园艺学报 ›› 2021, Vol. 48 ›› Issue (8): 1470-1484.doi: 10.16420/j.issn.0513-353x.2020-0477
洪燕红, 叶清华, 李泽坤, 王威, 谢倩, 陈清西(), 陈建清(
)
收稿日期:
2021-01-22
修回日期:
2021-02-22
出版日期:
2021-08-25
发布日期:
2021-09-06
通讯作者:
陈清西,陈建清
E-mail:cqx0246@fafu.edu.cn;jianqingchen@fafu.edu.cn
基金资助:
HONG Yanhong, YE Qinghua, LI Zekun, WANG Wei, XIE Qian, CHEN Qingxi(), CHEN Jianqing(
)
Received:
2021-01-22
Revised:
2021-02-22
Online:
2021-08-25
Published:
2021-09-06
Contact:
CHEN Qingxi,CHEN Jianqing
E-mail:cqx0246@fafu.edu.cn;jianqingchen@fafu.edu.cn
摘要:
以红花草莓品种‘莓红’为研究材料,观察花瓣发育过程中色泽及花色苷变化规律,同时对4个发育时期花瓣进行转录组测序,基于相关性筛选花色苷合成途径的关键功能基因及转录调控因子,结果表明:(1)花瓣发育过程中,花色苷总含量呈先升后降趋势,且在半开期达到最高;(2)花色苷合成途径关键功能基因FaPAL、Fa4CL-1、Fa4CL-2、FaDFR、Fa3GT表达水平与花色苷含量正相关;(3)R2R3-MYB基因FaMYB6和FaMYB90与花色苷含量呈正相关;(4)Pearson相关性分析表明FaMYB6与FaPAL、FaDFR显著正相关,FaMYB90与FaPAL、Fa4CL-1、Fa4CL-2、FaDFR、Fa3GT极显著正相关,FaMYB82则与上述5个结构基因之间均极显著负相关。综上,‘莓红’草莓花瓣发育过程中,花色苷积累引起花瓣颜色变红,FaMYB82、FaMYB6、FaMYB90可能通过调节FaPAL、Fa4CL、FaDFR和Fa3GT的表达来调控花瓣色泽形成。
中图分类号:
洪燕红, 叶清华, 李泽坤, 王威, 谢倩, 陈清西, 陈建清. 红花草莓‘莓红’花瓣花色苷积累及其MYB基因的表达分析[J]. 园艺学报, 2021, 48(8): 1470-1484.
HONG Yanhong, YE Qinghua, LI Zekun, WANG Wei, XIE Qian, CHEN Qingxi, CHEN Jianqing. Accumulation of Anthocyanins in Red-flowered Strawberry‘Meihong’Petals and Expression Analysis of MYB Gene[J]. Acta Horticulturae Sinica, 2021, 48(8): 1470-1484.
基因名称 Gene Name | 基因ID Gene ID | 引物序列(5′-3′) Primer sequences |
---|---|---|
FaMYB82 | maker-Fvb6-4-augustus-gene-249.24 | F:ATCGTTAGAGGCAACATTACCG |
R:TCGCAGCTTCCTCTTTACGAA | ||
FaMYB6 | maker-Fvb5-1-augustus-gene-245.45 | F:AGACCAACGCCTCATCGACT |
R:CTCCCCGCAATCAAAGACCAC | ||
FaMYB90 | maker-Fvb6-3-snap-gene-424.65 | F:AACTACCTTCGGCCAAACATC |
R:TCCAGTAGTTCTTCACATCATTACC | ||
FaPAL | maker-Fvb6-2-augustus-gene-174.36 | F:CGCCCCAATTCTAAGTCCGTT |
R:CAGAGCCAACAGCAGTACCAT | ||
Fa4CL-1 | maker-Fvb5-2-snap-gene-144.44 | F:AGTTCAGACCCTTCCTCATGT |
R:CTAGCTGGAGGCAAAAAGGAT | ||
Fa4CL-2 | maker-Fvb5-3-augustus-gene-134.28 | F:GCTGTGTTGATTTCGCATCCT |
R:GCTTCCTAACCACAAATGCCACT | ||
FaF3H-1 | maker-Fvb1-3-augustus-gene-64.31 | F:CATCCACCCCAAGCTCAT |
R:CAATCCTGCACTGCCTCT | ||
FaF3H-2 | maker-Fvb1-4-augustus-gene-56.40 | F:GCATCGACCCCAAGCTCAT |
R:CCAATCCTGCACCGCTTCT | ||
FaDFR | maker-Fvb2-4-snap-gene-258.87 | F:CACGCCTATGGATTTCGAGT |
R:AGACCTCCTTTCGATGCTCT | ||
FaANS | maker-Fvb5-3-augustus-gene-266.54 | F:TCATGCACATAGGCGACACC |
R:CAGAAAACCGCCCACGAGAT | ||
Fa3GT | maker-Fvb7-1-augustus-gene-319.41 | F:CGCTCTTTTCACGTATGCTT |
R:CTTGCTGGTGGTTCTAGTAGGT | ||
Fa3,5GT | maker-Fvb7-2-snap-gene-316.69 | F:CCACACCTCCGATCTTCACC |
R:CGTACCACCCACAAGAACCT | ||
FaUBC10 (内参Reference gene) | maker-Fvb5-2-augustus-gene-25.49 | F:TGCCCTGACCATATCGAAGG |
R:CTTGCGGTGGTCTCATACTT |
表1 引物序列
Table 1 Primer sequences
基因名称 Gene Name | 基因ID Gene ID | 引物序列(5′-3′) Primer sequences |
---|---|---|
FaMYB82 | maker-Fvb6-4-augustus-gene-249.24 | F:ATCGTTAGAGGCAACATTACCG |
R:TCGCAGCTTCCTCTTTACGAA | ||
FaMYB6 | maker-Fvb5-1-augustus-gene-245.45 | F:AGACCAACGCCTCATCGACT |
R:CTCCCCGCAATCAAAGACCAC | ||
FaMYB90 | maker-Fvb6-3-snap-gene-424.65 | F:AACTACCTTCGGCCAAACATC |
R:TCCAGTAGTTCTTCACATCATTACC | ||
FaPAL | maker-Fvb6-2-augustus-gene-174.36 | F:CGCCCCAATTCTAAGTCCGTT |
R:CAGAGCCAACAGCAGTACCAT | ||
Fa4CL-1 | maker-Fvb5-2-snap-gene-144.44 | F:AGTTCAGACCCTTCCTCATGT |
R:CTAGCTGGAGGCAAAAAGGAT | ||
Fa4CL-2 | maker-Fvb5-3-augustus-gene-134.28 | F:GCTGTGTTGATTTCGCATCCT |
R:GCTTCCTAACCACAAATGCCACT | ||
FaF3H-1 | maker-Fvb1-3-augustus-gene-64.31 | F:CATCCACCCCAAGCTCAT |
R:CAATCCTGCACTGCCTCT | ||
FaF3H-2 | maker-Fvb1-4-augustus-gene-56.40 | F:GCATCGACCCCAAGCTCAT |
R:CCAATCCTGCACCGCTTCT | ||
FaDFR | maker-Fvb2-4-snap-gene-258.87 | F:CACGCCTATGGATTTCGAGT |
R:AGACCTCCTTTCGATGCTCT | ||
FaANS | maker-Fvb5-3-augustus-gene-266.54 | F:TCATGCACATAGGCGACACC |
R:CAGAAAACCGCCCACGAGAT | ||
Fa3GT | maker-Fvb7-1-augustus-gene-319.41 | F:CGCTCTTTTCACGTATGCTT |
R:CTTGCTGGTGGTTCTAGTAGGT | ||
Fa3,5GT | maker-Fvb7-2-snap-gene-316.69 | F:CCACACCTCCGATCTTCACC |
R:CGTACCACCCACAAGAACCT | ||
FaUBC10 (内参Reference gene) | maker-Fvb5-2-augustus-gene-25.49 | F:TGCCCTGACCATATCGAAGG |
R:CTTGCGGTGGTCTCATACTT |
图2 红花草莓‘莓红’和白花草莓‘蒙特瑞’不同发育时期花瓣的花色苷总含量
Fig. 2 Total anthocyanin content in petals of red-flowered strawberry‘Meihong’and white-flowered strawberry‘Monterey’at different developmental stages P ≤ 0.01.
图3 ‘莓红’草莓花瓣花色苷合成相关结构基因表达量分析(FPKM > 10,经Z-score标准化)
Fig. 3 Expression analysis of Structural genes related to anthocyanin synthesis in‘Meihong’strawberry petals (FPKM > 10,standardized by Z-score)
图5 ‘莓红’草莓花瓣差异R2R3-MYB基因表达量(A,FPKM > 10,经Z-score标准化)及其与花色苷含量的Pearson相关性(r)分析(B)
Fig. 5 Expression analysis of differential R2R3-MYB genes(A,FPKM > 10,standardized by Z-score)and Pearson correlation analysis between differential R2R3-MYB genes and anthocyanin content(B)in‘Meihong’strawberry petals
图6 R2R3-MYB转录因子的进化树和保守基序分析 分支上数值为邻接法1 000次Bootstrap检验的自引导值。
Fig. 6 Phylogenetic tree and conserved motif analysis of R2R3-MYB transcription factor The branch values were self-guided values of Bootstrap test for 1 000 times by neighbor-joining method.
图7 花色苷合成相关9个差异结构基因和3个R2R3-MYB基因的相对表达量 以数据最低表达量,即S1时期Fa3GT的表达量,作为参照数据进行数据相对量计算。
Fig. 7 Relative expression levels of nine differential structural genes and three R2R3-MYB genes related to anthocyanin synthesis The lowest expression level of the data(the expression level of Fa3GT in S1 period)was used as the reference data to calculate the relative amount of data.
基因名称 Gene name | Pearson系数(r) | ||||||||
---|---|---|---|---|---|---|---|---|---|
FaPAL | Fa4CL-1 | Fa4CL-2 | FaF3H-1 | FaF3H-2 | FaDFR | FaANS | Fa3GT | Fa35GT | |
FaMYB82 | -0.90 | -0.93 | -0.87 | -0.28 | -0.32 | -0.88 | -0.70 | -0.85 | 0.81 |
FaMYB6 | 0.61 | 0.54 | 0.58 | -0.27 | -0.20 | 0.62 | 0.30 | 0.56 | -0.86 |
FaMYB90 | 0.92 | 0.87 | 0.95 | 0.31 | 0.33 | 0.94 | 0.70 | 0.90 | -0.79 |
表2 3个R2R3-MYB基因与9个结构基因的Pearson相关性分析
Table 2 Pearson correlation analysis between three R2R3-MYB genes and nine structural genes
基因名称 Gene name | Pearson系数(r) | ||||||||
---|---|---|---|---|---|---|---|---|---|
FaPAL | Fa4CL-1 | Fa4CL-2 | FaF3H-1 | FaF3H-2 | FaDFR | FaANS | Fa3GT | Fa35GT | |
FaMYB82 | -0.90 | -0.93 | -0.87 | -0.28 | -0.32 | -0.88 | -0.70 | -0.85 | 0.81 |
FaMYB6 | 0.61 | 0.54 | 0.58 | -0.27 | -0.20 | 0.62 | 0.30 | 0.56 | -0.86 |
FaMYB90 | 0.92 | 0.87 | 0.95 | 0.31 | 0.33 | 0.94 | 0.70 | 0.90 | -0.79 |
图9 候选花色苷合成相关基因在白花草莓‘蒙特瑞’花瓣发育过程中的表达模式分析 以数据最低表达量,即S1时期Fa3GT的表达量作为参照数据进行数据相对量计算。
Fig. 9 Relative expression levels of nine structural genes and three R2R3-MYB genes related to anthocyanin synthesis in white-flowered strawberry‘Monterey’ The lowest expression level of the data(Fa3GT in S1 period)was used as the reference data to calculate the relative amount of data.
[1] |
An X H, Tian Y, Chen K Q, Wang X F, Hao Y J. 2012. The apple WD 40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation. Journal of Plant Physiology, 169 (7):710-717.
doi: 10.1016/j.jplph.2012.01.015 URL |
[2] | Cao Yuwei, Xu Leifeng, Yang Panpan, Xu Hua, He Guoren, Tang Yuchao, Ren Junfang, Ming Jun. 2019. Differential expression of three R2R3-MYBs genes regulating anthocyanin pigmentation patterns in Lilium spp. Acta Horticulturae Sinica, 46 (5):955-963. (in Chinese) |
曹雨薇, 徐雷锋, 杨盼盼, 徐华, 何国仁, 唐玉超, 任君芳, 明军. 2019. 百合花青素苷呈色类型中3种R2R3-MYBs基因的差异表达. 园艺学报, 46 (5):955-963. | |
[3] | Delectis Florae Reipublicae Popularis Sinicae Agendae Academiae Sinicae Edita. 1985. Flora Reipublicae Popularis Sinicae. Volume 37. Beijing: Science Press:355. (in Chinese) |
中国科学院中国植物志编辑委员会. 1985. 中国植物志. 37卷. 北京: 科学出版社: 355. | |
[4] |
Edger P P, Poorten T J, VanBuren R, Hardigan M A, Colle M, McKain M R, Smith R D, Teresi S J, Nelson A D L, Wai C M, Alger E I, Bird K A, Yocca A E, Pumplin N, Ou S, Ben-Zvi G, Brodt A, Baruch K, Swale T, Shiue L, Acharya C B, Cole G S, Mower J P, Childs K L, Jiang N, Lyons E, Freeling M, Puzey J R, Knapp S J. 2019. Origin and evolution of the octoploid strawberry genome. Nature Genetics, 51 (3):541-547.
doi: 10.1038/s41588-019-0356-4 URL |
[5] | Ellis J R. 1962. Fragaria-Potentilla intergeneric hybridization and evolution in Fragaria. Proceedings of the Linnean Society of London, 173 (2):99-106. |
[6] |
Fogelman E, Tanami S, Ginzberg I. 2015. Anthocyanin synthesis in native and wound periderms of potato. Physiologia Plantarum, 153 (4):616-626.
doi: 10.1111/ppl.2015.153.issue-4 URL |
[7] |
Huang W J, Khaldun A B M, Lv H Y, Du L W, Zhang C J, Wang Y. 2016. Isolation and functional characterization of a R2R3-MYB regulator of the anthocyanin biosynthetic pathway from Epimedium sagittatum. Plant Cell Reports, 35 (4):883-894.
doi: 10.1007/s00299-015-1929-z URL |
[8] |
Jaakola L, Määttä K, Pirttilä A M, Törrönen R, Kärenlampi S, Hohtola A. 2002. Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin,proanthocyanidin,and flavonol levels during bilberry fruit development. Plant Physiology, 130 (2):729-739.
pmid: 12376640 |
[9] | Lei Jia-jun, Xue Li, Dai Han-ping, Deng Ming-qin. 2015. Two new pink-flowered strawberry cultivars‘Pink Beauty’and‘Pretty Beauty’. Acta Horticulturae Sinica, 42 (3):599-600. (in Chinese) |
雷家军, 薛莉, 代汉萍, 邓明琴. 2015. 红花草莓新品种‘粉佳人’和‘俏佳人’. 园艺学报, 42 (3):599-600. | |
[10] |
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25 (4):402-408.
pmid: 11846609 |
[11] |
Lotkowska M E, Tohge T, Fernie A R, Xue G, Balazadeh S, Mueller-Roeber B. 2015. The Arabidopsis transcription factor MYB112 promotes anthocyanin formation during salinity and under high light stress. Plant Physiology, 169:1862-1880.
doi: 10.1104/pp.15.00605 pmid: 26378103 |
[12] |
Matus J T, Cavallini E, Loyola R, Höll J, Finezzo L, Dal Santo S, Vialet S, Commisso M, Roman F, Schubert A, Alcalde J A, Bogs J, Ageorges A, Tornielli G B, Arce-Johnson P. 2017. A group of grapevine MYBA transcription factors located in chromosome 14 control anthocyanin synthesis in vegetative organs with different specificities compared with the berry color locus. The Plant Journal, 91 (2):220-236.
doi: 10.1111/tpj.2017.91.issue-2 URL |
[13] |
Meng J X, Gao Y, Han M L, Liu P Y, Yang C, Shen T, Li H H. 2020. In vitro anthocyanin induction and metabolite analysis in Malus spectabilis leaves under low nitrogen conditions. Horticultural Plant Journal, 6 (5):284-292.
doi: 10.1016/j.hpj.2020.06.004 URL |
[14] |
Raymond O, Gouzy J, Just J, Badouin H, Verdenaud M, Lemainque A, Vergne P, Moja S, Choisne N, Pont C, Carrère S, Caissard J, Couloux A, Cottret L, Aury J, Szécsi J, Latrasse D, Madoui M, François L, Fu X, Yang S, Dubois A, Piola F, Larrieu A, Perez M, Labadie K, Perrier L, Govetto B, Labrousse Y, Villand P, Bardoux C, Boltz V, Lopez-Roques C, Heitzler P, Vernoux T, Vandenbussche M, Quesneville H, Boualem A, Bendahmane A, Liu C, Le Bris M, Salse J, Baudino S, Benhamed M, Wincker P, Bendahmane M. 2018. The Rosa genome provides new insights into the domestication of modern roses. Nature Genetics, 50 (6):772-777.
doi: 10.1038/s41588-018-0110-3 URL |
[15] |
Schwinn K E, Boase M R, Bradley J M, Lewis D H, Deroles S C, Martin C R, Davies K M. 2014. MYB and bHLH transcription factor transgenes increase anthocyanin pigmentation in petunia and lisianthus plants,and the petunia phenotypes are strongly enhanced under field conditions. Frontiers in Plant Science, 5:603.
doi: 10.3389/fpls.2014.00603 pmid: 25414715 |
[16] |
Stracke R, Werber M, Weisshaar B. 2001. The R2R3-MYB gene family in Arabidopsis thaliana. Current Opinion in Plant Biology, 4 (5):447-456.
URL pmid: 11597504 |
[17] |
Sun C L, Deng L, Du M M, Zhao J, Chen Q, Huang T, Jiang H, Li C B, Li C. 2020. A transcriptional network promotes anthocyanin biosynthesis in tomato flesh. Molecular Plant, 13 (1):42-58.
doi: 10.1016/j.molp.2019.10.010 URL |
[18] |
Wang F B, Kong W L, Wong G, Fu L F, Peng R H, Li Z J, Yao Q H. 2016. AtMYB12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana. Molecular Genetics and Genomics, 291 (4):1545-1559.
doi: 10.1007/s00438-016-1203-2 URL |
[19] |
Wang K L, Bolitho K, Grafton K, Kortstee A J, Karunairetnam S, McGhie T K, Espley R V, Hellens R P, Allan A C. 2010. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biology, 10 (1):50.
doi: 10.1186/1471-2229-10-50 URL |
[20] |
Wang L H, Tang W, Hu Y W, Zhang Y, Sun J, Guo X, Lu H, Yang Y, Fang C, Niu X, Yue J, Fei Z, Liu Y. 2019a. A MYB/bHLH complex regulates tissue-specific anthocyanin biosynthesis in the inner pericarp of red-centered kiwifruit Actinidia chinensis cv. Hongyang. The Plant Journal, 99 (2):359-378.
doi: 10.1111/tpj.2019.99.issue-2 URL |
[21] |
Wang L J, Lu W X, Ran L Y, Dou L W, Yao S, Hu J, Fan D, Li C, Luo K. 2019b. R2R3-MYB transcription factor MYB 6 promotes anthocyanin and proanthocyanidin biosynthesis but inhibits secondary cell wall formation in Populus tomentosa. The Plant Journal, 99 (4):733-751.
doi: 10.1111/tpj.v99.4 URL |
[22] | Wang Qing-lian, Zhao Mi-zhen, Wang Zhuang-wei, Wu Wei-min, Qian Ya-ming. 2017. ‘Zijinhong’,a new red-flowered strawberry cultivar. Acta Horticulturae Sinica, 44 (12):2425-2426. (in Chinese) |
王庆莲, 赵密珍, 王壮伟, 吴伟民, 钱亚明. 2017. 红花草莓新品种‘紫金红’. 园艺学报, 44 (12):2425-2426. | |
[23] |
Xue L, Wang Z G, Zhang W, Li Y X, Wang J, Lei J J. 2016. Flower pigment inheritance and anthocyanin characterization of hybrids from pink-flowered and white-flowered strawberry. Scientia Horticulturae, 200:143-150.
doi: 10.1016/j.scienta.2016.01.020 URL |
[24] | Xue Li, Lei Jia-jun, Liu Yuan. 2012. Review on pink-flowered strawberry breeding. Journal of Northeast Agricultural University, 43 (10):172-176. (in Chinese) |
薛莉, 雷家军, 刘源. 2012. 红花草莓育种研究进展. 东北农业大学学报, 43 (10):172-176. | |
[25] | Yao Yifan, Dong Bin, Feng Chengyong, Yang Liyuan, Zhao Hongbo. 2020. Identification of the R2R3-MYB family of Osmanthus fragrans and its expression in the process of flower opening. Acta Horticulturae Sinica, 47 (10):2027-2039. (in Chinese) |
姚亦凡, 董彬, 冯成庸, 杨丽媛, 赵宏波. 2020. 桂花R2R3-MYB家族基因鉴定及其在花开放过程中的表达分析. 园艺学报, 47 (10):2027-2039. | |
[26] |
Zhai R, Wang Z M, Zhang S W, Meng G, Song L Y, Wang Z G, Li P M, Ma F W, Xu L F. 2016. Two MYB transcription factors regulate flavonoid biosynthesis in pear fruit(Pyrus bretschneideri Rehd.). Journal of Experimental Botany, 67 (5):1275-1284.
doi: 10.1093/jxb/erv524 pmid: 26687179 |
[27] |
Zhang Q X, Zhang H, Sun L D, Fan G Y, Ye M, Jiang L, Liu X, Ma K, Shi C, Bao F, Guan R, Han Y, Fu Y, Pan H, Chen Z, Li L, Wang J, Lv M, Zheng T, Yuan C, Zhou Y, Lee S M, Yan X, Xu X, Wu R, Chen W, Cheng T. 2018. The genetic architecture of floral traits in the woody plant Prunus mume. Nature Communications, 9 (1):1702.
doi: 10.1038/s41467-018-04093-z URL |
[28] | Zhao L, Gao L P, Wang H X, Chen X T, Wang Y S, Yang H, Wei C L, Wan X C, Xia T. 2013. The R2R3-MYB,bHLH,WD40,and related transcription factors in flavonoid biosynthesis. Functional & Integrative Genomics, 13 (1):75-98. |
[29] |
Zhou H, Peng Q, Zhao J B, Owiti A, Ren F, Liao L, Wang L, Deng X, Jiang Q, Han Y. 2016. Multiple R2R3-MYB transcription factors involved in the regulation of anthocyanin accumulation in peach flower. Frontiers in Plant Science, 7:1557.
pmid: 27818667 |
[1] | 宋艳红, 陈亚铎, 张晓玉, 宋 盼, 刘丽锋, 李 刚, 赵 霞, 周厚成, . 森林草莓FvbHLH130转录因子调控植株提前开花[J]. 园艺学报, 2023, 50(2): 295-306. |
[2] | 何成勇, 赵晓丽, 许腾飞, 高德航, 李世访, 王红清. 草莓病毒1山东分离物全基因组分析[J]. 园艺学报, 2023, 50(1): 153-160. |
[3] | 葛诗蓓, 张学宁, 韩文炎, 李青云, 李鑫. 植物类黄酮的生物合成及其抗逆作用机制研究进展[J]. 园艺学报, 2023, 50(1): 209-224. |
[4] | 杨 雷, 李 莉, 董 辉, 冯 佳, 张建军, 范婧芳, 杨秋叶, 杨 莉, . 草莓新品种‘石莓11号’[J]. 园艺学报, 2022, 49(S2): 79-80. |
[5] | 赵 霞, 李 刚, 刘丽锋, 宋艳红, 周厚成. 草莓新品种‘华硕1号’[J]. 园艺学报, 2022, 49(S2): 81-82. |
[6] | 董 静, 常琳琳, 王桂霞, 钟传飞, 隗永青, 孙 健, 孙 瑞, 张宏力, 高用顺, 许利平, 陶 磅, 罗志伟, 张运涛, . 四季草莓新品种‘静红’[J]. 园艺学报, 2022, 49(S1): 61-62. |
[7] | 李茂福, 杨媛, 王华, 范又维, 孙佩, 金万梅. 月季中R2R3-MYB基因RhMYB113c调控花青素苷合成[J]. 园艺学报, 2022, 49(9): 1957-1966. |
[8] | 蔡建法, 莫雪莲, 管思聪, 陈栩, 薛程. 草莓FvYABBY5.1表达特性和功能分析[J]. 园艺学报, 2022, 49(7): 1458-1472. |
[9] | 沈植国, 张琳, 袁德义, 程建明. 蜡梅花色及其红花新资源研究进展[J]. 园艺学报, 2022, 49(4): 924-934. |
[10] | 赵晖, 耿兴敏, 王露露, 许世达. 乙烯在杜鹃花耐热机制中的作用研究[J]. 园艺学报, 2022, 49(3): 561-570. |
[11] | 邓娇, 苏梦月, 刘雪莲, 欧克芳, 户正荣, 杨平仿. 基于转录组分析揭示双色花莲‘大洒锦’花色形成机理[J]. 园艺学报, 2022, 49(2): 365-377. |
[12] | 孙威, 孙世宇, 陈一然, 王聿晗, 张艳, 鞠志刚, 乙引. 马缨杜鹃查尔酮异构酶基因RdCHI1的克隆与功能解析[J]. 园艺学报, 2022, 49(11): 2407-2418. |
[13] | 王福生, 刘晓纳, 徐媛媛, 刘小丰, 朱世平, 赵晓春. 柑橘SQS基因的克隆及功能分析[J]. 园艺学报, 2021, 48(9): 1641-1652. |
[14] | 杨丽媛, 王倩, 王许会, 徐通达, 马军. 草莓生长素合成关键酶FveTAA1保守氨基酸位点T111的生物学功能研究[J]. 园艺学报, 2021, 48(9): 1695-1705. |
[15] | 谯正林, 胡慧贞, 鄢波, 陈龙清. 花香挥发性苯/苯丙素类化合物的生物合成及基因调控研究进展[J]. 园艺学报, 2021, 48(9): 1815-1826. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司