[1] |
Aghdam M S, Ebrahimi A, Sheikh-Assadi M. 2021. Phytosulfokine α(PSKα)delays senescence and reinforces SUMO1/SUMO E3 ligase SIZ1 signaling pathway in cut rose flowers(Rosa hybrida cv. Angelina). Sci Rep, 11 (1):23227.
|
[2] |
An J P, Zhang C L, Li H L, Wang G L, You C X. 2022. Apple SINA E 3 ligase MdSINA3 negatively mediates JA-triggered leaf senescence by ubiquitinating and degrading the MdBBX37 protein. Plant J, 111 (2):457-472.
|
[3] |
Ardley H C, Robinson P A. 2005. E 3 ubiquitin ligases. Essays Biochem, 41:15-30.
pmid: 16250895
|
[4] |
Berndsen C E, Wolberger C. 2014. New insights into ubiquitin E 3 ligase mechanism. Nat Struct Mol Biol, 21 (4):301-307.
|
[5] |
Callis J, Vierstra R D. 2000. Protein degradation in signaling. Curr Opin Plant Biol, 3:381-386.
pmid: 11019805
|
[6] |
Dreher K, Callis J. 2007. Ubiquitin,hormones and biotic stress in plants. Ann Bot, 99 (5):787-822.
|
[7] |
Hellmann H, Estelle M. 2002. Plant development:regulation by protein degradation. Science, 297:793-797.
doi: 10.1126/science.1072831
pmid: 12161644
|
[8] |
James M, Poret M, Masclaux-Daubresse C, Marmagne A, Coquet L, Jouenne T, Chan P, Trouverie J, Etienne P. 2018. SAG12,a major cysteine protease involved in nitrogen allocation during senescence for seed production in Arabidopsis thaliana. Plant Cell Physiol, 59 (10):2052-2063.
|
[9] |
Kim J, Woo H R, Nam H G. 2016. Toward systems understanding of leaf senescence:an integrated multi-omics perspective on leaf senescence research. Mol Plant, 9 (6):813-825.
|
[10] |
Kim J, Kim J H, Lyu J I, Woo H R, Lim P O. 2018. New insights into the regulation of leaf senescence in Arabidopsis. J Exp Bot, 69 (4):787-799.
|
[11] |
Liu Jing, Chen Xue-yang, Zeng yang, Yang Yu-ying. 2022. Effect of E 3 ubiquitin ligase RNF185 on replication of avian leukemia virus subgroup A in vitro. China Animal Husbandry & Veterinary Medicine, 49 (11):4364-4371. (in Chinese)
|
|
刘晶, 陈雪阳, 曾扬, 杨玉莹. 2022. E3泛素连接酶RNF185对A亚群禽白血病病毒体外复制的影响. 中国畜牧兽医, 49 (11):4364-4371.
doi: 10.16431/j.cnki.1671-7236.2022.11.027
|
[12] |
Ma N, Cai L, Lu W J, Tan H, Gao J P. 2005. Exogenous ethylene influences flower opening of cut roses(Rosa hybrida)by regulating the genes encoding ethylene biosynthesis enzymes. Sci China C Life Sci, 48 (5):434-444.
|
[13] |
Manavella P A, Arce A L, Dezar C A, Bitton F, Renou J P, Crespi M, Chan R L. 2006. Cross-talk between ethylene and drought signalling pathways is mediated by the sunflower Hahb-4 transcription factor. Plant J, 48:125-137.
doi: 10.1111/j.1365-313X.2006.02865.x
pmid: 16972869
|
[14] |
Qiu D P, Wang Q, Wang Z D, Chen J J, Yan D L, Zhou Y, Li A P, Zhang R W, Wang S Y, Zhou J W. 2018. RNF185 modulates JWA ubiquitination and promotes gastric cancer metastasis. Biochim Biophys Acta Mol Basis Dis, 1864 (5 Pt A):1552-1561.
|
[15] |
Serino G, Xie Q. 2013. The ever expanding role of ubiquitin and SUMO in plant biology. J Integr Plant Biol, 55 (1):5-6.
doi: 10.1111/jipb.12020
|
[16] |
Shi C L, Stenvik G E, Vie A K, Bones A M, Pautot V, Proveniers M, Aalen R B, Butenko M A. 2011. Arabidopsis class I KNOTTED-like homeobox proteins act downstream in the IDA-HAE/HSL2 floral abscission signaling pathway. Plant Cell, 23:2553-2567.
|
[17] |
Shaid S, Brandts C H, Serve H, Dikic I. 2013. Ubiquitination and selective autophagy. Cell Death Differ, 20 (1):21-30.
doi: 10.1038/cdd.2012.72
pmid: 22722335
|
[18] |
Stone S L. 2019. Role of the ubiquitin proteasome system in plant response to abiotic stress. Int Rev Cell Mol Biol, 343:65-110.
doi: S1937-6448(18)30062-5
pmid: 30712675
|
[19] |
van Doorn W G. 2001. Categories of petal senescence and abscission:a re-evaluation. Annals of Botany,(4):447-456.
|
[20] |
van Doorn W G, Woltering E J. 2008. Physiology and molecular biology of petal senescence. J Exp Bot, 59 (3):453-480.
doi: 10.1093/jxb/erm356
pmid: 18310084
|
[21] |
Wang Q, Huang L Y, Hong Z, Lv Z S, Mao Z M, Tang Y J, Kong X F, Li S L, Cui Y, Liu H, Zhang L L, Zhang X J, Jiang L D, Wang C, Zhou Q. 2017. The E 3 ubiquitin ligase RNF185 facilitates the cGAS-mediated innate immune response. PLoS Pathog, 13 (3):1006-1264.
|
[22] |
Wang T, Sun Z, Wang S Q, Feng S, Wang R M, Zhu C L, Zhong L L, Cheng Y J, Bao M Z, Zhang F. 2023. DcWRKY 33 promotes petal senescence in carnation(Dianthus caryophyllus L.)by activating genes involved in the biosynthesis of ethylene and abscisic acid and accumulation of reactive oxygen species. Plant J, 113 (4):698-715.
|
[23] |
Wu L, Ma N, Jia Y, Zhang Y, Feng M, Jiang C Z, Ma C, Gao J P. 2017. An ethylene-induced regulatory module delays flower senescence by regulating cytokinin content. Plant Physiol, 173 (1):853-862.
doi: 10.1104/pp.16.01064
pmid: 27879388
|
[24] |
Xu X J, Jiang C Z, Donnelly L, Reid M S. 2007. Functional analysis of a RING domain ankyrin repeat protein that is highly expressed during flower senescence. J Exp Bot, 58 (13):3623-3630.
pmid: 18057040
|
[25] |
Yang L, Liu Q H, Liu Z B, Yang H, Wang J M, Li X F, Yang Y. 2016. Arabidopsis C3HC4-RING finger E 3 ubiquitin ligase AtAIRP4 positively regulates stress-responsive abscisic acid signaling. J Integr Plant Biol, 58 (1):67-80.
|
[26] |
Zhang Y, Wu Z C, Feng M, Chen J W, Qin M Z, Wang W R, Bao Y, Xu Q, Ye Y, Ma C, Jiang C Z, Gan S S, Zhou H G, Cai Y M, Hong B, Gao J P, Ma N. 2021. The circadian-controlled PIF8-BBX28 module regulates petal senescence in rose flowers by governing mitochondrial ROS homeostasis at night. The Plant Cell, 33 (8):2716-2735.
doi: 10.1093/plcell/koab152
pmid: 34043798
|
[27] |
Zhou Ying, Hou Shu-xun, Zhong Hong-bin. 2011. Cloning and effect of RNF185 on osteo-differentiation of MC3T3-E1 cells. Mil Med Sci, 35 (6):447-450. (in Chinese)
|
|
周颖, 侯树勋, 衷鸿宾. 2011. RNF185的克隆及过表达对MC3T3-E1细胞成骨分化的影响. 军事医学, 35 (6):447-450.
|