT) | ||
荔枝 Litchi chinensis | √ | √ | √ | √ | √ | √ | Wei et al., | |||
葡萄 Vitis vinifera | √ | √ | √ | √ | √ | √ | √ | Azuma et al., | ||
杨梅 Myrica rubra | √ | √ | √ | √ | √ | Niu et al., | ||||
番茄Solanum lycopersicum | √ | √ | Løvdal et al., | |||||||
茄子Solanum melongena | √ | √ | √ | √ | √ | √ | Li et al., | |||
梨 Pyrus pyrifolia | √ | √ | Feng et al., | |||||||
桃 Prunus persica | √ | √ | Ravaglia et al., | |||||||
苹果 Malus × domestica | √ | √ | √ | √ | √ | Takos et al., Feng et al., | ||||
海棠 Malus sp. | √ | √ | √ | Lu et al., | ||||||
百合 Lilium spp. | √ | Nakatsuka et al., | ||||||||
菊花Chrysanthemum × morifolium | √ | √ | √ | √ | √ | √ | √ | Hong et al., Hong et al., | ||
矮牵牛 Petunia hybrida | √ | √ | Albert et al., | |||||||
叶用莴苣Lactuca sativa | √ | √ | √ | √ | √ | √ | √ | Zhang et al., |
表1 部分园艺作物花青素苷生物合成途径响应光照表达的结构基因
Table 1 Light-induced structural genes in the anthocyanin biosynthetic pathway in horticultural crops
园艺作物 Horticultural crop | 响应光诱导表达的结构基因Light-induced structural gene | 参考文献 Reference | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
CHS | CHI | F3H | F3'H | F3'5'H | DFR | ANS | MT | UFGT(GT) | ||
荔枝 Litchi chinensis | √ | √ | √ | √ | √ | √ | Wei et al., | |||
葡萄 Vitis vinifera | √ | √ | √ | √ | √ | √ | √ | Azuma et al., | ||
杨梅 Myrica rubra | √ | √ | √ | √ | √ | Niu et al., | ||||
番茄Solanum lycopersicum | √ | √ | Løvdal et al., | |||||||
茄子Solanum melongena | √ | √ | √ | √ | √ | √ | Li et al., | |||
梨 Pyrus pyrifolia | √ | √ | Feng et al., | |||||||
桃 Prunus persica | √ | √ | Ravaglia et al., | |||||||
苹果 Malus × domestica | √ | √ | √ | √ | √ | Takos et al., Feng et al., | ||||
海棠 Malus sp. | √ | √ | √ | Lu et al., | ||||||
百合 Lilium spp. | √ | Nakatsuka et al., | ||||||||
菊花Chrysanthemum × morifolium | √ | √ | √ | √ | √ | √ | √ | Hong et al., Hong et al., | ||
矮牵牛 Petunia hybrida | √ | √ | Albert et al., | |||||||
叶用莴苣Lactuca sativa | √ | √ | √ | √ | √ | √ | √ | Zhang et al., |
物种 Species | 基因名称 Gene name | 调控部位 Regulatory position | 参考文献 Reference |
---|---|---|---|
苹果Malus × domestica | MdMYB1 | 果皮Skin | Takos et al., |
MdMYBA | 果皮Skin | Ban et al., | |
MdMYB10 | 果肉Pulp | Feng et al., | |
杨梅Myrica rubra | MrMYB1 | 果实Fruit | Niu et al., |
葡萄Vitis vinifera | VvMYBA1 | 果皮Skin | Koyama et al., |
VlMYBA2 | 果皮Skin | Azuma et al., | |
荔枝Litchi chinensis | LcMYB1 | 果皮Skin | Lai et al., |
桃Prunus persica | PpMYB10 | 果皮Skin | Ravaglia et al., |
梨Pyrus pyrifolia | PyMYB10 | 果皮Skin | Feng et al., |
草莓Fragaria ananassa | FaMYB10 | 果实Fruit | Miyawaki et al., |
森林草莓Fragaria vesca | FvMYB10 | 花瓣Petal | Lin-Wang et al., |
番茄Solanum lycopersicum | AFT | 果实Fruit | Cao et al., |
紫苏Perilla frutescens | PfMYB-P1 | 叶片Leaf | Gong et al., |
矮牵牛Perilla frutescens | PHZ | 花瓣Petal | Albert et al., |
百合Lilium spp. | LrMYB15 | 花瓣Petal | Yamagishi, |
菊花Chrysanthemum × morifolium | CmMYB4-7 | 舌状花Ray floret | Hong et al., |
表2 园艺作物中鉴定的响应光照表达且调控花青素苷生物合成的MYB类转录因子
Table 2 Light-induced MYB transcription factors in the anthocyanin biosynthetic pathway amongst horticultural crops
物种 Species | 基因名称 Gene name | 调控部位 Regulatory position | 参考文献 Reference |
---|---|---|---|
苹果Malus × domestica | MdMYB1 | 果皮Skin | Takos et al., |
MdMYBA | 果皮Skin | Ban et al., | |
MdMYB10 | 果肉Pulp | Feng et al., | |
杨梅Myrica rubra | MrMYB1 | 果实Fruit | Niu et al., |
葡萄Vitis vinifera | VvMYBA1 | 果皮Skin | Koyama et al., |
VlMYBA2 | 果皮Skin | Azuma et al., | |
荔枝Litchi chinensis | LcMYB1 | 果皮Skin | Lai et al., |
桃Prunus persica | PpMYB10 | 果皮Skin | Ravaglia et al., |
梨Pyrus pyrifolia | PyMYB10 | 果皮Skin | Feng et al., |
草莓Fragaria ananassa | FaMYB10 | 果实Fruit | Miyawaki et al., |
森林草莓Fragaria vesca | FvMYB10 | 花瓣Petal | Lin-Wang et al., |
番茄Solanum lycopersicum | AFT | 果实Fruit | Cao et al., |
紫苏Perilla frutescens | PfMYB-P1 | 叶片Leaf | Gong et al., |
矮牵牛Perilla frutescens | PHZ | 花瓣Petal | Albert et al., |
百合Lilium spp. | LrMYB15 | 花瓣Petal | Yamagishi, |
菊花Chrysanthemum × morifolium | CmMYB4-7 | 舌状花Ray floret | Hong et al., |
图1 光信号转导调控拟南芥花青素苷生物合成的分子机制 (Laubinger et al.,2004;Stracke et al.,2010;Cloix et al.,2012;Lau & Deng,2012;Li et al.,2012,2016;Maier et al.,2013;Maier & Hoecker,2015) a:光照条件下,COP1被激活的光受体蛋白抑制,如蓝光下CRY1与SPA进行物理互作,并将SPA与COP1隔离,从而阻碍COP1-SPA蛋白复合体的形成;之后可见光促进COP1从细胞核向细胞质转运,并在很长一段时间内抑制COP1的表达,HY5不断积累并与靶蛋白结合,从而促进植物的光形态建成;b:黑暗条件下,COP1定位在细胞核内与SPA形成复合体,靶向结合bZIPHY5等,并通过蛋白酶体介导的泛素化途径使这些转录因子降解;c:无UV-B照射时,UVR8以二聚体的形式存在于细胞质和细胞核中,接收到UV-B信号后,其转移到细胞核中,蛋白构象从二聚体变为单体,并与COP1发生互作,开启UV-B信号通路,正向调节UV-B诱导类黄酮类化合物的合成。
Fig. 1 Molecular mechanism of anthocyanin biosynthesis in Arabidopsis regulated by light a:Under light condition,COP1 is suppressed by active photoreceptor proteins,e.g.,under blue light condition,CRY1 physically interacts with SAP and segregates it from COP1,which hinders the formation of COP1-SPA complex;thereafter,visible light promotes the transport of COP1 from cell nucleus to cytoplasm,which suppresses the expression of COP1 in a long time and results in the decline of COP1 activity;on the other hand,the continuous accumulation of HY5 and the binding between HY5 and targeted proteins promotes the plant photomorphosis. b:Under dark condition,COP1 integrates with SPA in cell nucleus and binds to bZIP transcription factors(e.g.,HY5)as a complex,and then degrades these transcription factors via proteasome-mediated ubiquitylation. c:Under UV-B-missing condition,UVR8 exists in cytoplasm and cell nucleus as dimer;upon receiving UV-B signal,UVR8 is transported from cytoplasm to cell nucleus,whose protein conformation is accordingly changed from dimer to monomer;thereafter,UVR8 interacts with COP1 and activites UV-B signal pathway,which positively regulates UV-B and induces the biosynthesis of flavonoids.
图2 拟南芥中光受体介导光质信号转导调控花青素苷生物合成的转导机制 (Kim et al.,2003;Shin et al.,2007;Vandenbussche et al.,2007;Liu et al.,2015b)
Fig. 2 Mechanism of anthocyanin biosynthesis regulated by photoreceptor-mediated light quality signal transduction in Arabidopsis
图3 苹果中UV-B调控花青素苷生物合成的信号转导机制 (Peng et al.,2013;Bai et al.,2014;An et al.,2019;Fang et al.,2019a;2019b;Hu et al.,2020)
Fig. 3 Signal transduction mechanism of anthocyanin biosynthesis regulated by UV-B in apple
[1] |
Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi Shinozaki K. 2003. Arabidopsis AtMYC2(bHLH)and AtMYB2(MYB)function as transcriptional activators in abscisic acid signaling. The Plant Cell, 15:63-78.
doi: 10.1105/tpc.006130 URL |
[2] |
Åkerström A, Jaakola L, Bång U, Jäderlund A. 2010. Effects of latitude-related factors and geographical origin on anthocyanidin concentrations in fruits of Vaccinium myrtillus L.(Bilberries). Journal of Agricultural and Food Chemistry, 58:11939-11945.
doi: 10.1021/jf102407n URL |
[3] |
Albert N W, Lewis D H, Zhang H, Irving L J, Jameson P E, Davies K M. 2009. Light-induced vegetative anthocyanin pigmentation in Petunia. Journal of Experimental Botany, 60 (7):2191-2202.
doi: 10.1093/jxb/erp097 pmid: 19380423 |
[4] |
Albert N W, Lewis D H, Zhang H, Schwinn K E, Jameson P E, Davies K M. 2011. Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning. The Plant Journal, 65 (5):771-784.
doi: 10.1111/j.1365-313X.2010.04465.x pmid: 21235651 |
[5] |
An J P, Liu Y J, Zhang X W, Bi S Q, Wang X F, You C X, Hao Y J. 2020a. Dynamic regulation of anthocyanin biosynthesis at different light intensities by the BT2-TCP46-MYB 1 module in apple. Journal of Experimental Botany, 71 (10):3094-3109.
doi: 10.1093/jxb/eraa056 URL |
[6] | An J P, Qu F J, Yao J F, Wang X N, You C X, Wang X F, Hao Y J. 2017. The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple. Horticulture Research, 4:571-578. |
[7] |
An J P, Wang X F, Hao Y J. 2020b. BTB/TAZ protein MdBT 2 integrates multiple hormonal and environmental signals to regulate anthocyanin biosynthesis in apple. Journal of Integrative Plant Biology, 62 (11):1643-1646.
doi: 10.1111/jipb.v62.11 URL |
[8] |
An J P, Wang X F, Li Y Y, Song L Q, Zhao L L, You C X, Hao Y J. 2018. EIN3-LIKE1,MYB1,and ETHYLENE RESPONSE FACTOR3 act in a regulatory loop that synergistically modulates ethylene biosynthesis and anthocyanin accumulation. Plant Physiology, 178 (2):808-823.
doi: 10.1104/pp.18.00068 URL |
[9] |
An J P, Wang X F, Zhang X W, Bi S Q, You C X, Hao Y J. 2019. MdBBX22 regulates UV-B-induced anthocyanin biosynthesis through regulating the function of MdHY5 and is targeted by MdBT2 for 26S proteasome-mediated degradation. Plant Biotechnology Journal, 17 (12):2231-2233.
doi: 10.1111/pbi.v17.12 URL |
[10] | Ang L H, Deng X W. 1994. Regulatory hierarchy of photomorphogenic loci:allele-specific and light-dependent interaction between the HY5 and COP1 loci. The Plant Cell, 6:613-628. |
[11] |
Anttonen M J, Hoppula K I, Nestby R, Verheul M J, Karjalainen R O. 2006. Influence of fertilization,mulch color,early forcing,fruit order,planting date,shading,growing environment,and genotype on the contents of selected phenolics in strawberry(Fragaria × ananassa Duch.) fruits. Journal of Agricultural and Food Chemistry, 54 (7):2614-2620.
pmid: 16569052 |
[12] |
Azuma A, Yakushiji H, Koshita Y, Kobayashi S. 2012. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta, 236 (4):1067-1080.
doi: 10.1007/s00425-012-1650-x URL |
[13] |
Bai S, Saito T, Honda C, Hatsuyama Y, Ito A, Moriguchi T. 2014. An apple B-box protein,MdCOL11,is involved in UV-B-and temperature-induced anthocyanin biosynthesis. Planta, 240 (5):1051-1062.
doi: 10.1007/s00425-014-2129-8 URL |
[14] |
Bai S, Sun Y, Qian M, Yang F, Ni J, Tao R, Li L, Shu Q, Zhang D, Teng Y. 2017. Transcriptome analysis of bagging-treated red Chinese sand pear peels reveals light-responsive pathway functions in anthocyanin accumulation. Scientific Reports, 7 (1):1-15.
doi: 10.1038/s41598-016-0028-x URL |
[15] |
Bai S, Tao R, Tang Y, Yin L, Ma Y, Ni J, Yan X, Yang Q, Wu Z, Zeng Y, Teng Y. 2019. BBX16,a B-box protein,positively regulates light-induced anthocyanin accumulation by activating MYB10 in red pear. Plant Biotechnology Journal, 17 (10):1985-1997.
doi: 10.1111/pbi.v17.10 URL |
[16] |
Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, Moriguchi T. 2007. Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant and Cell Physiology, 48 (7):958-970.
doi: 10.1093/pcp/pcm066 URL |
[17] |
Banerjee A, Roychoudhury A. 2017. Abscisic-acid-dependent basic leucine zipper(bZIP)transcription factors in plant abiotic stress. Protoplasma, 254:3-16.
doi: 10.1007/s00709-015-0920-4 pmid: 26669319 |
[18] | Bi Siqi, An Jianping, Wang Xiaofei, Hao Yujin, Rui Lin, Li Tong, Han Yuepeng, You Chunxiang. 2019. Ethylene response factor MdERF 3 promotes anthocyanin and proanthocyanidin accumulation in apple. Acta Horticulturae Sinica, 46 (12):2277-2285.(in Chinese) |
毕思琦, 安建平, 王小非, 郝玉金, 芮麟, 李彤, 韩月彭, 由春香. 2019. 苹果乙烯响应因子MdERF3促进花青苷和原花青苷积累. 园艺学报, 46 (12):2277-2285. | |
[19] |
Borevitz J O, Xia Y J, Blount J, Dixon R A, Lamb C. 2000. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. The Plant Cell, 12:2383-2393.
doi: 10.1105/tpc.12.12.2383 URL |
[20] |
Cao X, Qiu Z, Wang X, Van Giang T, Liu X, Wang J, Wang X, Gao J, Guo Y, Du Y, Wang D, Huang Z. 2017. A putative R3 MYB repressor is the candidate gene underlying atroviolacium,a locus for anthocyanin pigmentation in tomato fruit. Journal of Experimental Botany, 68:5745-5758.
doi: 10.1093/jxb/erx382 URL |
[21] |
Carvalho I S, Cavaco T, Carvalho L M, Duque P. 2010. Effect of photoperiod on flavonoid pathway activity in sweet potato(Ipomoea batatas (L.) Lam.)leaves. Food Chemistry, 118:384-390.
doi: 10.1016/j.foodchem.2009.05.005 URL |
[22] |
Chang C J, Li Y H, Chen L T, Chen W C, Hsieh W P, Shin J, Jane W N, Chou S J, Choi G, Hu J M, Somerville S, Wu S H. 2008. LZF1,a HY5-regulated transcriptional factor,functions in Arabidopsis de-etiolation. The Plant Journal, 54 (2):205-219.
doi: 10.1111/j.1365-313X.2008.03401.x URL |
[23] |
Christie J M, Arvai A S, Baxter K J, Heilmann M, Pratt A J, O'Hara A, Kelly S M, Hothorn M, Smith B O, Hitomi K, Jenkins G I, Getzoff E D. 2012. Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science, 335 (6075):1492-1496.
doi: 10.1126/science.1218091 pmid: 22323738 |
[24] | Cloix C, Kaiserli E, Heilmann M, Baxter K J, Brown B A, O’Hara A, Smith B O, Christie J M, Jenkins G I. 2012. C-terminal region of the UV-B photoreceptor UVR8 initiates signaling through interaction with the COP1 protein. Proceedings of National Academy of Sciences of the United States of America, 109 (40):16366-16370. |
[25] |
Cominelli E, Gusmaroli G, Allegra D, Galbiati M, Wade H K, Jenkins G I, Tonellia C. 2008. Expression analysis of anthocyanin regulatory genes in response to different light qualities in Arabidopsis thaliana. Journal of Plant Physiology, 165 (8):886-894.
doi: 10.1016/j.jplph.2007.06.010 pmid: 17766004 |
[26] |
Czemmel S, Stracke R, Weisshaar B, Cordon N, Harris N N, Walker A R, Robinson S P, Bogs J. 2009. The grapevine R2R3-MYB transcription factor VvMYBF 1 regulates flavonol synthesis in developing grape berries. Plant Physiology, 151 (3):1513-1530.
doi: 10.1104/pp.109.142059 pmid: 19741049 |
[27] | Dai Silan, Hong Yan. 2016. Molecular breeding for flower colors modification on ornamental plants based on the mechanism of anthocyanins biosynthesis and coloration. Scientia Agricultura Sinica, 49 (3):529-542.(in Chinese) |
戴思兰, 洪艳. 2016. 基于花青素苷合成和呈色机理的观赏植物花色改良分子育种. 中国农业科学, 49 (3):529-542. | |
[28] |
Datta S, Hettiarachchi C, Johansson H, Holm M. 2007. SALT TOLERANCE HOMOLOG2,a B-box protein in Arabidopsis that activates transcription and positively regulates light-mediated development. The Plant Cell, 19 (10):3242-3255.
doi: 10.1105/tpc.107.054791 URL |
[29] |
Dubos C, Le Gourrierec J, Baudry A, Huep G, Lanet E, Debeaujon I, Routaboul JM, Alboresi A, Weisshaar B, Lepiniec L. 2008. MYBL 2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. The Plant Journal, 55:940-953.
doi: 10.1111/tpj.2008.55.issue-6 URL |
[30] |
Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. 2010. MYB transcription factors in Arabidopsis. Trends in Plant Science, 15:573-581.
doi: 10.1016/j.tplants.2010.06.005 URL |
[31] |
Espley R V, Brendolise C, Chagné D, Kutty-Amma S, Green S, Volz R, Putterill J, Schouten H J, Gardiner S E, Hellens R P, Allan A C. 2009. Multiple repeats of a promoter segment causes transcription factor autoregulation in red apple. The Plant Cell, 21:168-183.
doi: 10.1105/tpc.108.059329 URL |
[32] |
Espley R V, Hellens R P, Putterill J, Stevenson D E, Kutty-Amma S, Allan A C. 2007. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. The Plant Journal, 49 (3):414-427.
doi: 10.1111/tpj.2007.49.issue-3 URL |
[33] |
Falcone Ferreyra M L, Rius S P, Casati P. 2012. Flavonoids:biosynthesis,biological functions,and biotechnological applications. Frontiers in Plant Science, 3:222.
doi: 10.3389/fpls.2012.00222 pmid: 23060891 |
[34] |
Fang H, Dong Y, Yue X, Chen X, He N, Hu J, Jiang S, Xu H, Wang Y, Su M, Zhang J, Zhang Z, Wang N, Chen X. 2019b. MdCOL 4 interaction mediates crosstalk between UV-B and high temperature to control fruit coloration in apple. Plant and Cell Physiology, 60 (5):1055-1066.
doi: 10.1093/pcp/pcz023 URL |
[35] |
Fang H, Dong Y, Yue X, Hu J, Jiang S, Xu H, Wang Y, Su M, Zhang J, Zhang Z, Wang N, Chen X. 2019a. The B-box zinc finger protein MdBBX 20 integrates anthocyanin accumulation in response to ultraviolet radiation and low temperature. Plant cell and Environment, 42 (7):2090-2104.
doi: 10.1111/pce.v42.7 URL |
[36] |
Feng F, Li M, Ma F, Cheng L. 2013. Phenylpropanoid metabolites and expression of key genes involved in anthocyanin biosynthesis in the shaded peel of apple fruit in response to sun exposure. Plant Physiology and Biochemistry, 69 (8):54-61.
doi: 10.1016/j.plaphy.2013.04.020 URL |
[37] |
Feng S, Wang Y, Yang S, Xu Y, Chen X. 2010. Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10. Planta, 232 (1):245-255.
doi: 10.1007/s00425-010-1170-5 URL |
[38] |
Frohnmeyer H, Staiger D. 2003. Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol, 133:1420-1428.
pmid: 14681524 |
[39] |
Fu B, Ji X, Zhao M, He F, Wang X, Wang Y, Liu P, Niu L. 2016. The influence of light quality on the accumulation of flavonoids in tobacco(Nicotiana tabacum L.)leaves. Journal of Photochemistry and Photobiology B:Biology, 162:544-549.
doi: 10.1016/j.jphotobiol.2016.07.016 URL |
[40] |
Fu Z, Shang H, Jiang H, Gao J, Dong X, Wang H, Zhang H. 2020. Systematic identification of the light-quality responding anthocyanin synthesis-related transcripts in petunia petals. Horticultural Plant Journal, 6 (6):428-438.
doi: 10.1016/j.hpj.2020.11.006 URL |
[41] |
Gibalová A, Steinbachová L, Hafidh S, Bláhová V, Gadiou Z, Michailidis C, Műller K, Pleskot R, Dupľáková N, Honys D. 2017. Characterization of pollen-expressed bZIP protein interactions and the role of ATbZIP18 in the male gametophyte. Plant Reproduction, 30:1-17.
doi: 10.1007/s00497-016-0295-5 pmid: 27896439 |
[42] |
Giliberto L, Perrotta G, Pallara P, Weller J L, Fraser P D, Bramley P M, Fiore A, Tavazza Mario, Giuliano Giovanni. 2005. Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development,flowering time,and fruit antioxidant content. Plant Physiology, 137:199-208.
pmid: 15618424 |
[43] |
Gong Z Z, Yamazaki M, Saito K. 1999. A light-inducible Myb-like gene that is specifically expressed in red Perilla frutescens and presumably acts as a determining factor of the anthocyanin forma. Molecular and General Genetics, 262 (1):65-72.
pmid: 10503537 |
[44] |
Gu K D, Wang C K, Hu D G, Hao Y J. 2019. How do anthocyanins paint our horticultural products? Scientia Horticulturae, 249:257-262.
doi: 10.1016/j.scienta.2019.01.034 URL |
[45] |
Hartmann U, Sagasser M, Mehrtens F, Stracke R, Weisshaar B. 2005. Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB,BZIP,and BHLH factors control light-responsive and tissuespecific activation of phenylpropanoid biosynthesis genes. Plant Molecular Biology, 57:155-171.
pmid: 15821875 |
[46] |
Heijde M, Ulm R. 2012. UV-B photoreceptor-mediated signalling in plants. Trends in Plant Science, 17:230-237.
doi: 10.1016/j.tplants.2012.01.007 pmid: 22326562 |
[47] |
Henry-Kirk R A, Plunkett B, Hall M, McGhie T, Allan A C, Wargent J J, Espley R V. 2018. Solar UV light regulates flavonoid metabolism in apple(Malus × domestica). Plant Cell and Environment, 41 (3):675-688.
doi: 10.1111/pce.13125 URL |
[48] |
Hong Y, Li M, Dai S. 2019. Ectopic expression of multiple chrysanthemum(Chrysanthemum × morifolium)R2R3-MYB transcription factor genes regulates anthocyanin accumulation in tobacco. Genes, 10 (10):777.
doi: 10.3390/genes10100777 URL |
[49] |
Hong Y, Tang X J, Huang H, Zhang Y, Dai S. 2015. Transcriptomic analyses reveal species-specific light-induced anthocyanin biosynthesis in chrysanthemum. BMC Genomics, 16 (1):202.
doi: 10.1186/s12864-015-1428-1 URL |
[50] |
Hong Y, Yang L W, Li M L, Dai S L. 2016. Comparative analyses of light-induced anthocyanin accumulation and gene expression between the ray florets and leaves in chrysanthemum. Plant Physiology and Biochemistry, 103:120-132.
doi: 10.1016/j.plaphy.2016.03.006 pmid: 26990403 |
[51] |
Hu J, Fang H, Wang J, Yue X, Su M, Mao Z, Zou Q, Jiang H, Guo Z, Yu L, Feng T, Lu L, Peng Z, Zhang Z, Wang N, Chen X. 2020. Ultraviolet B-induced MdWRKY72 expression promotes anthocyanin synthesis in apple. Plant Science, 292:110377.
doi: 10.1016/j.plantsci.2019.110377 URL |
[52] | Hu Ke, Han Keting, Dai Silan. 2010. Regulation of plant anthocyanin synthesis and pigmentation by environmental factors. Chinese Bulletin of Botany, 45 (3):307-317.(in Chinese) |
胡可, 韩科厅, 戴思兰. 2010. 环境因子调控植物花青素苷合成及呈色的机理. 植物学报, 45 (3):307-317. | |
[53] |
Hu Y, Cheng H, Zhang Y, Zhang J, Niu S, Wang X, Li W, Zhang J, Yao Y. 2021. The MdMYB16/MdMYB1-miR7125-MdCCR module regulates the homeostasis between anthocyanin and lignin biosynthesis during light induction in apple. New Phytologist, 231 (3):1105-1122.
doi: 10.1111/nph.v231.3 URL |
[54] |
Huang D, Yuan Y, Tang Z, Huang Y, Kang C, Deng X, Xu Q. 2019. Retrotransposon promoter of Ruby1 controls both light- and cold-induced accumulation of anthocyanins in blood orange. Plant Cell and Environment, 42 (11):3092-3104.
doi: 10.1111/pce.13609 |
[55] |
Jaakola L, Määttä-Riihinen K, Kärenlampi S, Hohtola A. 2004. Activation of flavonoid biosynthesis by solar radiation in bilberry(Vaccinium myrtillus L.)leaves. Planta, 218 (5):721-728.
pmid: 14666422 |
[56] |
Jang I C, Henriques R, Seo H S, Nagatani A, Chua N H. 2010. Arabidopsis PHYTOCHROME INTERACTING FACTOR proteins promote phytochrome B polyubiquitination by COP 1 E3 ligase in the nucleus. The Plant Cell, 22 (7):2370-2383.
doi: 10.1105/tpc.109.072520 URL |
[57] |
Kadomura-Ishikawa Y, Miyawaki K, Noji S, Takahashi A. 2013. Phototropin 2 is involved in blue light-induced anthocyanin accumulation in Fragaria × ananassa fruits. Journal of Plant Research, 126 (6):847-857.
doi: 10.1007/s10265-013-0582-2 pmid: 23982948 |
[58] |
Kang C Y, Lian H L, Wang F F, Huang J R, Yang H Q. 2009. Cryptochromes,phytochromes,and COP 1 regulate light-controlled stomatal development in Arabidopsis. The Plant Cell, 21 (9):2624-2641.
doi: 10.1105/tpc.109.069765 URL |
[59] |
Kang H, Zhang T T, Fu L L, Yao Y X, You C X, Wang X F, Hao Y J. 2021. The apple MdCOP1-interacting protein 1 negatively regulates hypocotyl elongation and anthocyanin biosynthesis. BMC Plant Biology, 21 (1):1-11.
doi: 10.1186/s12870-020-02777-7 URL |
[60] |
Kang H, Zhang T T, Fu L L, You C X, Wang X F, Hao Y J. 2020. The apple RING-H 2 protein MdCIP8 regulates anthocyanin accumulation and hypocotyl elongation by interacting with MdCOP1. Plant Science, 301:110665.
doi: 10.1016/j.plantsci.2020.110665 pmid: 33218632 |
[61] |
Kaiserli E, Jenkins G I. 2007. UV-B promotes rapid nuclear translocation of the Arabidopsis UV-B-specific signaling component UVR8 and activates its function in the nucleus. The Plant Cell, 19:2662-2673.
doi: 10.1105/tpc.107.053330 URL |
[62] |
Kim J, Yi H, Choi G, Shin B, Song P S, Choi G. 2003. Functional characterization of phytochrome interacting factor 3 in phytochrome-mediated light signal transduction. The Plant Cell, 15 (10):2399-2407.
doi: 10.1105/tpc.014498 URL |
[63] | Kondo S, Tomiyama H, Rodyoung A, Okawa K, Ohara H, Sugaya S, Terahara N, Hirai N. 2014. Abscisic acid metabolism and anthocyanin synthesis in grape skin are affected by light emitting diode(LED)irradiation at night. Plant Physiol, 171:823-829. |
[64] |
Koyama K, Ikeda H, Poudel P R, Yamamoto N G. 2012. Light quality affects flavonoid biosynthesis in young berries of Cabernet Sauvignon grape. Phytochemistry, 78:54-64.
doi: 10.1016/j.phytochem.2012.02.026 URL |
[65] |
Koyama T, Sato F. 2018. The function of ETHYLENE RESPONSE FACTOR genes in the light-induced anthocyanin production of Arabidopsis thaliana leaves. Plant Biotechnology, 35 (1):87-91.
doi: 10.5511/plantbiotechnology.18.0122b URL |
[66] |
Lai B, Li X J, Hu B, Hua Y, Huang X M, Wang H C, Hu G B. 2014. LcMYB1 is a key determinant of differential anthocyanin accumulation among genotypes,tissues,developmental phases and ABA and light stimuli in Litchi chinensis. PLoS ONE, 9 (1):e86293.
doi: 10.1371/journal.pone.0086293 URL |
[67] |
Lätti A K, Jaakola L, Riihinen K R, Kainulainen P S. 2010. Anthocyanin and flavonol variation in bog bilberry(Vaccinium uliginosum L.)in Finland. Journal of Agricultural and Food Chemistry, 58:427-433.
doi: 10.1021/jf903033m pmid: 20000402 |
[68] |
Lätti A K, Riihinen K R, Kainulainen P S. 2008. Analysis of anthocyanin variation in wild populations of bilberry(Vaccinium myrtillus L.)in Finland. Journal of Agricultural and Food Chemistry, 56:190-196.
pmid: 18072741 |
[69] |
Lau O S, Deng X W. 2012. The photomorphogenic repressors COP1 and DET1:20 years later. Trends in Plant Science, 17 (10):584-593.
doi: 10.1016/j.tplants.2012.05.004 URL |
[70] |
Laubinger S, Fittinghoff K, Hoecker U. 2004. The SPA quartet:a family of WD-repeat proteins with a central role in suppression of photomorphogenesis in Arabidopsis. The Plant Cell, 16 (9):2293-2306.
doi: 10.1105/tpc.104.024216 URL |
[71] |
Li J, He Y J, Zhou L, Jiang M, Liu Y, Zhou L, He Y, Chen H. 2018. Transcriptome profiling of genes related to light-induced anthocyanin biosynthesis in eggplant(Solanum melongena L.)before purple color becomes evident. BMC Genomics, 19:201.
doi: 10.1186/s12864-018-4587-z URL |
[72] |
Li S, Wang W, Gao J, Yin K, Wang R, Wang C, Petersen M, Mundy J, Qiu J L. 2016. MYB 75 phosphorylation by MPK4 is required for light-induced anthocyanin accumulation in Arabidopsis. The Plant Cell, 28 (11):2866-2883.
doi: 10.1105/tpc.16.00130 URL |
[73] |
Li W, Tan L, Zou Y, Tan X, Huang J, Chen W, Tang Q. 2020. The effects of ultraviolet A/B treatments on anthocyanin accumulation and gene expression in dark-purple tea cultivar‘Ziyan’(Camellia sinensis). Molecules, 25 (2):354.
doi: 10.3390/molecules25020354 URL |
[74] |
Li Y Y, Mao K, Zhao C, Zhao X Y, Zhang H L, Shu H R, Hao Y J. 2012. MdCOP 1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynthesis and red fruit coloration in apple. Plant Physiology, 160 (2):1011-1022.
doi: 10.1104/pp.112.199703 URL |
[75] | Lin-Wang K, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, McGhie T K, Espley R V, Hellens R P, Allan A C. 2010. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biology, 10 (2):549-553. |
[76] |
Liu B, Zuo Z, Liu H, Liu X, Liu X, Lin C. 2011. Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Genes and Development, 25 (10):1029-1034.
doi: 10.1101/gad.2025011 URL |
[77] |
Liu C C, Chi C, Jin L J, Zhu J, Yu J Q, Zhou Y H. 2018a. The bZip transcription factor HY5 mediates CRY1a-induced anthocyanin biosynthesis in tomato. Plant Cell and Environment, 41 (8):1762-1775.
doi: 10.1111/pce.v41.8 URL |
[78] |
Liu L, Gregan S, Winefield C, Jordan B. 2015a. From UVR8 to flavonol synthase:UV-B-induced gene expression in Sauvignon Blanc grape berry. Plant Cell and Environment, 38 (5):905-919.
doi: 10.1111/pce.2015.38.issue-5 URL |
[79] |
Liu W, Wang Y, Sun J, Jiang H, Xu H, Wang N, Jiang S, Fang H, Zhang Z, Wang Y, Chen X. 2019. MdMYBDL1 employed by MdHY5 increases anthocyanin accumulation via repression of MdMYB16/308 in apple. Plant Science, 283:32-40.
doi: 10.1016/j.plantsci.2019.01.016 URL |
[80] |
Liu X J, An X H, Liu X, Hu D G, Wang X F, You C X, Hao Y J. 2017. MdSnRK1.1 interacts with MdJAZ18 to regulate sucrose-induced anthocyanin and proanthocyanidin accumulation in apple. Journal of Experimental Botany, 68 (11):2977-2990.
doi: 10.1093/jxb/erx150 URL |
[81] |
Liu Y, Tikunov Y, Schouten R E, Marcelis L F M, Visser R G F, Bovy A. 2018b. Anthocyanin biosynthesis and degradation mechanisms in Solanaceous vegetables:a review. Frontiers in Chemistry, 6:52.
doi: 10.3389/fchem.2018.00052 URL |
[82] |
Liu Z, Shi M Z, Xie D Y. 2014. Regulation of anthocyanin biosynthesis in Arabidopsis thaliana red pap1-D cells metabolically programmed by auxins. Planta, 239 (4):765-781.
doi: 10.1007/s00425-013-2011-0 URL |
[83] |
Liu Z, Wang Y, Fan K, Li Z, Jia Q, Lin W, Zhang Y. 2021. PHYTOCHROME-INTERACTING FACTOR 4(PIF4)negatively regulates anthocyanin accumulation by inhibiting PAP1 transcription in Arabidopsis seedlings. Plant Science, 303:110788.
doi: 10.1016/j.plantsci.2020.110788 URL |
[84] |
Liu Z, Zhang Y, Wang J, Li P, Zhao C, Chen Y, Bi Y. 2015b. Phytochrome-interacting factors PIF4 and PIF5 negatively regulate anthocyanin biosynthesis under red light in Arabidopsis seedlings. Plant Science, 238:64-72.
doi: 10.1016/j.plantsci.2015.06.001 URL |
[85] |
Løvdal T, Olsen K M, Slimestad R, Verheu M, Lillo G. 2010. Synergetic effects of nitrogen depletion,temperature,and light on the content of phenolic compounds and gene expression in leaves of tomato. Phytochemistry, 71:605-613.
doi: 10.1016/j.phytochem.2009.12.014 pmid: 20096428 |
[86] |
Lu Y, Bu Y, Hao S, Wang Y, Zhang J, Tian J, Yao Y. 2017. MYBs affect the variation in the ratio of anthocyanin and flavanol in fruit peel and flesh in response to shade. Journal of Photochemistry and Photobiology B:Biology, 168:40-49.
doi: 10.1016/j.jphotobiol.2017.01.017 URL |
[87] | Ma Chaofeng, Dai Silan. 2019. Advances in photoreceptor-mediated signaling transduction in flowering time regulation. Chin Bull Bot, 54 (1):9-22.(in Chinese) |
马朝峰, 戴思兰. 2019. 光受体介导信号转导调控植物开花研究进展. 植物学报, 54 (1):9-22. | |
[88] |
Ma L, Gao Y, Qu L, Chen Z, Li J, Zhao H, Deng X W. 2002. Genomic evidence for COP 1 as a repressor of light-regulated gene expression and development in Arabidopsis. The Plant Cell, 14 (10):2383-2398.
doi: 10.1105/tpc.004416 URL |
[89] |
Ma H Y, Yang T, Li Y, Zhang J, Wu T, Song T T, Yao Y C, Tian J. 2021. The long noncoding RNA MdLNC 499 bridges MdWRKY1 and MdERF109 function to regulate early-stage light-induced anthocyanin accumulation in apple fruit. The Plant Cell,Doi: 10.1093/PLCELL/KOAB188.
doi: 10.1093/PLCELL/KOAB188 |
[90] |
Maier A, Hoecker U. 2015. COP1/SPA ubiquitin ligase complexes repress anthocyanin accumulation under low light and high light conditions. Plant Signaling and Behavior, 10 (1):e970440.
doi: 10.4161/15592316.2014.970440 URL |
[91] |
Maier A, Schrader A, Kokkelink L, Falke C, Welter B, Iniesto E, Rubio V, Uhrig J F, Hülskamp M, Hoecker U. 2013. Light and the E 3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis. The Plant Journal, 74 (4):638-651.
doi: 10.1111/tpj.2013.74.issue-4 URL |
[92] |
Miao L, Zhang Y, Yang X, Xiao J, Zhang H, Zhang Z, Wang Y, Jiang G. 2016. Colored light-quality selective plastic films affect anthocyanin content,enzyme activities,and the expression of flavonoid genes in strawberry(Fragaria × ananassa)fruit. Food Chemistry, 207 (15):93-100.
doi: 10.1016/j.foodchem.2016.02.077 URL |
[93] |
Miyawaki K, Fukuoka S, Kadomura Y, Hamaoka H, Mito T, Ohuchi H, Schwab W, Noji S. 2012. Establishment of a novel system to elucidate the mechanisms underlying light-induced ripening of strawberry fruit with an Agrobacterium-mediated RNAi technique. Plant Biotechnology, 29 (3):271-277.
doi: 10.5511/plantbiotechnology.12.0406a URL |
[94] |
Morishita T, Kojima Y, Maruta T, Nishizawa-Yokoi A, Yabuta Y, Shigeoka S. 2009. Arabidopsis NAC transcription factor,ANAC078,regulates flavonoid biosynthesis under high-light. Plant and Cell Physiology, 50 (12):2210-2222.
doi: 10.1093/pcp/pcp159 pmid: 19887540 |
[95] |
Nakano T, Suzuki K, Fujimura T, Shinshi H. 2006. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology, 140 (2):411-432.
doi: 10.1104/pp.105.073783 URL |
[96] |
Nakatsuka A, Yamagishi M, Nakano M, Tasaki K, Kobayashi N. 2009. Light-induced expression of basic helix-loop-helix genes involved in anthocyanin biosynthesis in flowers and leaves of Asiatic hybrid lily. Scientia Horticulturae, 121 (1):84-91.
doi: 10.1016/j.scienta.2009.01.008 URL |
[97] |
Nguyen N H, Jeong C Y, Kang G H, Yoo S D, Hong S W, Lee H. 2015. MYBD employed by HY5 increases anthocyanin accumulation via repression of MYBL2 in Arabidopsis. The Plant Journal, 84:1192-1205.
doi: 10.1111/tpj.13077 pmid: 26576746 |
[98] |
Ni J, Bai S, Zhao Y M, Qian R, Tao L, Yin L, Gao Y, Teng Y W. 2019. Ethylene response factors Pp4ERF24 and Pp12ERF96 regulate blue light-induced anthocyanin biosynthesis in‘Red Zaosu’pear fruits by interacting with MYB114. Plant Molecular Biology, 99:67-78.
doi: 10.1007/s11103-018-0802-1 URL |
[99] |
Niu S S, Xu C J, Zhang W S, Zhang B, Li X, Wang K L, Ferguson I B, Allan A C, Chen K S. 2010. Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry(Myrica rubra)fruit by a R2R3 MYB transcription factor. Planta, 231 (4):887-899.
doi: 10.1007/s00425-009-1095-z URL |
[100] |
Palapol Y, Ketsa S, Lin-Wang K, Ferguson L B, Allan A C. 2009. A MYB transcription factor regulates anthocyanin biosynthesis in mangosteen(Garcinia mangostana L.)fruit during ripening. Planta, 229 (6):1323-1334.
doi: 10.1007/s00425-009-0917-3 URL |
[101] |
Peng T, Saito T, Honda C, Ban Y, Kondo S, Liu J, Hatsuyama Y, Moriguchi T. 2013. Screening of UV-B-induced genes from apple peels by SSH:possible involvement of MdCOP1-mediated signaling cascade genes in anthocyanin accumulation. Physiologia Plantarum, 148 (3):432-444.
doi: 10.1111/j.1399-3054.2012.12002.x URL |
[102] |
Ravaglia D, Espley R V, Henry-Kirk R A, Andreotti C, Ziosi V, Hellens R P, Costa G, Allan A C. 2013. Transcriptional regulation of flavonoid biosynthesis in nectarine(Prunus persica)by a set of R2R3 MYB transcription factors. BMC Plant Biology, 13 (1):68.
doi: 10.1186/1471-2229-13-68 URL |
[103] |
Rodyoung A, Masuda Y, Tomiyama H, Saito T, Okawa K, Ohara H, Kondo S. 2016. Effects of light emitting diode irradiation at night on abscisic acid metabolism and anthocyanin synthesis in grapes in different growing seasons. Plant Growth Regulation, 79 (1):39-46.
doi: 10.1007/s10725-015-0107-1 URL |
[104] |
Shin D H, Choi M G, Kim K, Bang G, Cho M, Choi S, Choi G, Park Y. 2013. HY 5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in Arabidopsis. FEBS Letters, 587 (10):1543-1547.
doi: 10.1016/j.febslet.2013.03.037 URL |
[105] |
Shin J, Park E, Choi G. 2007. PIF 3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis. The Plant Journal, 49 (6):981-994.
doi: 10.1111/tpj.2007.49.issue-6 URL |
[106] |
Smith J L, Burritt D J, Bannister P. 2000. Shoot dry weight,chlorophyll and UV-B-absorbing compounds as indicators of a plant’s sensitivity to UV-B radiation. Annals of Botany, 86:1057-1063.
doi: 10.1006/anbo.2000.1270 URL |
[107] |
Song S S, Qi T C, Huang H, Ren Q C, Wu D W, Chang C Q, Peng W, Liu Y L, Peng J R, Xie D X. 2011. The jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB 24 to affect jasmonate-regulated stamen development in Arabidopsis. The Plant Cell, 23,1000-1013.
doi: 10.1105/tpc.111.083089 URL |
[108] | Song Xuewei, Wei Jiebing, Di Shaokang, Pang Yongzhen. 2019. Recent advances in the regulation mechanism of transcription factors and metabolic engineering of anthocyanins. Chinese Bulletin of Botany, 54 (1):133-156.(in Chinese) |
宋雪薇, 魏解冰, 狄少康, 庞永珍. 2019. 花青素转录因子调控机制及代谢工程研究进展. 植物学报, 54 (1):133-156.
doi: 10.11983/CBB18016 |
|
[109] | Stracke R, Favory J J, Gruber H, Bartelniewoehner L, Bartels S, Binkert M, Funk M, Weisshaar B, Ulm R. 2010. The Arabidopsis bZIP transcription factor HY 5 regulates expression of the PFG1/MYB12 gene in response to light and ultraviolet-B radiation. Plant Cell and Environment, 33 (1):88-103. |
[110] |
Sun Q G, Jiang S H, Zhang T L, Xu H F, Fang H C, Zhang J, Su M Y, Wang Y C, Zhang Z Y, Wang N, Chen X S. 2019. Apple NAC transcription factor MdNAC 52 regulates biosynthesis of anthocyanin and proanthocyanidin through MdMYB9 and MdMYB11. Plant Science, 289:110286.
doi: 10.1016/j.plantsci.2019.110286 URL |
[111] |
Sun Y, Qian M, Wu R, Niu Q, Teng Y, Zhang D. 2014. Postharvest pigmentation in red Chinese sand pears(Pyrus pyrifolia Nakai)in response to optimum light and temperature. Postharvest Biology and Technology, 91 (2):64-71.
doi: 10.1016/j.postharvbio.2013.12.015 URL |
[112] |
Takos A M, Jaffé F W, Jacob S R, Bogs J, Robinson S P, Walker A R. 2006a. Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiology, 142 (3):1216-1232.
doi: 10.1104/pp.106.088104 URL |
[113] |
Takos A M, Robinson S P, Walker A R. 2006b. Transcriptional regulation of the flavonoid pathway in the skin of dark-grown‘Cripps Red’apples in response to sunlight. Journal of Horticultural Science and Biotechnology, 81 (4):735-744.
doi: 10.1080/14620316.2006.11512131 URL |
[114] | Tang Xingjiao, Dai Silan. 2011. Light regulation of anthocyanin synthesis and coloration. Molecular Plant Breeding, 9:1284-1290.(in Chinese) |
唐杏姣, 戴思兰. 2011. 光调控花青素苷合成及呈色的机理. 分子植物育种, 9:1284-1290. | |
[115] |
Tao R, Bai S, Ni J, Yang Q, Zhao Y, Teng Y. 2018. The blue light signal transduction pathway is involved in anthocyanin accumulation in‘Red Zaosu’pear. Planta, 248 (1):37-48.
doi: 10.1007/s00425-018-2877-y URL |
[116] |
Tao R, Yu W, Gao Y, Ni J, Yin L, Zhang X, Li H, Wang D, Bai S, Teng Y. 2020. Light-induced Basic/Helix-Loop-Helix 64 enhances anthocyanin biosynthesis and undergoes CONSTITUTIVELY PHOTOMORPHOGENIC1-mediated degradation in pear. Plant Physiology, 184 (4):1684-1701.
doi: 10.1104/pp.20.01188 URL |
[117] |
Telias A, Lin-Wang K, Stevenson D E, Cooney J M, Hellens R P, Allan A C, Hoove E E, Bradeen J M. 2011. Apple skin patterning is associated with differential expression of MYB10. BMC Plant Biology, 11:93-107.
doi: 10.1186/1471-2229-11-93 URL |
[118] |
Uleberg E, Rohloff J, Jaakola L, Trost K, Junttila O, Haggman H, Martinussen I. 2012. Effects of temperature and photoperiod on yield and chemical composition of northern and southern clones of bilberry(Vaccinium myrtillus L.). Journal of Agricultural and Food Chemistry, 60 (42):10406-10414.
doi: 10.1021/jf302924m pmid: 23033879 |
[119] |
Vandenbussche F, Habricot Y, Condiff A S, Maldiney R, Straeten D V D, Ahmad M. 2007. HY 5 is a point of convergence between cryptochrome and cytokinin signalling pathways in Arabidopsis thaliana. The Plant Journal, 49 (3):428-441.
doi: 10.1111/tpj.2007.49.issue-3 URL |
[120] |
Wang C L, Lu G Q, Hao Y Q, Guo H M, Guo Y, Zhao J, Cheng H M. 2017. ABP9,a maize bZIP transcription factor,enhances tolerance to salt and drought in transgenic cotton. Planta, 246:453-469.
doi: 10.1007/s00425-017-2704-x URL |
[121] | Wang Hongxue, Liu Tianyu, Zhuang Weibing, Wang Zhong, Zhu Lin, Qu Shenchun, Zhai Henghua. 2019. Research advances in the function of anthocyanin in plant stress response. Journal of Agricultural Biotechnology, 28 (1):174-183.(in Chinese) |
王鸿雪, 刘天宇, 庄维兵, 王忠, 朱林, 渠慎春, 翟恒华. 2019. 花青素苷在植物逆境响应中的功能研究进展. 农业生物技术学报, 28 (1):174-183. | |
[122] | Wang Hua, Li Maofu, Yang Yuan, Jin Wanmei. 2015. Recent advances on the molecular mechanisms of anthocyanin synthesis in fruits. Plant Physiology Journal, 51 (1):29-43.(in Chinese) |
王华, 李茂福, 杨媛, 金万梅. 2015. 果实花青素生物合成分子机制研究进展. 植物生理学报, 51 (1):29-43. | |
[123] | Wang Jiaqi, He Yingyu, Wei Xiaotong, Li Yongqiang, Yang Li, Chen Wenrong, Liao Fanglei, Guo Weidong. 2020. Effects of LED complementary light combination on the growth and development of blueberry in greenhouse. Acta Horticulturae Sinica, 47 (6):1183-1193.(in Chinese) |
王佳淇, 何莹钰, 韦晓桐, 李永强, 杨莉, 陈文荣, 廖芳蕾, 郭卫东. 2020. LED补光组合对大棚越橘生长发育的影响. 园艺学报, 47 (6):1183-1193. | |
[124] |
Wang S Y, Chen C T, Wang C Y. 2009. The influence of light and maturity on fruit quality and flavonoid content of red raspberries. Food Chemistry, 112 (3):676-684.
doi: 10.1016/j.foodchem.2008.06.032 URL |
[125] |
Wang Y L, Wang Y Q, Song Z Q, Zhang H Y. 2016. Repression of MYBL2 by both microRNA858a and HY5 leads to the activation of anthocyanin biosynthetic pathway in Arabidopsis. Molecular Plant, 9:1395-1405.
doi: 10.1016/j.molp.2016.07.003 URL |
[126] |
Wei Y Z, Hu F C, Hu G B, Li X J, Huang X M, Wang H C. 2011. Differential expression of anthocyanin biosynthetic genes in relation to anthocyanin accumulation in the pericarp of Litchi chinensis Sonn. PLoS ONE, 6:e19455.
doi: 10.1371/journal.pone.0019455 URL |
[127] |
Wu D, Hu Q, Yan Z, Chen W, Yan C, Huang X, Zhang J, Yang P Y, Deng H, Wang J, Deng X W, Shi Y. 2012. Structural basis of ultraviolet-B perception by UVR8. Nature, 484 (7393):214-219.
doi: 10.1038/nature10931 URL |
[128] | Xu F, Cao S, Shi L, Chen W, Su X, Yang Z. 2014. Blue light irradiation affects anthocyanin content and enzyme activities involved in postharvest strawberry fruit. Journal of Agricultural & Food Chemistry, 62:4778-4783. |
[129] |
Yamagishi M. 2016. A novel R2R3-MYB transcription factor regulates light-mediated floral and vegetative anthocyanin pigmentation patterns in Lilium regale. Molecular Breeding, 36 (1):1-14.
doi: 10.1007/s11032-015-0425-z URL |
[130] |
Yao G, Ming M, Allan A C, Gu C, Li L, Wu X, Wang R, Chang Y, Qi K, Zhang S, Wu J. 2017. Map-based cloning of the pear gene MYB114 identifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynthesis. The Plant Journal, 92 (3):437-451.
doi: 10.1111/tpj.2017.92.issue-3 URL |
[131] |
Yu J W, Rubio V, Lee N Y, Bai S, Lee S Y, Kim S S, Liu L, Zhang Y, Irigoyen M L, Sullivan J A, Zhang Y, Lee L, Xie Q, Paek N C, Deng X W. 2008. COP1 and ELF 3 control circadian function and photoperiodic flowering by regulating GI stability. Molecular Cell, 32 (5):617-630.
doi: 10.1016/j.molcel.2008.09.026 URL |
[132] |
Zhang B, Hu Z, Zhang Y, Li Y, Zhou S, Chen G. 2012. A putative functional MYB transcription factor induced by low temperature regulates anthocyanin biosynthesis in purple kale(Brassica oleracea var. acephala f. tricolor). Plant Cell Reports, 31 (2):281-289.
doi: 10.1007/s00299-011-1162-3 pmid: 21987119 |
[133] |
Zhang S, Chen Y, Zhao L, Li C Q, Yu J Y, Li T T, Yang W Y, Zhang S N, Su H Y, Wang L. 2020. A novel NAC transcription factor,MdNAC42,regulates anthocyanin accumulation in red-fleshed apple by interacting with MdMYB10. Tree Physiology, 40 (3):413-423.
doi: 10.1093/treephys/tpaa004 URL |
[134] |
Zhang X, Allan A C, Yi Q, Chen L, Li K, Shu Q, Su J. 2011. Differential gene expression analysis of Yunnan red pear,Pyrus Pyrifolia,during fruit skin coloration. Plant Molecular Biology Reporter, 29 (2):305-314.
doi: 10.1007/s11105-010-0231-z URL |
[135] |
Zhang Y, Jiang L, Li Y, Chen Q, Ye Y, Zhang Y, Luo Y, Sun B, Wang X, Tang H. 2018a. Effect of Red and blue light on anthocyanin accumulation and differential gene expression in strawberry(Fragaria × ananassa). Molecules, 23 (4):820.
doi: 10.3390/molecules23040820 URL |
[136] |
Zhang Y, Xu S, Cheng Y, Peng Z, Han J. 2018b. Transcriptome profiling of anthocyanin-related genes reveals effects of light intensity on anthocyanin biosynthesis in red leaf lettuce. PeerJ, 6 (4):e4607.
doi: 10.7717/peerj.4607 URL |
[137] |
Zhao Y, Dong W, Wang K, Bo Z, Xu C. 2017. Differential sensitivity of fruit pigmentation to ultraviolet light between two peach cultivars. Frontiers in Plant Science, 8:1552.
doi: 10.3389/fpls.2017.01552 pmid: 28943881 |
[138] | Zhuang Weibing, Liu Tianyu, Shu Xiaochun, Qu Shenchun, Zhai Henghua, Wang Tao, Zhang Fengjiao, Wang Zhong. 2018. The molecular regulation mechanism of anthocyanin biosynthesis and coloration in plants. Plant Physiology Journal, 54 (11):1630-1644.(in Chinese) |
庄维兵, 刘天宇, 束晓春, 渠慎春, 翟恒华, 王涛, 张凤娇, 王忠. 2018. 植物体内花青素苷生物合成及呈色的分子调控机制. 植物生理学报, 54 (11):1630-1644. | |
[139] |
Zhou H, Lin-Wang K, Wang H, Gu C, Dare A P, Espley R V, He H, Allan A C, Han Y P. 2015. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. The Plant Journal, 82 (1):105-121.
doi: 10.1111/tpj.12792 pmid: 25688923 |
[140] |
Zhou Y, Guo D, Li J, Cheng J, Zhou H, Gu C, Gardine S, Han Y P. 2013. Coordinated regulation of anthocyanin biosynthesis through photorespiration and temperature in peach(Prunus persica f. atropurpurea). Tree Genetics and Genomes, 9 (1):265-278.
doi: 10.1007/s11295-012-0552-1 URL |
[141] | Zhou Y, Singh B R. 2004. Effect of light on anthocyanin levels in submerged,harvested cranberry fruit. Journal of Biomedicine and Biotechnology, 5:259-263. |
[142] | Zoratti L, Karppinen K, Luengo Escobar A, Häggman H, Jaakola L. 2014. Light-controlled flavonoid biosynthesis in fruits. Frontiers in Plant Science, 5:1-16. |
[1] | 葛诗蓓, 张学宁, 韩文炎, 李青云, 李鑫. 植物类黄酮的生物合成及其抗逆作用机制研究进展[J]. 园艺学报, 2023, 50(1): 209-224. |
[2] | 黄玲, 胡先梅, 梁泽慧, 王艳平, 产祝龙, 向林. 郁金香花青素合成酶基因TgANS的克隆与功能鉴定[J]. 园艺学报, 2022, 49(9): 1935-1944. |
[3] | 李茂福, 杨媛, 王华, 范又维, 孙佩, 金万梅. 月季中R2R3-MYB基因RhMYB113c调控花青素苷合成[J]. 园艺学报, 2022, 49(9): 1957-1966. |
[4] | 钱婕妤, 蒋玲莉, 郑钢, 陈佳红, 赖吴浩, 许梦晗, 付建新, 张超. 百日草花青素苷合成相关MYB转录因子筛选及ZeMYB9功能研究[J]. 园艺学报, 2022, 49(7): 1505-1518. |
[5] | 张倩雯, 杨希航, 李峰, 邓颖天. miRNA调控园艺作物生长发育研究进展[J]. 园艺学报, 2022, 49(5): 1145-1161. |
[6] | 沈植国, 张琳, 袁德义, 程建明. 蜡梅花色及其红花新资源研究进展[J]. 园艺学报, 2022, 49(4): 924-934. |
[7] | 赵晖, 耿兴敏, 王露露, 许世达. 乙烯在杜鹃花耐热机制中的作用研究[J]. 园艺学报, 2022, 49(3): 561-570. |
[8] | 彭银霞, 张颖, 朱康友, 孙鑫, 张克敏, 孙周平, 齐明芳, 李天来, 王峰. 园艺作物抗坏血酸生物合成中光的调控作用研究综述[J]. 园艺学报, 2022, 49(11): 2502-2518. |
[9] | 唐明佳, 徐进, 林锐, 宋珈凝, 喻景权, 周艳虹. 番茄响应光温逆境的生理分子机制研究进展[J]. 园艺学报, 2022, 49(10): 2174-2188. |
[10] | 王福生, 刘晓纳, 徐媛媛, 刘小丰, 朱世平, 赵晓春. 柑橘SQS基因的克隆及功能分析[J]. 园艺学报, 2021, 48(9): 1641-1652. |
[11] | 谯正林, 胡慧贞, 鄢波, 陈龙清. 花香挥发性苯/苯丙素类化合物的生物合成及基因调控研究进展[J]. 园艺学报, 2021, 48(9): 1815-1826. |
[12] | 洪燕红, 叶清华, 李泽坤, 王威, 谢倩, 陈清西, 陈建清. 红花草莓‘莓红’花瓣花色苷积累及其MYB基因的表达分析[J]. 园艺学报, 2021, 48(8): 1470-1484. |
[13] | 耿艳秋, 董肖昌, 张春梅. 园艺作物糖转运蛋白研究进展[J]. 园艺学报, 2021, 48(4): 676-688. |
[14] | 杨婷, 薛珍珍, 李娜, 郎校安, 李凌飞, 钟春梅. 铁十字秋海棠斑叶发育过程内参基因筛选及验证[J]. 园艺学报, 2021, 48(11): 2251-2261. |
[15] | 李崇晖, 杨光穗, 张志群, 尹俊梅. 红掌R2R3-MYB转录因子基因AaMYB6调控花青素苷合成[J]. 园艺学报, 2021, 48(10): 1859-1872. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司