园艺学报 ›› 2021, Vol. 48 ›› Issue (5): 934-946.doi: 10.16420/j.issn.0513-353x.2020-0772
收稿日期:
2020-11-12
修回日期:
2021-03-24
出版日期:
2021-05-25
发布日期:
2021-06-07
通讯作者:
许忠民
E-mail:xuzhongmin2003@126.com
基金资助:
DONG Yi, FENG Yufei, XU Zhongmin*(), WANG Shimin, TANG Honglü, HUANG Wei
Received:
2020-11-12
Revised:
2021-03-24
Online:
2021-05-25
Published:
2021-06-07
Contact:
XU Zhongmin
E-mail:xuzhongmin2003@126.com
摘要:
利用SSR标记对23份春甘蓝自交系和29份秋甘蓝自交系进行遗传多样性分析,结果表明:春甘蓝自交系在遗传相似系数0.61处可以划分为极早熟和早熟2个类群。秋甘蓝自交系在遗传相似系数0.58处可以分为中晚熟群、中早熟群和中熟群3个类群。从上述材料中挑选15份代表性材料作为亲本,采用完全双列杂交法组配105个杂交组合,对其进行杂种优势分析,同时探究SSR分子标记遗传距离与杂种优势之间的关系。结果发现,不同类群间杂交或同一类群不同亚群间杂交产生的后代杂种优势较强,遗传距离与全株质量中亲优势的相关性达显著正相关,表明基于SSR分子标记划分的类群对于杂种优势的预测具有一定的价值。此外还发现,在105个杂交组合中,全株质量中亲优势最强的10个组合的组配方式均为春甘蓝 × 秋甘蓝,表明春甘蓝 × 秋甘蓝可能是一种潜在的杂种优势利用模式。
中图分类号:
董艺, 冯羽飞, 许忠民, 王世民, 唐鸿吕, 黄炜. SSR标记遗传距离与结球甘蓝杂种优势的关系分析[J]. 园艺学报, 2021, 48(5): 934-946.
DONG Yi, FENG Yufei, XU Zhongmin, WANG Shimin, TANG Honglü, HUANG Wei. Analysis of the Relationship Between Genetic Distance and Heterosis by SSR Markers in Cabbage(Brassica oleracea var. capitata)[J]. Acta Horticulturae Sinica, 2021, 48(5): 934-946.
亲本代号 Parent code | 自交系名称 Line name | 群 Group | 球形 Spherical | 熟性 Maturity | 外叶叶色 Outer leaf color | 蜡粉 Wax powder | 来源 Origin |
---|---|---|---|---|---|---|---|
AD01 | XFM01 | 秋Ⅰ-1 AutumnⅠ-1 | 扁圆Oblate | 中晚熟Mid-late maturity | 灰绿 Gray green | 较多 More | 中国China |
AD02 | DH13EC-5 | 秋Ⅰ-1 AutumnⅠ-1 | 扁圆Oblate | 中晚熟Mid-late maturity | 灰绿Gray green | 多 Many | 小孢子培养 Double haploid |
AD03 | DH12-LY | 秋Ⅲ Autumn Ⅲ | 圆Round | 中熟Mid-maturity | 灰绿 Gray green | 较多 More | 小孢子培养 Double haploid |
AD04 | YZ06-81 | 秋Ⅲ Autumn Ⅲ | 圆 Round | 中熟Mid-maturity | 灰绿Gray green | 较多 More | 荷兰Netherlands |
AD05 | YP07 | 秋Ⅰ-2 AutumnⅠ-2 | 扁圆Oblate | 中晚熟Mid-late maturity | 绿Green | 少Least | 中国China |
AD06 | Y03 | 秋Ⅱ-1 AutumnⅡ-1 | 扁圆Oblate | 中早熟Mid-early maturity | 灰绿Gray green | 多Many | 中国China |
AD07 | HM1720-1 | 秋Ⅰ-1 AutumnⅠ-1 | 扁圆Oblate | 中晚熟 Mid-late maturity | 灰绿Gray green | 多Many | 中国China |
AD08 | GW2003-583 | 春Ⅱ SpringⅡ | 圆Round | 早熟Early maturity | 灰绿Gray green | 较少Less | 中国China |
AD09 | HF98-1 | 春Ⅰ-2 SpringⅠ-2 | 圆Round | 极早熟Earliest maturity | 黄绿Yellow green | 少Least | 中国China |
AD10 | MP01 | 春Ⅰ-3 SpringⅠ-3 | 圆Round | 极早熟Earliest maturity | 绿Green | 少Least | 中国China |
AD11 | DHB02 | 春Ⅰ-1 SpringⅠ-1 | 圆Round | 极早熟Earliest maturity | 黄绿Yellow green | 少Least | 小孢子培养 Double haploid |
AD12 | DH12-3 | 春Ⅰ-1 SpringⅠ-1 | 圆Round | 极早熟Earliest maturity | 黄绿Yellow green | 少Least | 小孢子培养 Double haploid |
AD13 | DHB1510 | 春Ⅰ-4 SpringⅠ-4 | 圆Round | 极早熟Earliest maturity | 绿Green | 少Least | 小孢子培养 Double haploid |
AD14 | S3-7 | 春Ⅰ-3 SpringⅠ-3 | 圆Round | 极早熟 Earliest maturity | 绿Green | 少Least | 日本Japan |
AD15 | S3-23 | 春Ⅰ-3 SpringⅠ-3 | 圆Round | 极早熟 Earliest maturity | 绿Green | 少Least | 日本Japan |
表1 甘蓝供试亲本材料性状
Table 1 Chracteristics of parent materials
亲本代号 Parent code | 自交系名称 Line name | 群 Group | 球形 Spherical | 熟性 Maturity | 外叶叶色 Outer leaf color | 蜡粉 Wax powder | 来源 Origin |
---|---|---|---|---|---|---|---|
AD01 | XFM01 | 秋Ⅰ-1 AutumnⅠ-1 | 扁圆Oblate | 中晚熟Mid-late maturity | 灰绿 Gray green | 较多 More | 中国China |
AD02 | DH13EC-5 | 秋Ⅰ-1 AutumnⅠ-1 | 扁圆Oblate | 中晚熟Mid-late maturity | 灰绿Gray green | 多 Many | 小孢子培养 Double haploid |
AD03 | DH12-LY | 秋Ⅲ Autumn Ⅲ | 圆Round | 中熟Mid-maturity | 灰绿 Gray green | 较多 More | 小孢子培养 Double haploid |
AD04 | YZ06-81 | 秋Ⅲ Autumn Ⅲ | 圆 Round | 中熟Mid-maturity | 灰绿Gray green | 较多 More | 荷兰Netherlands |
AD05 | YP07 | 秋Ⅰ-2 AutumnⅠ-2 | 扁圆Oblate | 中晚熟Mid-late maturity | 绿Green | 少Least | 中国China |
AD06 | Y03 | 秋Ⅱ-1 AutumnⅡ-1 | 扁圆Oblate | 中早熟Mid-early maturity | 灰绿Gray green | 多Many | 中国China |
AD07 | HM1720-1 | 秋Ⅰ-1 AutumnⅠ-1 | 扁圆Oblate | 中晚熟 Mid-late maturity | 灰绿Gray green | 多Many | 中国China |
AD08 | GW2003-583 | 春Ⅱ SpringⅡ | 圆Round | 早熟Early maturity | 灰绿Gray green | 较少Less | 中国China |
AD09 | HF98-1 | 春Ⅰ-2 SpringⅠ-2 | 圆Round | 极早熟Earliest maturity | 黄绿Yellow green | 少Least | 中国China |
AD10 | MP01 | 春Ⅰ-3 SpringⅠ-3 | 圆Round | 极早熟Earliest maturity | 绿Green | 少Least | 中国China |
AD11 | DHB02 | 春Ⅰ-1 SpringⅠ-1 | 圆Round | 极早熟Earliest maturity | 黄绿Yellow green | 少Least | 小孢子培养 Double haploid |
AD12 | DH12-3 | 春Ⅰ-1 SpringⅠ-1 | 圆Round | 极早熟Earliest maturity | 黄绿Yellow green | 少Least | 小孢子培养 Double haploid |
AD13 | DHB1510 | 春Ⅰ-4 SpringⅠ-4 | 圆Round | 极早熟Earliest maturity | 绿Green | 少Least | 小孢子培养 Double haploid |
AD14 | S3-7 | 春Ⅰ-3 SpringⅠ-3 | 圆Round | 极早熟 Earliest maturity | 绿Green | 少Least | 日本Japan |
AD15 | S3-23 | 春Ⅰ-3 SpringⅠ-3 | 圆Round | 极早熟 Earliest maturity | 绿Green | 少Least | 日本Japan |
性状 Trait | 超亲优势High-parent heterosis | 中亲优势Mid-parent heterosis | |||||||
---|---|---|---|---|---|---|---|---|---|
正向优 势/个 Positive heterosis | 负向优 势/个 Negative heterosis | 变幅/% Range | 平均值/% Mean | 正向优 势/个 Positive heterosis | 负向优 势/个 Negative heterosis | 变幅/% Range | 平均值/% Mean | ||
株高PH | 57 | 48 | -22.23 ~ 44.45 | 3.01 ± 14.71 | 88 | 17 | -19.31 ~ 48.28 | 13.81 ± 13.99 | |
株幅PW | 72 | 33 | -30.88 ~ 35.78 | 4.37 ± 13.45 | 90 | 15 | -25.62 ~ 61.00 | 16.58 ± 15.09 | |
中心柱长CL | 81 | 23 | -45.62 ~ 57.35 | 14.18 ± 20.85 | 101 | 4 | -32.82 ~ 76.59 | 26.17 ± 19.90 | |
外叶数NOL | 4 | 100 | -53.09 ~ 8.54 | -23.98 ± 12.63 | 16 | 87 | -35.00 ~ 25.29 | -12.14 ± 12.73 | |
外叶质量WOL | 45 | 56 | -61.76 ~ 69.84 | -4.54 ± 29.07 | 83 | 22 | -41.57 ~ 102.22 | 28.20 ± 31.02 | |
单球质量HW | 90 | 14 | -36.34 ~ 172.15 | 53.01 ± 52.34 | 101 | 4 | -36.34 ~ 225.56 | 80.37 ± 52.37 | |
全株质量GW | 88 | 17 | -39.84 ~ 123.25 | 30.69 ± 35.98 | 100 | 5 | -17.81 ~ 161.14 | 63.27 ± 39.43 |
表2 F1主要性状的超亲优势和中亲优势
Table 2 High-parent heterosis and mid-parent heterosis of F1main traits
性状 Trait | 超亲优势High-parent heterosis | 中亲优势Mid-parent heterosis | |||||||
---|---|---|---|---|---|---|---|---|---|
正向优 势/个 Positive heterosis | 负向优 势/个 Negative heterosis | 变幅/% Range | 平均值/% Mean | 正向优 势/个 Positive heterosis | 负向优 势/个 Negative heterosis | 变幅/% Range | 平均值/% Mean | ||
株高PH | 57 | 48 | -22.23 ~ 44.45 | 3.01 ± 14.71 | 88 | 17 | -19.31 ~ 48.28 | 13.81 ± 13.99 | |
株幅PW | 72 | 33 | -30.88 ~ 35.78 | 4.37 ± 13.45 | 90 | 15 | -25.62 ~ 61.00 | 16.58 ± 15.09 | |
中心柱长CL | 81 | 23 | -45.62 ~ 57.35 | 14.18 ± 20.85 | 101 | 4 | -32.82 ~ 76.59 | 26.17 ± 19.90 | |
外叶数NOL | 4 | 100 | -53.09 ~ 8.54 | -23.98 ± 12.63 | 16 | 87 | -35.00 ~ 25.29 | -12.14 ± 12.73 | |
外叶质量WOL | 45 | 56 | -61.76 ~ 69.84 | -4.54 ± 29.07 | 83 | 22 | -41.57 ~ 102.22 | 28.20 ± 31.02 | |
单球质量HW | 90 | 14 | -36.34 ~ 172.15 | 53.01 ± 52.34 | 101 | 4 | -36.34 ~ 225.56 | 80.37 ± 52.37 | |
全株质量GW | 88 | 17 | -39.84 ~ 123.25 | 30.69 ± 35.98 | 100 | 5 | -17.81 ~ 161.14 | 63.27 ± 39.43 |
亲本 代号 Parent code | 超亲优势 High-parent heterosis | 中亲优势 Mid-parent heterosis | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
株高/% PH | 株幅/% PW | 中心 柱长/% CL | 外叶数/% NOL | 外叶 质量/% WOL | 单球 质量/% HW | 全株 质量/% GW | 株高/% PH | 株幅/% PW | 中心 柱长/% CL | 外叶数/% NOL | 外叶 质量/% WOL | 单球 质量/% HW | 全株 质量/% GW | ||
AD01 | 1.65 | 4.07 | 20.59 | -24.97 | -21.80 | 25.52 | 5.01 | 11.76 | 17.74 | 44.61 | -14.90 | 13.53 | 61.85 | 44.97 | |
AD02 | 9.75 | 13.25 | 29.07 | -12.39 | 10.33 | 91.06 | 58.26 | 18.55 | 23.63 | 39.13 | -0.10 | 46.83 | 117.25 | 88.90 | |
AD03 | -3.69 | 8.11 | 32.07 | -42.68 | -22.77 | 77.48 | 27.25 | 9.86 | 18.72 | 48.07 | -24.23 | 8.71 | 101.79 | 55.56 | |
AD04 | 2.27 | 6.55 | 17.69 | -23.27 | -2.86 | 9.72 | 7.37 | 12.80 | 18.77 | 26.26 | -13.12 | 27.22 | 39.79 | 38.56 | |
AD05 | 16.68 | 9.73 | 14.25 | -18.38 | 0.52 | 70.63 | 42.28 | 28.86 | 19.67 | 22.73 | -6.30 | 33.88 | 95.36 | 71.92 | |
AD06 | 5.25 | 12.00 | 22.01 | -27.81 | 13.69 | 80.68 | 51.25 | 13.93 | 23.27 | 30.70 | -17.51 | 42.60 | 106.02 | 82.77 | |
AD07 | 6.97 | 10.71 | 17.67 | -17.60 | 15.84 | 56.00 | 48.89 | 19.60 | 20.42 | 26.59 | -6.49 | 47.38 | 85.33 | 76.25 | |
AD08 | -8.43 | 4.63 | 19.55 | -25.75 | -3.87 | 54.70 | 31.82 | 1.45 | 13.44 | 30.00 | -17.34 | 20.93 | 75.59 | 57.09 | |
AD09 | 6.03 | 3.61 | 15.14 | -25.48 | -9.84 | 58.21 | 29.67 | 14.61 | 16.39 | 24.46 | -10.34 | 21.81 | 83.25 | 62.20 | |
AD10 | 3.25 | -9.41 | -17.66 | -22.33 | -19.06 | 12.01 | 10.84 | 11.66 | -1.81 | 4.08 | -8.36 | 5.08 | 38.17 | 30.02 | |
AD11 | 5.52 | 0.26 | 11.77 | -22.66 | -8.54 | 59.14 | 30.95 | 16.02 | 28.37 | 25.12 | -4.18 | 39.35 | 60.33 | 74.87 | |
AD12 | -7.39 | 7.09 | 11.92 | -26.65 | 1.35 | 63.14 | 40.56 | 3.43 | 16.41 | 19.97 | -18.53 | 27.80 | 86.23 | 66.84 | |
AD13 | -8.79 | -12.68 | -0.57 | -28.65 | -31.26 | 3.63 | -6.07 | -0.25 | -3.35 | 16.26 | -20.63 | -12.88 | 28.66 | 16.05 | |
AD14 | 8.31 | -0.62 | 6.64 | -25.01 | -2.24 | 66.59 | 37.60 | 20.46 | 11.63 | 22.69 | -16.72 | 35.17 | 111.92 | 82.18 | |
AD15 | 7.79 | 8.21 | 12.54 | -16.08 | 12.44 | 66.76 | 44.71 | 22.08 | 23.27 | 23.65 | -6.25 | 50.33 | 96.29 | 81.50 |
表3 甘蓝15个亲本自交系杂交F1的平均超亲优势和平均中亲优势
Table 3 The average high-parent heterosis and mid-parent heterosis of 15 parental inbred lines
亲本 代号 Parent code | 超亲优势 High-parent heterosis | 中亲优势 Mid-parent heterosis | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
株高/% PH | 株幅/% PW | 中心 柱长/% CL | 外叶数/% NOL | 外叶 质量/% WOL | 单球 质量/% HW | 全株 质量/% GW | 株高/% PH | 株幅/% PW | 中心 柱长/% CL | 外叶数/% NOL | 外叶 质量/% WOL | 单球 质量/% HW | 全株 质量/% GW | ||
AD01 | 1.65 | 4.07 | 20.59 | -24.97 | -21.80 | 25.52 | 5.01 | 11.76 | 17.74 | 44.61 | -14.90 | 13.53 | 61.85 | 44.97 | |
AD02 | 9.75 | 13.25 | 29.07 | -12.39 | 10.33 | 91.06 | 58.26 | 18.55 | 23.63 | 39.13 | -0.10 | 46.83 | 117.25 | 88.90 | |
AD03 | -3.69 | 8.11 | 32.07 | -42.68 | -22.77 | 77.48 | 27.25 | 9.86 | 18.72 | 48.07 | -24.23 | 8.71 | 101.79 | 55.56 | |
AD04 | 2.27 | 6.55 | 17.69 | -23.27 | -2.86 | 9.72 | 7.37 | 12.80 | 18.77 | 26.26 | -13.12 | 27.22 | 39.79 | 38.56 | |
AD05 | 16.68 | 9.73 | 14.25 | -18.38 | 0.52 | 70.63 | 42.28 | 28.86 | 19.67 | 22.73 | -6.30 | 33.88 | 95.36 | 71.92 | |
AD06 | 5.25 | 12.00 | 22.01 | -27.81 | 13.69 | 80.68 | 51.25 | 13.93 | 23.27 | 30.70 | -17.51 | 42.60 | 106.02 | 82.77 | |
AD07 | 6.97 | 10.71 | 17.67 | -17.60 | 15.84 | 56.00 | 48.89 | 19.60 | 20.42 | 26.59 | -6.49 | 47.38 | 85.33 | 76.25 | |
AD08 | -8.43 | 4.63 | 19.55 | -25.75 | -3.87 | 54.70 | 31.82 | 1.45 | 13.44 | 30.00 | -17.34 | 20.93 | 75.59 | 57.09 | |
AD09 | 6.03 | 3.61 | 15.14 | -25.48 | -9.84 | 58.21 | 29.67 | 14.61 | 16.39 | 24.46 | -10.34 | 21.81 | 83.25 | 62.20 | |
AD10 | 3.25 | -9.41 | -17.66 | -22.33 | -19.06 | 12.01 | 10.84 | 11.66 | -1.81 | 4.08 | -8.36 | 5.08 | 38.17 | 30.02 | |
AD11 | 5.52 | 0.26 | 11.77 | -22.66 | -8.54 | 59.14 | 30.95 | 16.02 | 28.37 | 25.12 | -4.18 | 39.35 | 60.33 | 74.87 | |
AD12 | -7.39 | 7.09 | 11.92 | -26.65 | 1.35 | 63.14 | 40.56 | 3.43 | 16.41 | 19.97 | -18.53 | 27.80 | 86.23 | 66.84 | |
AD13 | -8.79 | -12.68 | -0.57 | -28.65 | -31.26 | 3.63 | -6.07 | -0.25 | -3.35 | 16.26 | -20.63 | -12.88 | 28.66 | 16.05 | |
AD14 | 8.31 | -0.62 | 6.64 | -25.01 | -2.24 | 66.59 | 37.60 | 20.46 | 11.63 | 22.69 | -16.72 | 35.17 | 111.92 | 82.18 | |
AD15 | 7.79 | 8.21 | 12.54 | -16.08 | 12.44 | 66.76 | 44.71 | 22.08 | 23.27 | 23.65 | -6.25 | 50.33 | 96.29 | 81.50 |
类别 Category | 杂交组合 Hybrid combination | 全株质量 中亲优势/% GW-MPH | 全株质量 超亲优势/% GW-HPH | 单球质量 中亲优势/% HW-MPH | 单球质量 超亲优势/% HW-HPH | 杂交模式 Combining pattern |
---|---|---|---|---|---|---|
春甘蓝 × 春甘蓝 Spring cabbage × Spring cabbage | AD14(Ⅰ-3)× AD11(Ⅰ-1) | 99.48 | 96.41 | 111.35 | 94.77 | 亚群间杂交 Intersubgroup hybridization |
AD15(Ⅰ-3)× AD09(Ⅰ-2) | 97.15 | 94.78 | 106.56 | 103.23 | 亚群间杂交 Intersubgroup hybridization | |
AD14(Ⅰ-3)× AD12(Ⅰ-1) | 92.24 | 46.51 | 115.54 | 66.67 | 亚群间杂交 Intersubgroup hybridization | |
AD15(Ⅰ-3)× AD11(Ⅰ-1) | 91.20 | 69.96 | 82.22 | 82.22 | 亚群间杂交 Intersubgroup hybridization | |
AD15(Ⅰ-3)× AD08(Ⅱ) | 86.00 | 56.30 | 108.57 | 82.50 | 群间杂交 Intergroup hybridization | |
秋甘蓝 × 秋甘蓝 Autumn cabbage × Autumn cabbage | AD07(Ⅰ-1)× AD05(Ⅰ-2) | 109.64 | 96.92 | 135.53 | 116.82 | 亚群间杂交 Intersubgroup hybridization |
AD06(Ⅱ)× AD05(Ⅰ-2) | 97.85 | 59.54 | 150.53 | 118.52 | 群间杂交 Intergroup hybridization | |
AD06(Ⅱ)× AD02(Ⅰ-1) | 84.62 | 55.84 | 129.52 | 120.09 | 群间杂交 Intergroup hybridization | |
AD06(Ⅱ)× AD03(Ⅲ) | 83.11 | 43.73 | 153.92 | 150.24 | 群间杂交 Intergroup hybridization | |
AD07(Ⅰ-1)× AD03(Ⅲ) | 61.74 | 46.95 | 105.30 | 68.85 | 群间杂交 Intergroup hybridization |
表4 春甘蓝 × 春甘蓝、秋甘蓝 × 秋甘蓝全株质量中亲优势分别排名前5位的杂交组合
Table 4 The top 5 hybrid combinations with mid-parent heterosis in gross weight (Spring cabbage × Spring cabbage and Autumn cabbage × Autumn cabbage)
类别 Category | 杂交组合 Hybrid combination | 全株质量 中亲优势/% GW-MPH | 全株质量 超亲优势/% GW-HPH | 单球质量 中亲优势/% HW-MPH | 单球质量 超亲优势/% HW-HPH | 杂交模式 Combining pattern |
---|---|---|---|---|---|---|
春甘蓝 × 春甘蓝 Spring cabbage × Spring cabbage | AD14(Ⅰ-3)× AD11(Ⅰ-1) | 99.48 | 96.41 | 111.35 | 94.77 | 亚群间杂交 Intersubgroup hybridization |
AD15(Ⅰ-3)× AD09(Ⅰ-2) | 97.15 | 94.78 | 106.56 | 103.23 | 亚群间杂交 Intersubgroup hybridization | |
AD14(Ⅰ-3)× AD12(Ⅰ-1) | 92.24 | 46.51 | 115.54 | 66.67 | 亚群间杂交 Intersubgroup hybridization | |
AD15(Ⅰ-3)× AD11(Ⅰ-1) | 91.20 | 69.96 | 82.22 | 82.22 | 亚群间杂交 Intersubgroup hybridization | |
AD15(Ⅰ-3)× AD08(Ⅱ) | 86.00 | 56.30 | 108.57 | 82.50 | 群间杂交 Intergroup hybridization | |
秋甘蓝 × 秋甘蓝 Autumn cabbage × Autumn cabbage | AD07(Ⅰ-1)× AD05(Ⅰ-2) | 109.64 | 96.92 | 135.53 | 116.82 | 亚群间杂交 Intersubgroup hybridization |
AD06(Ⅱ)× AD05(Ⅰ-2) | 97.85 | 59.54 | 150.53 | 118.52 | 群间杂交 Intergroup hybridization | |
AD06(Ⅱ)× AD02(Ⅰ-1) | 84.62 | 55.84 | 129.52 | 120.09 | 群间杂交 Intergroup hybridization | |
AD06(Ⅱ)× AD03(Ⅲ) | 83.11 | 43.73 | 153.92 | 150.24 | 群间杂交 Intergroup hybridization | |
AD07(Ⅰ-1)× AD03(Ⅲ) | 61.74 | 46.95 | 105.30 | 68.85 | 群间杂交 Intergroup hybridization |
序号 Code | 杂交组合 Hybrid combination | 全株质量 中亲优势/% GW-MPH | 全株质量 超亲优势/% GW-HPH | 单球质量 中亲优势/% HW-MPH | 单球质量 超亲优势/% HW-HPH | 杂交模式 Combining pattern |
---|---|---|---|---|---|---|
1 | AD11 × AD02 | 161.14 | 83.98 | 167.58 | 167.58 | 春Ⅰ× 秋Ⅰ SpringⅠ× AutumnⅠ |
2 | AD15 × AD06 | 150.98 | 121.38 | 174.02 | 159.70 | 春Ⅰ× 秋Ⅱ SpringⅠ× AutumnⅡ |
3 | AD14 × AD02 | 150.84 | 78.35 | 225.56 | 167.58 | 春Ⅰ× 秋Ⅰ SpringⅠ× AutumnⅠ |
4 | AD14 × AD06 | 149.12 | 100.94 | 180.70 | 138.81 | 春Ⅰ× 秋Ⅱ SpringⅠ× AutumnⅡ |
5 | AD12 × AD07 | 145.89 | 123.25 | 172.54 | 145.79 | 春Ⅰ× 秋Ⅰ SpringⅠ× AutumnⅠ |
6 | AD09 × AD02 | 139.10 | 83.98 | 194.32 | 172.15 | 春Ⅰ× 秋Ⅰ SpringⅠ× AutumnⅠ |
7 | AD11 × AD05 | 135.03 | 60.31 | 121.48 | 121.48 | 春Ⅰ× 秋Ⅰ SpringⅠ× AutumnⅠ |
8 | AD12 × AD03 | 120.65 | 83.87 | 199.35 | 169.77 | 春Ⅰ× 秋 Ⅲ SpringⅠ× Autumn Ⅲ |
9 | AD08 × AD02 | 119.78 | 94.81 | 171.90 | 160.00 | 春Ⅱ× 秋Ⅰ SpringⅡ× AutumnⅠ |
10 | AD10 × AD02 | 119.56 | 113.50 | 150.49 | 93.98 | 春Ⅰ× 秋Ⅰ SpringⅠ× AutumnⅠ |
表5 全株质量中亲优势前10位的杂交组合的组配方式
Table 5 The top 10 hybrid combinations with mid-parent heterosis in gross weight
序号 Code | 杂交组合 Hybrid combination | 全株质量 中亲优势/% GW-MPH | 全株质量 超亲优势/% GW-HPH | 单球质量 中亲优势/% HW-MPH | 单球质量 超亲优势/% HW-HPH | 杂交模式 Combining pattern |
---|---|---|---|---|---|---|
1 | AD11 × AD02 | 161.14 | 83.98 | 167.58 | 167.58 | 春Ⅰ× 秋Ⅰ SpringⅠ× AutumnⅠ |
2 | AD15 × AD06 | 150.98 | 121.38 | 174.02 | 159.70 | 春Ⅰ× 秋Ⅱ SpringⅠ× AutumnⅡ |
3 | AD14 × AD02 | 150.84 | 78.35 | 225.56 | 167.58 | 春Ⅰ× 秋Ⅰ SpringⅠ× AutumnⅠ |
4 | AD14 × AD06 | 149.12 | 100.94 | 180.70 | 138.81 | 春Ⅰ× 秋Ⅱ SpringⅠ× AutumnⅡ |
5 | AD12 × AD07 | 145.89 | 123.25 | 172.54 | 145.79 | 春Ⅰ× 秋Ⅰ SpringⅠ× AutumnⅠ |
6 | AD09 × AD02 | 139.10 | 83.98 | 194.32 | 172.15 | 春Ⅰ× 秋Ⅰ SpringⅠ× AutumnⅠ |
7 | AD11 × AD05 | 135.03 | 60.31 | 121.48 | 121.48 | 春Ⅰ× 秋Ⅰ SpringⅠ× AutumnⅠ |
8 | AD12 × AD03 | 120.65 | 83.87 | 199.35 | 169.77 | 春Ⅰ× 秋 Ⅲ SpringⅠ× Autumn Ⅲ |
9 | AD08 × AD02 | 119.78 | 94.81 | 171.90 | 160.00 | 春Ⅱ× 秋Ⅰ SpringⅡ× AutumnⅠ |
10 | AD10 × AD02 | 119.56 | 113.50 | 150.49 | 93.98 | 春Ⅰ× 秋Ⅰ SpringⅠ× AutumnⅠ |
遗传距离Genetic distance | 株高PH | 株幅PW | 中心柱长CL | 外叶数NOL | 外叶质量WOL | 单球质量HW | 全株质量GW | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
中亲 MPH | 超亲 HPH | 中亲 MPH | 超亲 HPH | 中亲 MPH | 超亲 HPH | 中亲 MPH | 超亲 HPH | 中亲 MPH | 超亲 HPH | 中亲 MPH | 超亲 HPH | 中亲 MPH | 超亲 HPH | |
分子遗传距离 | 0.048 | 0.038 | 0.278** | 0.246* | 0.142 | 0.121 | 0.079 | -0.047 | 0.285** | 0.152 | 0.15 | 0.13 | 0.230* | 0.165 |
MGD |
表6 甘蓝SSR分子标记遗传距离与杂种优势的相关性
Table 6 Correlation between genetic distance and heterosis
遗传距离Genetic distance | 株高PH | 株幅PW | 中心柱长CL | 外叶数NOL | 外叶质量WOL | 单球质量HW | 全株质量GW | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
中亲 MPH | 超亲 HPH | 中亲 MPH | 超亲 HPH | 中亲 MPH | 超亲 HPH | 中亲 MPH | 超亲 HPH | 中亲 MPH | 超亲 HPH | 中亲 MPH | 超亲 HPH | 中亲 MPH | 超亲 HPH | |
分子遗传距离 | 0.048 | 0.038 | 0.278** | 0.246* | 0.142 | 0.121 | 0.079 | -0.047 | 0.285** | 0.152 | 0.15 | 0.13 | 0.230* | 0.165 |
MGD |
[1] |
Amelework B, Shimelis H, Laing M. 2017. Genetic variation in sorghum as revealed by phenotypic and SSR markers:implications for combining ability and heterosis for grain yield. Plant Genetic Resources, 15(4):335-347.
doi: 10.1017/S1479262115000696 URL |
[2] | Chen Denghui, Li Hailong, Tian Duocheng, Sun Chao, Xie Jianming, Kang Jungen. 2018. Construction of high genetic linkage map and QTL mapping analysis on bolting in cabbage. Journal of Gansu Agricultural University, 53(5):21-28. (in Chinese) |
陈登辉, 李海龙, 田多成, 孙超, 颉建明, 康俊根. 2018. 结球甘蓝高密度遗传图谱构建及抽薹时间相关QTL定位. 甘肃农业大学学报, 53(5):21-28. | |
[3] | Chen Sen, Zhong Xionghui, Li Hailong, Chen Denghui, Wang Fei, Kang Jungen, Chen Xiubin. 2021. Combining ability and heterosis analysis for yield traits in Chinese cabbage(Brassica oleracea var. capitataL.) . Molecular Plant Breeding, 19(4):1267-1276. (in Chinese) |
陈森, 钟雄辉, 李海龙, 陈登辉, 王飞, 康俊根, 陈修斌. 2021. 结球甘蓝产量性状的配合力与杂种优势分析. 分子植物育种, 19(4):1267-1276. | |
[4] | He Zhonghu. 1992. The application of distance analysis method in the selection of wheat parents. Acta Agronomica Sinica, 18(5):359-365. (in Chinese) |
何中虎. 1992. 距离分析方法在小麦亲本选配中的应用研究. 作物学报, 18(5):359-365. | |
[5] | Jiang Kaixuan, Zhao Lejie, Li Jiangli, Wang Chao. 2020. Main agronomic traits of spring cabbage breeding materials:principal component analysis and cluster analysis. Chinese Agricultural Science Bulletin, 36(4):50-55. (in Chinese) |
姜凯旋, 赵乐杰, 李江丽, 王超. 2020. 春甘蓝育种材料主要农艺性状主成分分析与聚类分析. 中国农学通报, 36(4):50-55. | |
[6] | Li Dewen, Wei Zhongfen, Wang Jun, Wang Rui, Li Jiana, Zhang Taiping. 2014. Genetic distance and heterosis of RGMS parents in Brassica napusL . Southwest China Journal of Agricultural Sciences, 27(2):523-529. (in Chinese) |
李德文, 魏忠芬, 王军, 王瑞, 李加纳, 张太平. 2014. 甘蓝型油菜隐性核不育亲本的遗传距离与杂种优势分析. 西南农业学报, 27(2):523-529. | |
[7] | Li Mingshun, Zhang Shihuang, Pan Guangtang, Li Xinhai, Xia Xianchun, Tian Qingzhen, Bai Li. 2005. Combining ability and heterotic grouping of CIMMYT subtropical quality protein maize lines. Scientia Agricultura Sinica, 38(4):671-677. (in Chinese) |
李明顺, 张世煌, 潘光堂, 李新海, 夏先春, 田清震, 白丽. 2005. CIMMYT亚热带优质蛋白玉米自交系的配合力和杂种优势群分析. 中国农业科学, 38(4):671-677. | |
[8] |
Li X, Yu H, Li Z, Liu X, Fang Z, Liu Y, Yang L, Zhuang M, Lv H, Zhang Y. 2018. Heterotic group classification of 63 inbred lines and hybrid purity identification by Using SSR markers in winter cabbage(Brassica Oleracea L. var. capitata). Horticultural Plant Journal, 4(4):158-164.
doi: 10.1016/j.hpj.2018.03.010 URL |
[9] | Li Zhiyuan. 2018. DNA fingerprinting and heterotic group classification by using KASP markers in cabbage(Brassica oleracea L.var. capitata)[M. D. Dissertation]. Beijing:Chinese Academy of Agricultural Sinica. (in Chinese) |
李志远. 2018. KASP标记用于甘蓝指纹图谱构建及杂种优势群划分[硕士论文]. 北京:中国农业科学院. | |
[10] | Lin Qiang, Li Shengqiang, Zhang Ruiyue, Zhou Guohua, Zou Jie, Li Shiling, Luo Xiaoping. 2017. Comparative study on cluster analysis of 24 indica rice varieties(lines)by SSR Markers. Guangdong Agricultural Sciences, 44(1):1-7. (in Chinese) |
林强, 李生强, 张瑞越, 周国华, 邹杰, 黎世龄, 罗筱平. 2017. 利用SSR标记对籼稻品种(系)聚类分析的比较研究. 广东农业科学, 44(1):1-7. | |
[11] | Nie Yongxin, Zhang Li, Pan Guangtang, Rong Tingzhao. 2004. Application of SSR Markers to heterotic grouping of maize inbred lines. Journal of Maize Sciences, 12(3):26-29. (in Chinese) |
聂永心, 张丽, 潘光堂, 荣廷昭. 2004. SSR分子标记在玉米杂种优势群划分中的应用. 玉米科学, 12(3):26-29. | |
[12] |
Ouni R, Zborowska A, Sehic J, Choulak S, Hormaza J I, Garkava-Gustavsson L, Mars M. 2020. Genetic Diversity and Structure of Tunisian local pear germplasm as revealed by SSR markers. Horticultural Plant Journal, 6(2):61-70.
doi: 10.1016/j.hpj.2020.03.003 URL |
[13] | Qin Zhiwei, Xu Ruixian. 1987. Study on heterosis of quantitative traits in Cabbage. Journal of worthiest Agricultural College, (4):328-335. (in Chinese) |
秦智伟, 许蕊仙. 1987. 甘蓝数量性状杂种优势研究. 东北农学院学报,(4):328-335. | |
[14] | Qu Yujie, Sun Junling, Geng Xiaoli, Wang Xiao, Zareen Sarfraz, Jia Yinhua, Pan Zhaoe, He Shoupu, Gong Wenfang, Wang Liru, Pang Baoyin, Du Xiongming. 2019. Correlation between genetic distance of parents and heterosis in upland cotton. Scientia Agricultura Sinica, 52(9):1488-1500. (in Chinese) |
曲玉杰, 孙君灵, 耿晓丽, 王骁, Sarfraz Zareen, 贾银华, 潘兆娥, 何守朴, 龚文芳, 王立如, 庞保印, 杜雄明. 2019. 陆地棉亲本间遗传距离与杂种优势的相关性研究. 中国农业科学, 52(9):1488-1500. | |
[15] | Saghaimaro of M A, Soliman K M, Jorgensen R A, Allard R W. 1984. Ribosomal DNA spacer-length polymorphisms in barley:mendelianinheritance,chromosomal location,and population dynamics. Proceedings of the national academy of sciences of the United States of America, 81(24):8014-8018. |
[16] | Sang Shifei, Wang Hui, Mei Desheng, Liu Jia, Fu Li, Wang Jun, Wang Wenxiang, Hu Qiong. 2015. Correlation analysis between heterosis and genetic distance evaluated by genome-wide SNP Chip in Brassica napus . Scientia Agricultura Sinica, 48(12):2469-2478. (in Chinese) |
桑世飞, 王会, 梅德圣, 刘佳, 付丽, 王军, 汪文祥, 胡琼. 2015. 利用全基因组SNP芯片分析油菜遗传距离与杂种优势的关系. 中国农业科学, 48(12):2469-2478. | |
[17] |
Saurabh S, Dey S S, Reeta B, Raj K, Kanika S, Behera T K. 2019. Heterosis and combining ability in cytoplasmic male sterile and doubled haploid based Brassica oleracea progenies and prediction of heterosis using microsatellites. PLoS ONE, 14(8):e0210772.
doi: 10.1371/journal.pone.0210772 URL |
[18] | Shen Jinxiong, Fu Tingdong, Yang Guangsheng. 2004. Relationship between hybrid performance and genetic diversity based on SSR and ISSR in Brassica napusL . Scientia Agricultura Sinica, 37(4):477-483. (in Chinese) |
沈金雄, 傅廷栋, 杨光圣. 2004. 甘蓝型油菜SSR、ISSR标记的遗传多样性及其与杂种表现的关系. 中国农业科学, 37(4):477-483. | |
[19] | Shen Jinxiong, Lu Guangyuan, Fu Tingdong, Yang Guangsheng. 2002. Relationships between genetic diversity and hybrid performance in oilseed Rape (Brassica napus) . Acta Agronomica Sinica, 28(5):622-627. (in Chinese) |
沈金雄, 陆光远, 傅廷栋, 杨光圣. 2002. 甘蓝型油菜遗传多样性及其与杂种表现的关系. 作物学报, 28(5):622-627. | |
[20] | Shu Aiping, Liu Zengbing, Yu Liqin, Li Maomao, Chen Dazhou. 2013. Research progress on genetic diversity in rice based on SSR marker analysis. Journal of Plant Genetic Resources, 14(5):778-783. (in Chinese) |
束爱萍, 刘增兵, 余丽琴, 黎毛毛, 陈大洲. 2013. 水稻SSR标记的遗传多样性研究进展. 植物遗传资源学报, 14(5):778-783. | |
[21] |
Smith J S C, Chin E C L, Shu H, Smith O S, Wall S J, Senior M L, Mitchell S E, Kresovich S, Ziegle J. 1997. An evaluation of the utility of SSR loci as molecular markers in maize(Zea mays L.)comparisons with data from RFLPS and pedigree. Theoretical and Applied Genetics, 95(1-2):163-173.
doi: 10.1007/s001220050544 URL |
[22] |
Suwarno W B, Pixley K V, Palacios-Rojas N, Kaeppler S M, Babu R. 2014. Formation of heterotic groups and understanding genetic effects in a provitamin a biofortified maize breeding program. Crop Science, 54(1):14-24.
doi: 10.2135/cropsci2013.02.0096 URL |
[23] | Tian Hongyun. 2016. Heterosis and combining ability analysis and heterotic grouping among semi-winter rapeseed accessions(Brassica napusL.)[Ph. D. Dissertation]. Yangling:Northwest A & F University. (in Chinese) |
田洪云. 2016. 半冬性甘蓝型油菜杂种优势、配合力及杂种优势群分析[博士论文]. 杨凌:西北农林科技大学. | |
[24] |
Tian H Y, Channa S A, Hu S W. 2017. Relationships between genetic distance,combining abilityand heterosis in rapeseed(Brassica napus L.). Euphytica, 213(1):1.
doi: 10.1007/s10681-016-1788-x URL |
[25] | Wang Kun, Zhang Baoxi, Zhang Haizheng, Cao Yacong, Yu Hailong, Wang Lihao. 2020. Correlation analysis between heterosis of yield traits and genetic distance evaluated by genome-wide SNP markers in pepper. China Vegetables,(4):30-35. (in Chinese) |
王昆, 张宝玺, 张正海, 曹亚从, 于海龙, 王立浩. 2020. 基于全基因组SNP分析辣椒亲本间遗传距离与产量性状杂种优势的关系. 中国蔬菜,(4):30-35. | |
[26] | Wang Liming, Yan Hongdong, Jiao Shaojie, Jiang Yanxi, Su Defeng, Sun Guangquan. 2020. Heterosis Prediction of sweet sorghum based on combining ability and genetic distance. Scientia Agricultura Sinica, 53(14):2786-2794. (in Chinese) |
王黎明, 严洪冬, 焦少杰, 姜艳喜, 苏德峰, 孙广全. 2020. 基于配合力和遗传距离的甜高粱杂种优势预测. 中国农业科学, 53(14):2786-2794. | |
[27] | Wang Qingbiao, Zhang Yangyong, Zhuang Mu, Yang Limei, Liu Yumei, Lü Honghao, Fang Zhiyuan. 2014. EST-SSR fingerprinting of fifty cabbage representative varieties from China. Scientia Agricultura Sinica, 47(1):111-121. (in Chinese) |
王庆彪, 张扬勇, 庄木, 杨丽梅, 刘玉梅, 吕红豪, 方智远. 2014. 中国50个甘蓝代表品种EST-SSR指纹图谱的构建. 中国农业科学, 47(1):111-121. | |
[28] | Wang Shengjun, Lu Zuomei, Wan Jianmin. 2006. Genetic diversity of parental lines in indica hybrid rice based on phenotypic characters and SSR cluster analysis. Chinese Journal of Rice Science, 20(5):475-480. (in Chinese) |
王胜军, 陆作楣, 万建民. 2006. 采用表型和分子标记聚类研究杂交籼稻亲本的遗传多样性. 中国水稻科学, 20(5):475-480. | |
[29] | Wu Lidong, Liu Liansheng, Xu Xiaoming, Zhong Jinxian, Liu Yating, Luo Ying. 2016. The relationship between genetic distance and heterosis in cucumber. Chinese Agricultural Science Bulletin, 32(28):64-69. (in Chinese) |
吴立东, 刘连生, 徐小明, 钟金仙, 刘亚婷, 罗英. 2016. 黄瓜数量性状遗传距离与杂种优势关系的研究. 中国农学通报, 32(28):64-69. | |
[30] |
Xie F, He Z, Esguerra M Q, Qiu F, Ramanathan V. 2014. Determination of heterotic groups for tropical Indica hybrid rice germplasm. Theoretical and Applied Genetics, 127(2):407-417.
doi: 10.1007/s00122-013-2227-1 URL |
[31] | Xu Ruixian, Xu Min. 1961. Discussion on breeding methods of cabbage. Journal of Northeast Agricultural College, (4):91-95. (in Chinese) |
许蕊仙, 许敏. 1961. 甘蓝育种方法的探讨. 东北农学院学报,(4):91-95. | |
[32] |
Xu Shaobin, Tao Yufen, Yang Zhaoqing, Chu Jiadang. 2002. A simple and rapid methods used for silver staining and gel preservation. Hereditas(Beijing), 24(3):335-336. (in Chinese)
pmid: 16126695 |
许绍斌, 陶玉芬, 杨昭庆, 褚嘉档. 2002. 简单快速的DNA银染和胶保存方法. 遗传, 24(3):335-336.
pmid: 16126695 |
|
[33] | Yao Yanmei, Nie Ping, Du Dezhi. 2012. Analysis of different ecotypes ofB.napusin Qinghai province by SRAP Markers and study on the relationship between genetic distance and F1 performance . Acta Agriculturae Boreali-occidentalis Sinica, 21(1):80-87. (in Chinese) |
姚艳梅, 聂平, 杜德志. 2012. 不同生态类型甘蓝型油菜的SRAP分析及其遗传距离与杂种优势的关系. 西北农业学报, 21(1):80-87. | |
[34] | Zhao Lejie, Wang Chao, Jiang Kaixuan, Li Jiangli. 2019. Principal component and cluster analysis of main agronomic traits of autumn Cabbage germplasm resources. Northern Horticulture,(9):13-19. (in Chinese) |
赵乐杰, 王超, 姜凯旋, 李江丽. 2019. 秋甘蓝种质资源农艺性状主成分和聚类分析. 北方园艺,(9):13-19. | |
[35] | Zhao Lejie. 2019. Idetification and prediction of heterosis on autumn cabbage breading meterials[M. D. Dissertation]. Harbin:Northeast Agricultural University. (in Chinese) |
赵乐杰. 2019. 秋甘蓝育种材料杂种优势的鉴定与预测[硕士论文]. 哈尔滨:东北农业大学. | |
[36] | Zhao Qingyong, Zhu Zhen, Zhang Yadong, Zhao Ling, Chen Tao, Zhang Qiaofeng, Wang Cailin. 2009. Analysis on correlation between heterosis and genetic distance based on Simple Sequence Repeat Markers in Japonica rice. Chinese Journal of Rice Science, 23(2):141-147. (in Chinese) |
赵庆勇, 朱镇, 张亚东, 赵凌, 陈涛, 张巧凤, 王才林. 2009. SSR标记遗传距离与粳稻杂种优势的相关性分析. 中国水稻科学, 23(2):141-147. | |
[37] | Zhao Yingzhong, Liu Hongyan. 2005. Genetic distance and heterosis between male sterile lines and core collection in sesame. Chinese Journal of Oil Crop Sciences, 27(1):36-40. (in Chinese) |
赵应忠, 刘红艳. 2005. 芝麻雄性不育系与核心种质间的遗传距离和杂种优势. 中国油料作物学报, 27(1):36-40. | |
[38] | Zhu Zuofeng, Sun Chuanqing, Li Zichao, Wang Xiangkun. 2001. Study on the classification of rice varieties with SSR molecular markers. Journal of Agricultural Biotechnology, 9(1):58-61. (in Chinese) |
朱作峰, 孙传清, 李自超, 王象坤. 2001. 用SSR标记对水稻品种的分类研究. 农业生物技术学报, 9(1):58-61. | |
[39] | Zou Xiaoyun, Song Laiqiang, Chen Lunlin, Li Shuyu, Zou Xiaofen, Zhang Jianmo. 2011. Classification of heterosis groups for rapeseed(Brassica napus)by SRAP markers . Acta Agriculturae Jiangxi, 23(4):1-4. (in Chinese) |
邹小云, 宋来强, 陈伦林, 李书宇, 邹晓芬, 张建模. 2011. 利用SRAP标记划分甘蓝型油菜杂种优势群. 江西农业学报, 23(4):1-4. |
[1] | 韩 睿, 钟雄辉, 陈登辉, 崔 建, 乐祥庆, 颉建明, 康俊根, . 黑腐病菌效应因子XopR的甘蓝靶标基因BobHLH34的克隆及功能分析[J]. 园艺学报, 2023, 50(2): 319-330. |
[2] | 崔建, 钟雄辉, 刘泽慈, 陈登辉, 李海龙, 韩睿, 乐祥庆, 康俊根, 王超. 结球甘蓝染色体片段替换系构建[J]. 园艺学报, 2023, 50(1): 65-78. |
[3] | 吕红豪, 杨丽梅, 方智远, 张扬勇, 庄 木, 刘玉梅, 王 勇, 季家磊, 李占省, 韩风庆. 春甘蓝新品种‘中甘27’和‘中甘28’[J]. 园艺学报, 2022, 49(S1): 63-64. |
[4] | 周 娜, 陶伟林, 陆景伟, 郑 阳, 胡 燕, 潘晓雪. 甘蓝新品种‘渝园春印’[J]. 园艺学报, 2022, 49(S1): 65-66. |
[5] | 杨秀伟, 苏江硕, 张飞, 管志勇, 房伟民, 陈发棣. 切花小菊花序开放角度的量化评价与变异分析[J]. 园艺学报, 2022, 49(8): 1723-1734. |
[6] | 李强, 蔡玉梅, 苏彦宾, 王英, 顾丽嫱, 赵玉倩. 中早熟甘蓝新品种‘劲绿60’[J]. 园艺学报, 2022, 49(8): 1835-1836. |
[7] | 陈道宗, 刘镒, 沈文杰, 朱博, 谭晨. 白菜、甘蓝和甘蓝型油菜PAP1/2同源基因的鉴定及分析[J]. 园艺学报, 2022, 49(6): 1301-1312. |
[8] | 贡长怡, 刘姣姣, 邓强, 张立新. 茶树炭疽病病原菌鉴定及其致病性分析[J]. 园艺学报, 2022, 49(5): 1092-1101. |
[9] | 李超, 杨英, 陈伟, 郑贺云, 廖新福, 孙玉萍. 西州密系列甜瓜SSR指纹图谱构建及聚类分析[J]. 园艺学报, 2022, 49(3): 622-632. |
[10] | 杨丽梅, 方智远. 中国甘蓝遗传育种研究60年[J]. 园艺学报, 2022, 49(10): 2075-2098. |
[11] | 吕红豪, 杨丽梅, 方智远, 张扬勇, 庄木, 刘玉梅, 王勇, 季家磊, 李占省, 韩风庆. 春甘蓝新品种'中甘26'[J]. 园艺学报, 2022, 49(10): 2285-2286. |
[12] | 郭鑫, 成仿云, 钟原, 成信云, 陶熙文. 紫斑牡丹花色表型数量分类研究[J]. 园艺学报, 2022, 49(1): 86-99. |
[13] | 李艳红, 聂俊, 郑锦荣, 谭德龙, 张长远, 史亮亮, 谢玉明. 华南地区樱桃番茄表型性状遗传多样性分析及综合评价[J]. 园艺学报, 2021, 48(9): 1717-1730. |
[14] | 吕红豪, 杨丽梅, 方智远, 张扬勇, 庄木, 刘玉梅, 孙培田, 王勇, 季家磊, 李占省, 韩风庆. 抗枯萎病早熟优质春甘蓝新品种‘YR中甘21’[J]. 园艺学报, 2021, 48(9): 1839-1840. |
[15] | 朱世杨, 张小玲, 刘庆, 钟伟杰, 罗天宽, 唐征, 徐谦, 周元昌. 花椰菜不同胞质来源雄性不育的细胞质效应分析[J]. 园艺学报, 2021, 48(6): 1107-1122. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司