Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (12): 2703-2721.doi: 10.16420/j.issn.0513-353x.2021-1064
• Reviews • Previous Articles Next Articles
XU Tong, SHAO Lingmei, WANG Xiaobin, ZHANG Runlong, ZHANG Kaijing, XIA Yiping, ZHANG Jiaping(), LI Danqing(
)
Received:
2022-03-12
Revised:
2022-08-19
Online:
2022-12-25
Published:
2023-01-02
Contact:
ZHANG Jiaping,LI Danqing
E-mail:zhangjiaping0604@aliyun.com;danqingli@zju.edu.cn
CLC Number:
XU Tong, SHAO Lingmei, WANG Xiaobin, ZHANG Runlong, ZHANG Kaijing, XIA Yiping, ZHANG Jiaping, LI Danqing. Research Progress on Winter Dormancy of Perennial Monocots[J]. Acta Horticulturae Sinica, 2022, 49(12): 2703-2721.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-1064
基因名称 Gene name | 基因全称 Full name of gene | 基本功能 Gene function | 研究物种 Research species | 验证方法 Verification method | 参考文献 Reference |
---|---|---|---|---|---|
NCED | 9-cis-epoxycarotenoid dioxygenases | ABA生物合成 ABA biosynthesis | 唐菖蒲 Gladiolus hybridus | 基因沉默 Gene silencing | Wu et al., |
CYP707A1 | Cytochrome P450,Family 707,Subfamily A 1 | 参与ABA分解代谢途径 Involved in ABA catabolic pathway | 滇黄精 Polygonatum kingianum | 转录组分析 Transcriptome analysis | Wang et al., |
ABI5 | Abscisic acid-insensitive 5 | ABA信号调节因子 ABA signaling regulator | 唐菖蒲 Gladiolus hybridus | 基因沉默 Gene silencing | Wu et al., |
ABF | ABA-responsive element binding factors | ABA响应因子 ABA response factor | 柳枝稷 Panicum virgatum | 转录组分析 Transcriptome analysis | Palmer et al., |
PP2C | Protein phosphatase 2C | ABA信号转导因子 Regulators of ABA signal transduction | 柳枝稷 Panicum virgatum | 转录组分析 Transcriptome analysis | Palmer et al., |
PP2C1 | Protein phosphatase 2C 1 | ABA信号转导因子 Regulators of ABA signal transduction | 唐菖蒲 Gladiolus hybridus | 基因沉默 Gene silencing | Wu et al., |
PYL | Pyrabactin-like | ABA受体 ABA receptors | 柳枝稷 Panicum virgatum | 转录组分析 Transcriptome analysis | Palmer et al., |
NAC83 | NAC domain containing protein 83 | 促进ABA信号转导和合成 Positively regulates ABA signaling and biosynthesis | 唐菖蒲 Gladiolus hybridus | 基因沉默 Gene silencing | Wu et al., |
SnRK | Snf1-related protein kinase | ABA信号转导因子 Regulators of ABA signal transduction | 柳枝稷 Panicum virgatum | 转录组分析 Transcriptome analysis | Palmer et al., |
Table 1 Genes involved in ABA biosynthesis and signal transduction for the regulation of winter dormancy in perennial monocots
基因名称 Gene name | 基因全称 Full name of gene | 基本功能 Gene function | 研究物种 Research species | 验证方法 Verification method | 参考文献 Reference |
---|---|---|---|---|---|
NCED | 9-cis-epoxycarotenoid dioxygenases | ABA生物合成 ABA biosynthesis | 唐菖蒲 Gladiolus hybridus | 基因沉默 Gene silencing | Wu et al., |
CYP707A1 | Cytochrome P450,Family 707,Subfamily A 1 | 参与ABA分解代谢途径 Involved in ABA catabolic pathway | 滇黄精 Polygonatum kingianum | 转录组分析 Transcriptome analysis | Wang et al., |
ABI5 | Abscisic acid-insensitive 5 | ABA信号调节因子 ABA signaling regulator | 唐菖蒲 Gladiolus hybridus | 基因沉默 Gene silencing | Wu et al., |
ABF | ABA-responsive element binding factors | ABA响应因子 ABA response factor | 柳枝稷 Panicum virgatum | 转录组分析 Transcriptome analysis | Palmer et al., |
PP2C | Protein phosphatase 2C | ABA信号转导因子 Regulators of ABA signal transduction | 柳枝稷 Panicum virgatum | 转录组分析 Transcriptome analysis | Palmer et al., |
PP2C1 | Protein phosphatase 2C 1 | ABA信号转导因子 Regulators of ABA signal transduction | 唐菖蒲 Gladiolus hybridus | 基因沉默 Gene silencing | Wu et al., |
PYL | Pyrabactin-like | ABA受体 ABA receptors | 柳枝稷 Panicum virgatum | 转录组分析 Transcriptome analysis | Palmer et al., |
NAC83 | NAC domain containing protein 83 | 促进ABA信号转导和合成 Positively regulates ABA signaling and biosynthesis | 唐菖蒲 Gladiolus hybridus | 基因沉默 Gene silencing | Wu et al., |
SnRK | Snf1-related protein kinase | ABA信号转导因子 Regulators of ABA signal transduction | 柳枝稷 Panicum virgatum | 转录组分析 Transcriptome analysis | Palmer et al., |
Fig. 2 Phylogenetic analysis of DAM/SVP genes in representative perennial monocots and eudicots The genomic information of Populus trichocarpa,Vitis vinifera,Actinidia chinensis and other species in this evolutionary tree comes from Phytozome v13. The SVP protein sequence of Iris tectorum,I. japonica,Lilium oriental hybrid,and Lycoris sprengeri are derived from the transcriptome data sequenced by our laboratory,and the SVP protein sequence of Gladiolus gandavensis is derived from the data of PRJNA491310 in NCBI(Wu et al.,2019b). The Arabidopsis thaliana AtSVP protein was selected as the query,Blastp and pfam was used to identify homologs of SVP in the above species. Mafft software was used for amino acid sequence comparison,and then the phylogenetic tree of SVP protein was constructed using MEGA7.0 by the neighbor-joining method. Using MEME online software to analyze the protein conserved domains,16 conserved motifs were obtained,and named as Motif1-Motif16. Prupe:Prunus persica;Actinidia:Actinidia deliciosa;VIT:Vitis vinifera;Loh:Lilium oriental hybrid;Ls:Lycoris sprengeri;IJ:Iris japonica;GlaUn:Gladiolus × gandavensis;IT:Iris tectorum;Aco:Ananas comosus; GSMUA:Musa nana;scaffold:Amborella trichopoda;Nycol:Nymphaea colorata;KAF:Nymphaea thermarum.
Fig. 3 DAM/SVP gene and ABA-mediated molecular regulation model of winter dormancy in perennial monocots and eudicots Dashed line:Indirect regulation or indeterminate pathway;Orange:Molecular regulation pathway of winter dormancy in perennial monocots;Green:Molecular regulation pathway of winter dormancy in perennial eudicots.
[1] |
Albert M J, Iriondo J M, Escudero A, Torres E. 2008. Dissecting components of flowering pattern:size effects on female fitness. Botanical Journal of the Linnean Society, 156 (2):227-236.
doi: 10.1111/j.1095-8339.2007.00735.x URL |
[2] | Andres F, Porri A, Torti S, Mateos J, Romera-Branchat M, Garcia-Martinez J L, Fornara F, Gregis V, Kater M M, Coupland G. 2014. SHORT VEGETATIVE PHASE reduces gibberellin biosynthesis at the Arabidopsis shoot apex to regulate the floral transition. Proceedings of the National Academy of Sciences of the United States of America, 111 (26):E2760-E2769. |
[3] |
Atif M J, Ahanger M A, Amin B, Ghani M I, Ali M, Cheng Z. 2020. Mechanism of allium crops bulb enlargement in response to photoperiod:a review. International Journal of Molecular Sciences, 21 (4):1325.
doi: 10.3390/ijms21041325 URL |
[4] |
Aung L H, Dehertogh A A. 1979. Temperature regulation of growth and endogenous abscisic acid-like content of Tulipa gesneriana L. Plant Physiology, 63 (6):1111-1116.
doi: 10.1104/pp.63.6.1111 pmid: 16660867 |
[5] |
Aung L H, Peterson C E. 1974. Gibberellin-like substances of dormant and nondormant bulbs of Allium cepa L. Journal of the American Society for Horticultural Science, 99 (3):279-281.
doi: 10.21273/JASHS.99.3.279 URL |
[6] |
Aymonin G G, Guignard J L, Baillet A. 2004. Pourquoi les Monocotylédones? Une introduction pour une clé. Acta Botanica Gallica, 151 (2):139-146.
doi: 10.1080/12538078.2004.10516029 URL |
[7] | Azeez A, Zhao Y C, Singh R K, Yordanov Y S, Dash M, Miskolczi P, Stojkovic K, Strauss S H, Bhalerao R P, Busov V B. 2021. EARLY BUD-BREAK 1 and EARLY BUD-BREAK 3 control resumption of poplar growth after winter dormancy. Nature Communcations, 12 (1):1123. |
[8] |
Beauvieux R, Wenden B, Dirlewanger E. 2018. Bud dormancy in perennial fruit tree species:a pivotal role for oxidative cues. Frontiers in Plant Science, 9:657.
doi: 10.3389/fpls.2018.00657 pmid: 29868101 |
[9] |
Ben Michael T E, Faigenboim A, Shemesh-Mayer E, Forer I, Gershberg C, Shafran H, Rabinowitch H D, Kamenetsky-Goldstein R. 2020. Crosstalk in the darkness:bulb vernalization activates meristem transition via circadian rhythm and photoperiodic pathway. BMC Plant Biology, 20 (1):77.
doi: 10.1186/s12870-020-2269-x pmid: 32066385 |
[10] | Benkeblia N, Selselet-Attou G. 1999. Role of ethylene on sprouting of onion bulbs(Allium cepa L.). Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 49 (2):122-124. |
[11] |
Bian T T, Ma Y, Guo J, Wu Y, Shi D M, Guo X F. 2020. Herbaceous peony(Paeonia lactiflora Pall.)PlDELLA gene negatively regulates dormancy release and plant growth. Plant Science, 297:110539.
doi: 10.1016/j.plantsci.2020.110539 URL |
[12] | Bielenberg D G, Wang Y, Li Z, Zhebentyayeva T, Fan S H, Reighard G L, Scorza R, Abbott A G. 2008. Sequencing and annotation of the evergrowing locus in peach[Prunus persica (L.) Batsch]reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genetics & Genomes, 4 (3):495-507. |
[13] | Boeken B, Gutterman Y. 1991. The effect of water on the phenology of the desert geophytes Bellevalia desertorum and Bellevalia eigii. Israel Journal of Botany, 40 (1):17-31. |
[14] |
Callens C, Tucker M R, Zhang D, Wilson Z A. 2018. Dissecting the role of MADS-box genes in monocot floral development and diversity. Journal of Experimental Botany, 69 (10):2435-2459.
doi: 10.1093/jxb/ery086 pmid: 29718461 |
[15] |
Campoy J A, Ruiz D, Egea J. 2011. Dormancy in temperate fruit trees in a global warming context:a review. Scientia Horticulturae, 130 (2):357-372.
doi: 10.1016/j.scienta.2011.07.011 URL |
[16] |
Chao W S, Dogramaci M, Horvath D P, Anderson J V, Foley M E. 2017. Comparison of phytohormone levels and transcript profiles during seasonal dormancy transitions in underground adventitious buds of leafy spurge. Plant Molecular Biology, 94 (3):281-302.
doi: 10.1007/s11103-017-0607-7 pmid: 28365837 |
[17] | Chen Qin-bin, Hou Xi-lin, Wang Jian-jun, Han Jian-ming. 2007. Physiological and biochemical changes of onion with different maturities during the dormancy stage. Acta Horticulturae Sinica, 34 (1):221-224. (in Chinese) |
陈沁滨, 侯喜林, 王建军, 韩建明. 2007. 不同熟性洋葱休眠期生理生化的变化. 园艺学报, 34 (1):221-224. | |
[18] | Chen Yao, Zhou Hanmei, He Bing, Li Wei. 2020. Preliminary study on the regulation mechanism of GA3 and IAA combination in Paris polyphylla var. chinensis seed germination. Acta Horticulturae Sinica, 47 (2):321-333. (in Chinese) |
陈瑶, 周寒梅, 何兵, 李维. 2020. GA3和IAA组合调控华重楼种子萌发机理初探. 园艺学报, 47 (2):321-333. | |
[19] |
Chintakovid N, Tisarum R, Samphumphuang T, Sotesaritkul T, Chaum S. 2022. Evaluation of curcuminoids,physiological adaptation,and growth of Curcuma longa under water deficit and controlled temperature. Protoplasma, 259 (2):301-315.
doi: 10.1007/s00709-021-01670-w URL |
[20] |
Cooke J E, Eriksson M E, Junttila O. 2012. The dynamic nature of bud dormancy in trees:environmental control and molecular mechanisms. Plant,Cell and Environment, 35 (10):1707-1728.
doi: 10.1111/j.1365-3040.2012.02552.x URL |
[21] |
de Assis F N M, Souza B C Q, Medeiros-Neto E, Pinheiro F, Silva A E B, Felix L P. 2013. Karyology of the genus Epidendrum(Orchidaceae:Laeliinae)with emphasis on subgenus Amphiglottium and chromosome number variability in Epidendrum secundum. Botanical Journal of the Linnean Society, 172 (3):329-344.
doi: 10.1111/boj.12045 URL |
[22] | Dong Y H, Guan M J, Wang L X, Yuan L, Sun X D, Liu S Q. 2019. Transcriptome analysis of low-temperature-induced breaking of garlic aerial bulb dormancy. International Journal of Genomics, 2019:9140572. |
[23] | Dong Yu-hui, Wang Li-xia, Gu Qi-yu, Guan Meng-jiao, Dong Fei, Sun Xiu-dong, Liu Shi-qi. 2020. Effects of low temperature and exogenous GA3 on releasing aerial bulb dormancy in garlic and its physiological and biochemical mechanisms. Plant Physiology Journal, 56 (2):256-264. (in Chinese) |
董玉惠, 王立霞, 顾启玉, 管梦娇, 董飞, 孙秀东, 刘世琦. 2020. 低温和外源GA3解除大蒜气生鳞茎休眠的效果及生理生化机制的研究. 植物生理学报, 56 (2):256-264. | |
[24] | Dong Yuhui, Wang Lixia, Gu Qiyu, Liu Zhongliang, Sun Xiudong, Liu Shiqi. 2019. Analysis of differentially expressed genes of exogenous GA3 releasing aerial bulbs dormancy in garlic based on transcriptome sequencing. Acta Horticulturae Sinica, 46 (12):2335-2346. (in Chinese) |
董玉惠, 王立霞, 顾启玉, 刘中良, 孙秀东, 刘世琦. 2019. 利用转录组测序分析外源GA3解除大蒜气生鳞茎休眠相关基因. 园艺学报, 46 (12):2335-2346. | |
[25] |
Donoho C W, Walker D R. 1957. Effect of gibberellic acid on breaking of rest period in Elberta peach. Science, 126 (3284):1178-1179.
pmid: 17778450 |
[26] | Du Ji-yan, Zhang Sheng-lin. 2012. Research progress on physiological dormancy of Amorphophallus. Journal of Changjiang Vegetables,(24):11-14. (in Chinese) |
杜纪艳, 张盛林. 2012. 魔芋休眠生理研究进展. 长江蔬菜,(24):11-14. | |
[27] |
Erez A, Faust M, Line M J. 1998. Changes in water status in peach buds on induction,development and release from dormancy. Scientia Horticulturae, 73 (2):111-123.
doi: 10.1016/S0304-4238(97)00155-6 URL |
[28] |
Esmaili S, Salehi H. 2012. Effects of temperature and photoperiod on postponing bermudagrass(Cynodon dactylon[L.]Pers.)turf dormancy. Journal of Plant Physiology, 169 (9):851-858.
doi: 10.1016/j.jplph.2012.01.022 URL |
[29] |
Falavigna V D S, Guitton B, Costes E, Andres F. 2018. I want to(bud)break free:the potential role of DAM and SVP-like genes in regulating dormancy cycle in temperate fruit trees. Frontiers in Plant Science, 9:1990.
doi: 10.3389/fpls.2018.01990 pmid: 30687377 |
[30] | Faust M, Liu D, Line M J, Stutte G W. 1995. Conversion of bound water to free water in endodormant buds of apple is an incremental process. Acta Horticulturae, 395:113-117. |
[31] |
Faust M, Liu D H, Millard M M, Stutte G W. 1991. Bound versus free water in dormant apple buds—a theory for endodormancy. Hortscience, 26 (7):887-890.
doi: 10.21273/HORTSCI.26.7.887 URL |
[32] | Feng Ying. 2014. The molecular mechanism of bud dormancy in Narcissus tazetta var. chinensis[Ph. D. Dissertation]. Fuzhou: Fujian Agriculture and Forestry University. (in Chinese) |
冯莹. 2014. 中国水仙(Narcissus tazetta var. chinensis)芽休眠的分子机制研究[博士论文]. 福州: 福建农林大学. | |
[33] |
Frisby J W, Seeley S D. 1993. Chilling of endodormant peach propagules:Ⅳ. terminal shoot growth of cuttings,including gibberellic-acid treatments. Journal of the American Society for Horticultural Science, 118 (2):263-268.
doi: 10.21273/JASHS.118.2.263 URL |
[34] |
Fukai S, Kanechika R, Hasegawa A. 2006. Effect of low temperature on breaking dormancy and flowering of Arisaema sikokianum(Araceae). Scientia Horticulturae, 111 (1):97-100.
doi: 10.1016/j.scienta.2006.08.005 URL |
[35] |
Gao Y H, Yang Q S, Yan X H, Wu XY, Yang F, Li J Z, Wei J, Ni J B, Ahmad M, Bai S L, Teng Y W. 2021. High-quality genome assembly of‘Cuiguan’pear(Pyrus pyrifolia)as a reference genome for identifying regulatory genes and epigenetic modifications responsible for bud dormancy. Horticulture Research, 8 (1):197.
doi: 10.1038/s41438-021-00632-w URL |
[36] |
Gillespie L M, Volaire F A. 2017. Are winter and summer dormancy symmetrical seasonal adaptive strategies? The case of temperate herbaceous perennials. Annals of Botany, 119 (3):311-323.
doi: 10.1093/aob/mcw264 pmid: 28087658 |
[37] |
Gracie A J, Brown P H, Burgess S W, Clark R J. 2000. Rhizome dormancy and shoot growth in myoga(Zingiber mioga Roscoe). Scientia Horticulturae, 84 (1-2):27-36.
doi: 10.1016/S0304-4238(99)00102-8 URL |
[38] |
Hao X Y, Tang H, Wang B, Wang L, Cao H L, Wang Y C, Zeng J M, Fang S, Chu J F, Yang Y J, Wang X C. 2018. Gene characterization and expression analysis reveal the importance of auxin signaling in bud dormancy regulation in tea plant. Journal of Plant Growth Regulation, 38 (1):225-240.
doi: 10.1007/s00344-018-9834-7 URL |
[39] |
Heide O M. 2011. Temperature rather than photoperiod controls growth cessation and dormancy in Sorbus species. Journal of Experimental Botany, 62:5397-5404.
doi: 10.1093/jxb/err213 pmid: 21862485 |
[40] |
Horvath D. 2009. Common mechanisms regulate flowering and dormancy. Plant Science, 177 (6):523-531.
doi: 10.1016/j.plantsci.2009.09.002 URL |
[41] |
Horvath D P, Anderson J V, Chao W S, Foley M E. 2003. Knowing when to grow:signals regulating bud dormancy. Trends in Plant Science, 8 (11):534-540.
doi: 10.1016/j.tplants.2003.09.013 pmid: 14607098 |
[42] |
Horvath D P, Sung S, Kim D, Chao W, Anderson J. 2010. Characterization,expression and function of DORMANCY ASSOCIATED MADS-BOX genes from leafy spurge. Plant Molecular Biology, 73 (1-2):169-179.
doi: 10.1007/s11103-009-9596-5 pmid: 20066557 |
[43] |
Howard C C, Folk R A, Beaulieu J M, Cellinese N. 2019. The monocotyledonous underground:global climatic and phylogenetic patterns of geophyte diversity. American Journal of Botany, 106 (6):850-863.
doi: 10.1002/ajb2.1289 URL |
[44] |
Howard C C, Landis J B, Beaulieu J M, Cellinese N. 2020. Geophytism in monocots leads to higher rates of diversification. New Phytologist, 225 (2):1023-1032.
doi: 10.1111/nph.16155 pmid: 31469440 |
[45] | Imhof S. 2010. Are monocots particularly suited to develop mycoheterotrophy? 4th International Conference on Comparative Biology of the Monocotyledons/5th International Symposium on Grass Systematics and Evolution,Copenhagen,Denmark. |
[46] |
Ito A, Sakamoto D, Moriguchi T. 2012. Carbohydrate metabolism and its possible roles in endodormancy transition in Japanese pear. Scientia Horticulturae, 144:187-194.
doi: 10.1016/j.scienta.2012.07.009 URL |
[47] | Jian Ling-cheng, Lu Cun-fu, Deng Jiang-ming, Li Ji-hong, LIPaul H. 2004. Inducing factor and regulating role of intracellular Ca2+ level for woody plant bud dormancy. Chinese Journal of Applied and Environmental Biology,(1):1-6. (in Chinese) |
简令成, 卢存福, 邓江明, 李积宏, LIPaul H. 2004. 木本植物休眠的诱导因子及其细胞内Ca2+水平的调节作用. 应用与环境生物学报,(1):1-6. | |
[48] |
Kamenetsky R, Zemah H, Ranwala A P, Vergeldt F, Ranwala N K, Miller W B, van As H, Bendel P. 2003. Water status and carbohydrate pools in tulip bulbs during dormancy release. New Phytologist, 158 (1):109-118.
doi: 10.1046/j.1469-8137.2003.00719.x URL |
[49] |
Kumar G, Arya P, Gupta K, Randhawa V, Acharya V, Singh A K. 2016. Comparative phylogenetic analysis and transcriptional profiling of MADS-box gene family identified DAM and FLC-like genes in apple(Malus domestica). Scientific Reports, 6:20695.
doi: 10.1038/srep20695 URL |
[50] |
Lang G A, Early J D, Martin G C, Darnell R L. 1987. Endodormancy,paradormancy,and ecodormancy-physiological terminology and classification for dormancy research. Hortscience, 22 (3):371-377.
doi: 10.21273/HORTSCI.22.3.371 URL |
[51] |
Langens-Gerrits M M, Nashimoto S, Croes A F, De Klerk G J. 2001. Development of dormancy in different lily genotypes regenerated in vitro. Plant Growth Regulation, 34 (2):215-222.
doi: 10.1023/A:1013318810119 URL |
[52] |
Laube J, Sparks T H, Estrella N, Hofler J, Ankerst D P, Menzel A. 2014. Chilling outweighs photoperiod in preventing precocious spring development. Global Change Biology, 20 (1):170-182.
doi: 10.1111/gcb.12360 pmid: 24323535 |
[53] | Lee J, Kim Y A, Wang H. 1996. Effect of bulb vernalization on the growth and flowering of Asiatic hybrid lily. Acta Horticulturae, 414:229-234. |
[54] |
Lee R, Baldwin S, Kenel F, McCallum J, Macknight R. 2013. FLOWERING LOCUS T genes control onion bulb formation and flowering. Nature Communications, 4:2884.
doi: 10.1038/ncomms3884 URL |
[55] |
Li D Q, Shao L M, Zhang J, Wang X B, Zhang D, Horvath, D P, Zhang L S, Zhang J P, Xia Y P. 2021a. MADS-box transcription factors determine the duration of temporary winter dormancy in closely related evergreen and deciduous Iris spp. Journal of Experimental Botany, 73 (5):1429-1449.
doi: 10.1093/jxb/erab484 URL |
[56] |
Li D Q, Xia Y P, Lou J H, Zhang D, Wang X B, Zhang J P. 2020. A comparative study between evergreen and deciduous daylily species reveals the potential contributions of winter shoot growth and leaf freezing tolerance to foliar habits. Journal of Plant Growth Regulation, 39 (3):1030-1045.
doi: 10.1007/s00344-019-10042-x URL |
[57] |
Li D Q, Zhang J, Zhang J P, Li K, Xia Y P. 2017. Green period characteristics and foliar cold tolerance in 12 iris species and cultivars in the yangtze delta,China. HortTechnology, 27 (3):399-407.
doi: 10.21273/HORTTECH03692-17 URL |
[58] |
Li J Z, Xu Y, Niu Q F, He L F, Teng Y W, Bai S L. 2018. Abscisic acid(ABA)promotes the induction and maintenance of pear(Pyrus pyrifolia white pear group)flower bud endodormancy. International Journal of Molecular Sciences, 19 (1):310.
doi: 10.3390/ijms19010310 URL |
[59] |
Li J Z, Yan X H, Ahmad M, Yu W J, Song Z Z, Ni J B, Yang Q S, Teng Y W, Zhang H X, Bai S L. 2021b. Alternative splicing of the dormancy-associated MADS-box transcription factor gene PpDAM1 is associated with flower bud dormancy in‘Dangshansu’pear(Pyrus pyrifolia white pear group). Plant Physiology and Biochemistry, 166:1096-1108.
doi: 10.1016/j.plaphy.2021.07.017 URL |
[60] | Li Lin. 2018. Study on Amorphophallus muelleri corms dormancy in cold storage[M. D. Dissertation]. Kunming: Yunnan University. (in Chinese) |
李琳. 2018. 弥勒魔芋(Amorphophallus muelleri)叶面球茎低温贮藏期间休眠生理探究[硕士论文]. 昆明: 云南大学. | |
[61] |
Li P, Zheng T C, Zhuo X K, Zhang M, Yong X, Li L L, Wang J, Cheng T R, Zhang Q X. 2021c. Photoperiod- and temperature-mediated control of the ethylene response and winter dormancy induction in Prunus mume. Horticultural Plant Journal, 7 (3):232-242.
doi: 10.1016/j.hpj.2021.03.005 URL |
[62] |
Li W Q, Liu X H, Lu Y M. 2016. Transcriptome comparison reveals key candidate genes in response to vernalization of Oriental lily. BMC Genomics, 17 (1):664.
doi: 10.1186/s12864-016-2955-0 URL |
[63] | Li Xiao-dong, Lu Guo-yi, Yu Yan. 1996. Effect of endogenous hormones on the dormancy of gailic(Allium sativum L.). Acta Horticulturae Sinica, 23 (2):150-154. (in Chinese) |
李晓东, 陆帼一, 于燕. 1996. 休眠‘蔡家坡’蒜内源激素水平的变化规律. 园艺学报, 23 (2):150-154. | |
[64] |
Li X Y, Wang C X, Cheng J Y, Zhang J, da Silva J A T, Liu X Y, Duan X, Li T L, Sun H. 2014. Transcriptome analysis of carbohydrate metabolism during bulblet formation and development in Lilium davidii var. unicolor. BMC Plant Biology, 14:358.
doi: 10.1186/s12870-014-0358-4 URL |
[65] |
Liu J Y, Sherif S M. 2019. Hormonal orchestration of bud dormancy cycle in deciduous woody perennials. Frontiers in Plant Science, 10:1136.
doi: 10.3389/fpls.2019.01136 pmid: 31620159 |
[66] | Liu Yan-ping. 2007. Studies on physiological mechanisms of lily bulb stored at different cold temperatures for breaking dormancy[M. D. Dissertation]. Harbin: Northeast Forestry University. (in Chinese) |
刘艳萍. 2007. 百合鳞茎低温解除休眠过程中生理生化变化研究[硕士论文]. 哈尔滨: 东北林业大学. | |
[67] | Long Wen-hong, Guo Hua-chun, Gao Xing, Jin Xi. 2009. Variation of saccharides,soluble proteins and amylase activity in bulbils of three dioscorea species during dormancy. Journal of West China Forestry Science, 38 (3):22-27. (in Chinese) |
龙雯虹, 郭华春, 高星, 金鑫. 2009. 3种薯蓣植物珠芽休眠过程中糖类和可溶性蛋白质含量及淀粉酶活性的变化规律. 西部林业科学, 38 (3):22-27. | |
[68] | Luo Li-lan, Shi Lei, Zhang Jin-zheng. 2007. Advances in studies on the effect of low temperature on releasing dormancy and accelerating flower of lily bulbs. Acta Horticulturae Sinica, 34 (2):517-524. (in Chinese) |
罗丽兰, 石雷, 张金政. 2007. 低温对解除百合鳞茎休眠和促进开花的作用. 园艺学报, 34 (2):517-524. | |
[69] | Markovic M, Momcilov M T, Uzelac B, Radulovic O, Milosevic S, Jevremovic S, Subotic A. 2020. Breaking the dormancy of Snake’s Head Fritillary(Fritillaria meleagris L.)in vitro bulbs-part 2:effect of GA3 soaking and chilling on sugar status in sprouted bulbs. Plants (Basel), 9 (11):1573. |
[70] |
Mathew D, Forer Y, Rabinowitch H D, Kamenetsky R. 2011. Effect of long photoperiod on the reproductive and bulbing processes in garlic(Allium sativum L.)genotypes. Environmental and Experimental Botany, 71 (2):166-173.
doi: 10.1016/j.envexpbot.2010.11.008 URL |
[71] |
Maurya J P, Bhalerao R P. 2017. Photoperiod- and temperature-mediated control of growth cessation and dormancy in trees:a molecular perspective. Annals of Botany, 120 (3):351-360.
doi: 10.1093/aob/mcx061 pmid: 28605491 |
[72] |
Mimida N, Saito T, Moriguchi T, Suzuki A, Komori S, Wada M. 2015. Expression of DORMANCY-ASSOCIATED MADS-BOX(DAM)-like genes in apple. Biologia Plantarum, 59 (2):237-244.
doi: 10.1007/s10535-015-0503-4 URL |
[73] |
Moser M, Asquini E, Miolli G V, Weigl K, Hanke M V, Flachowsky H, Si-Ammour A. 2020. The MADS-BOX gene MdDAM1 controls growth cessation and bud dormancy in apple. Frontiers in Plant Science, 11:1003.
doi: 10.3389/fpls.2020.01003 URL |
[74] |
Naor V, Kigel J, Ben-Tal Y, Ziv M. 2008. Variation in endogenous gibberellins,abscisic acid,and carbohydrate content during the growth cycle of colored Zantedeschia spp.,a tuberous geophyte. Journal of Plant Growth Regulation, 27 (3):211-220.
doi: 10.1007/s00344-008-9048-5 URL |
[75] |
Niu Q F, Li J Z, Cai D Y, Qian M J, Jia H M, Bai S L, Hussain S, Liu G Q, Teng Y W, Zheng X Y. 2016. Dormancy-associated MADS-box genes and microRNAs jointly control dormancy transition in pear(Pyrus pyrifolia white pear group)flower bud. Journal of Experimental Botany, 67 (1):239-257.
doi: 10.1093/jxb/erv454 URL |
[76] |
Ohyama T, Ikarashi T, Matsubara T, Baba A. 1988. Behavior of carbohydrates in mother and daughter bulbs of tulips(Tulipa gesneriana). Soil Science and Plant Nutrition, 34 (3):405-415.
doi: 10.1080/00380768.1988.10415696 URL |
[77] |
Palmer N A, Saathoff A J, Scully E D, Tobias C M, Twigg P, Madhavan S, Schmer M, Cahoon R, Sattler S E, Edme S J, Mitchell R B, Sarath G. 2017. Seasonal below-ground metabolism in switchgrass. Plant Journal, 92 (6):1059-1075.
doi: 10.1111/tpj.13742 URL |
[78] |
Panneerselvam R, Jaleel C A, Somasundaram R, Sridharan R, Gomathinayagam M. 2007. Carbohydrate metabolism in Dioscorea esculenta(Lour.)Burk. tubers and Curcuma longa L. rhizomes during two phases of dormancy. Colloids and Surfaces B-Biointerfaces, 59 (1):59-66.
doi: 10.1016/j.colsurfb.2007.04.006 URL |
[79] |
Parsons R F. 2000. Monocotyledonous geophytes:comparison of California with Victoria,Australia. Australian Journal of Botany, 48 (1):39-43.
doi: 10.1071/BT98056 URL |
[80] | Paz M D P, Kuehny J S, Criley R. 2005. Effect of rhizome storage duration and temperature on carbohydrate content,respiration,growth,and flowering of ornamental ginger. Paper presented at the 9th International Symposium on Flower Bulbs,Niigata,Japan. |
[81] |
Pérez F J, Kühn N, Vergara R. 2011. Expression analysis of phytochromes A,B and floral integrator genes during the entry and exit of grapevine-buds from endodormancy. Journal of Plant Physiology, 168 (14):1659-1666.
doi: 10.1016/j.jplph.2011.03.001 URL |
[82] |
Poire R, Wiese-Klinkenberg A, Parent B, Mielewczik M, Schurr U, Tardieu F, Walter A. 2010. Diel time-courses of leaf growth in monocot and dicot species:endogenous rhythms and temperature effects. Journal of Experimental Botany, 61 (6):1751-1759.
doi: 10.1093/jxb/erq049 URL |
[83] |
Rubio S, Donoso A, Perez F J. 2014. The dormancy-breaking stimuli“chilling,hypoxia and cyanamide exposure”up-regulate the expression of α-amylase genes in grapevine buds. Journal of Plant Physiology, 171 (6):373-381.
doi: 10.1016/j.jplph.2013.11.009 URL |
[84] | Sajjad Y, Jaskani M J, Mehmood A, Qasim M, Akhtar G. 2020. Alleviation of gladiolus(Gladiolus grandiflorus)corm dormancy through application of 6-benzylaminopurine and gibberellic acid. Pakistan Journal of Botany, 52 (3):831-838. |
[85] |
Sasaki R, Yamane H, Ooka T, Jotatsu H, Kitamura Y, Akagi T, Tao R. 2011. Functional and expressional analyses of PmDAM genes associated with endodormancy in Japanese apricot. Plant Physiol, 157 (1):485-497.
doi: 10.1104/pp.111.181982 pmid: 21795580 |
[86] |
Sato A, Okubo H, Saitou K. 2006. Increase in the expression of an alpha-amylase gene and sugar accumulation induced during cold period reflects shoot elongation in hyacinth bulbs. Journal of the American Society for Horticultural Science, 131 (2):185-191.
doi: 10.21273/JASHS.131.2.185 URL |
[87] |
Sedaghat S, Gaaliche B, Rahemi M, Zare H, Jafari M. 2022. Enzymatic activity and physico-chemical changes of terminal bud in rain-fed fig(Ficus carica L.‘Sabz’)during dormant season. Horticultural Plant Journal, 8 (2):195-204.
doi: 10.1016/j.hpj.2021.03.010 URL |
[88] |
Shim D, Ko J H, Kim W C, Wang Q, Keathley D E, Han K H. 2014. A molecular framework for seasonal growth-dormancy regulation in perennial plants. Horticulture Research, 1:14059.
doi: 10.1038/hortres.2014.59 pmid: 26504555 |
[89] |
Singh R K, Maurya J P, Azeez A, Miskolczi P, Tylewicz S, Stojkovic K, Delhomme N, Busov V, Bhalerao R P. 2018. A genetic network mediating the control of bud break in hybrid aspen. Nature Communications, 9 (1):4173.
doi: 10.1038/s41467-018-06696-y pmid: 30301891 |
[90] |
Singh R K, Miskolczi P, Maurya J P, Bhalerao R P. 2019. A tree ortholog of short vegetative phase floral repressor mediates photoperiodic control of bud dormancy. Current Biology, 29 (1):128
doi: S0960-9822(18)31472-6 pmid: 30554900 |
[91] |
Sorce C, Lombardi L, Giorgetti L, Parisi B, Ranalli P, Lorenzi R. 2009. Indoleacetic acid concentration and metabolism changes during bud development in tubers of two potato(Solanum tuberosum)cultivars. Journal of Plant Physiology, 166 (10):1023-1033.
doi: 10.1016/j.jplph.2008.12.003 URL |
[92] |
Subbaraj A K, Funnell K A, Woolley D J. 2010. Dormancy and flowering are regulated by the reciprocal interaction between cytokinin and gibberellin in zantedeschia. Journal of Plant Growth Regulation, 29 (4):487-499.
doi: 10.1007/s00344-010-9160-1 URL |
[93] |
Sun Hong-mei, Li Tian-lai, Li Yun-fei. 2006. Changes of endogenous hormones in Lilium davidii var. unicolor bulbs during bulb development and storage at low temperature for dormancy release. Bulletin of Botanical Research,(5):570-576. (in Chinese)
doi: 10.7525/j.issn.1673-5102.2006.05.013 |
孙红梅, 李天来, 李云飞. 2006. 兰州百合鳞茎发育及低温解除休眠过程中内源激素的变化. 植物研究,(5):570-576.
doi: 10.7525/j.issn.1673-5102.2006.05.013 |
|
[94] | Sun Yan-zhi, Yi Ming-fang. 2004. Influence of storaging temperatures on breaking corm dormancy and germination of Gladiolus. Journal of Agricultural University of Hebei,(5):46-50. (in Chinese) |
孙延智, 义鸣放. 2004. 贮藏温度对唐菖蒲球茎打破休眠和萌芽的影响. 河北农业大学学报,(5):46-50. | |
[95] | Sun Yuan-ming, Liu Pei-ying, Liu Chao-giu, Su Cheng-gang. 1996. The relationship between corm dormancy and ABA and GA in konjac. Acta Horticulturae Sinica,(3):97-98. (in Chinese) |
孙远明, 刘佩瑛, 刘朝贵, 苏承刚. 1996. 花魔芋球茎休眠与脱落酸和赤霉素的关系. 园艺学报,(3):97-98. | |
[96] | Tuyl J, Arens P, Ciolakowska A M. 2015. Ornamental geophytes:from basic science to sustainable production. Boca Raton: CRC Press:233-259. |
[97] |
Tylewicz S, Petterle A, Marttila S, Miskolczi P, Azeez A, Singh R K, Immanen J, Mahler N, Hvidsten T R, Eklund D M, Bowman J L, Helariutta Y, Bhalerao R P. 2018. Photoperiodic control of seasonal growth is mediated by ABA acting on cell-cell communication. Science, 360 (6385):212-214.
doi: 10.1126/science.aan8576 pmid: 29519919 |
[98] |
Varkonyi-Gasic E, Moss S M A, Voogd C, Wang T C, Putterill J, Hellens R P. 2013. Homologs of FT,CEN and FD respond to developmental and environmental signals affecting growth and flowering in the perennial vine kiwifruit. New Phytologist, 198 (3):732-746.
doi: 10.1111/nph.12162 pmid: 23577598 |
[99] |
Vesely P, Bures P, Smarda P, Pavlicek T. 2012. Genome size and DNA base composition of geophytes:the mirror of phenology and ecology? Annals of Botany, 109 (1):65-75.
doi: 10.1093/aob/mcr267 URL |
[100] |
Voogd C, Wang T C, Varkonyi-Gasic E. 2015. Functional and expression analyses of kiwifruit SOC1-like genes suggest that they may not have a role in the transition to flowering but may affect the duration of dormancy. Journal of Experimental Botany, 66 (15):4699-4710.
doi: 10.1093/jxb/erv234 URL |
[101] | Wang D L, Gao Z Z, Du P Y, Xiao W, Tan Q P, Chen X D, Li L, Gao D S. 2015. Expression of ABA metabolism-related genes suggests similarities and differences between seed dormancy and bud dormancy of peach(Prunus persica). Frontiers in Plant Science, 6:1248. |
[102] | Wang Lei, Wang Kun, Bai Heng-qin, Han Peng. 2010. Effects of photoperiod on the induction of dormancy in two turfgrass species. Journal of Beijing Forestry University, 32:103-105. (in Chinese) |
王雷, 王堃, 白恒勤, 韩鹏. 2010. 光周期对两种草坪草休眠启动的影响. 北京林业大学学报, 32:103-105. | |
[103] |
Wang W, Su X X, Tian Z P, Liu Y, Zhou Y W, He M. 2018. Transcriptome profiling provides insights into dormancy release during cold storage of lilium pumilum. BMC Genomics, 19 (S2):196.
doi: 10.1186/s12864-018-4536-x URL |
[104] | Wang Xiao-dong, Tang Huang-wei, Qu Yan-ting. 2012. Effect of illumination intensities on growth and hormone contents of Tulipa gesneriana L. Northern Horticulture,(1):84-86. (in Chinese) |
王晓冬, 唐焕伟, 曲彦婷. 2012. 光照强度对郁金香生长发育和内源激素含量的影响. 北方园艺,(1):84-86. | |
[105] | Wang Xin-chao, Ma Chun-lei, Yang Ya-jun. 2011. Progress in research on bud dormancy and its regulation mechanisms in perennial plants. Chinese Journal of Applied and Environmental Biology,(4):589-595. (in Chinese) |
王新超, 马春雷, 杨亚军. 2011. 多年生植物的芽休眠及调控机理研究进展. 应用与环境生物学报,(4):589-595. | |
[106] |
Wang Y, Bailey D C, Yin S K, Dong X H. 2020. Characterizing rhizome bud dormancy in Polygonatum kingianum:development of novel chill models and determination of dormancy release mechanisms by weighted correlation network analysis. PLoS ONE, 15 (4):e0231867.
doi: 10.1371/journal.pone.0231867 URL |
[107] |
Wang Y, Liu X Q, Su H, Yin S K, Han C X, Hao D D, Dong X H. 2019. The regulatory mechanism of chilling-induced dormancy transition from endo-dormancy to non-dormancy in Polygonatum kingianum Coll. et Hemsl rhizome bud. Plant Molecular Biology, 99 (3):205-217.
doi: 10.1007/s11103-018-0812-z pmid: 30627860 |
[108] |
Wu J, Jin Y J, Liu C, Vonapartis E, Liang J H, Wu W J, Gazzarrini S, He J N, Yi M F. 2019b. GhNAC 83 inhibits corm dormancy release by regulating ABA signaling and cytokinin biosynthesis in Gladiolus hybridus. Journal of Experimental Botany, 70 (4):1221-1237.
doi: 10.1093/jxb/ery428 URL |
[109] | Wu J, Seng S S, Sui J J, Vonapartis E, Luo X, Gong B H, Liu C, Wu C Y, Liu C, Zhang F Q, He J N, Yi M F. 2015. Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5(GhABI5)is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy. Frontiers in Plant Science,(6):960. |
[110] |
Wu J, Wu W J, Liang J H, Jin Y J, Gazzarrini S, He J N, Yi M F. 2019a. GhTCP 19 transcription factor regulates corm dormancy release by repressing GhNCED expression in Gladiolus. Plant Cell Physiol, 60 (1):52-62.
doi: 10.1093/pcp/pcy186 URL |
[111] |
Wu R M, Wang T C, Warren B A W, Allan A C, Macknight R C, Varkonyi-Gasic E. 2017. Kiwifruit SVP2 gene prevents premature budbreak during dormancy. Journal of Experimental Botany, 68 (5):1071-1082.
doi: 10.1093/jxb/erx014 URL |
[112] |
Wu R M, Wang T C, Warren B A W, Thomson S J, Allan A C, Macknight R C, Varkonyi-Gasic E. 2018. Kiwifruit SVP 2 controls developmental and drought-stress pathways. Plant Molecular Biology, 96 (3):233-244.
doi: 10.1007/s11103-017-0688-3 URL |
[113] | Wu Rui. 2012. The research of dioscorea dormancy[M. D. Dissertation]. Haikou: Hainan University. (in Chinese) |
吴睿. 2012. 薯蓣休眠特性研究[硕士论文]. 海口: 海南大学. | |
[114] | Xu Junxu, Li Qingzhu, Li Ye, Yang Liuyan, Li Xin, Wang Zhen, Zhang Yongchun. 2020. Differential expression of genes related to endogenous hormone during bulb development in Lycoris radiata. Acta Horticulturae Sinica, 47 (6):1126-1140. (in Chinese) |
许俊旭, 李青竹, 李叶, 杨柳燕, 李心, 王桢, 张永春. 2020. 石蒜鳞茎膨大过程中内源激素相关基因的差异表达研究. 园艺学报, 47 (6):1126-1140. | |
[115] |
Yamazaki H, Nishijima T, Yamato Y, Koshioka M, Miura H. 1999. Involvement of abscisic acid(ABA)in bulb dormancy of Allium wakegi Araki I. Endogenous levels of ABA in relation to bulb dormancy and effects of exogenous ABA and fluridone. Plant Growth Regulation, 29 (3):189-194.
doi: 10.1023/A:1006212427997 URL |
[116] |
Yang Q S, Yang B, Li J Z, Wang Y, Tao R Y, Yang F, Wu X Y, Yan X H, Ahmad M, Shen J Q, Bai S L, Teng Y. 2020. ABA-responsive ABRE-BINDING FACTOR3 activates DAM3 expression to promote bud dormancy in Asian pear. Plant,Cell and Environment, 43 (6):1360-1375.
doi: 10.1111/pce.13744 URL |
[117] | Ye Rong-chun, Tang Nan, Tang Dao-cheng, Zhang Jing. 2019. Effect of different temperature treatments on three endogenous hormones in tulip bulbs during dormancy. Plant Physiology Journal, 55 (7):1004-1010. (in Chinese) |
叶蓉春, 唐楠, 唐道城, 张静. 2019. 不同低温处理对郁金香休眠期鳞茎3种内源激素含量的影响. 植物生理学报, 55 (7):1004-1010. | |
[118] |
Yooyongwech S, Horigane A K, Yoshida M, Yamaguchi M, Sekozawa Y, Sugaya S, Gemma H. 2008. Changes in aquaporin gene expression and magnetic resonance imaging of water status in peach tree flower buds during dormancy. Physiologia Plantarum, 134 (3):522-533.
doi: 10.1111/j.1399-3054.2008.01143.x URL |
[119] |
Yu J, Conrad A O, Decroocq V, Zhebentyayeva T, Williams D E, Bennett D, Roch G, Audergon J M, Dardick C, Liu Z, Abbott A G, Staton M E. 2020. Distinctive gene expression patterns define endodormancy to ecodormancy transition in apricot and peach. Frontiers in Plant Science, 11 (28):180.
doi: 10.3389/fpls.2020.00180 URL |
[120] |
Yue C, Cao H L, Hao X Y, Zeng J M, Qian W J, Guo Y Q, Ye N X, Yang Y J, Wang X C. 2018. Differential expression of gibberellin-and abscisic acid-related genes implies their roles in the bud activity-dormancy transition of tea plants. Plant Cell Reports, 37 (3):425-441.
doi: 10.1007/s00299-017-2238-5 URL |
[121] |
Yun N Y, Rhie Y H, Jung H H, Kim K S. 2011. Chilling requirement for dormancy release of variegated Solomon’s seal. Horticulture Environment and Biotechnology, 52 (6):553-558.
doi: 10.1007/s13580-011-0032-9 URL |
[122] |
Zawaski C, Kadmiel M, Pickens J, Ma C, Strauss S, Busov V. 2011. Repression of gibberellin biosynthesis or signaling produces striking alterations in poplar growth,morphology,and flowering. Planta, 234 (6):1285-1298.
doi: 10.1007/s00425-011-1485-x URL |
[123] |
Zhang Y X, Yu D, Liu C Y, Gai S P. 2018. Dynamic of carbohydrate metabolism and the related genes highlights PPP pathway activation during chilling induced bud dormancy release in tree peony(Paeonia suffruticosa). Scientia Horticulturae, 242:36-43.
doi: 10.1016/j.scienta.2018.07.022 URL |
[124] | Zhao Hai-tao, Liu Chun, Ming Jun, Mu Ding. 2010. Effects of ABA on the development and dormancy in the bulblets of oriental hybrids lily‘Siberia’generated in vitro. Acta Horticulturae Sinica, 37 (3):428-434. (in Chinese) |
赵海涛, 刘春, 明军, 穆鼎. 2010. ABA对‘西伯利亚’百合试管鳞茎发育及休眠的影响. 园艺学报, 37 (3):428-434. | |
[125] |
Zhao K, Zhou Y Z, Ahmad S, Yong X, Xie X H, Han Y, Li Y S, Sun L D, Zhang Q. 2018. PmCBFs synthetically affect PmDAM6 by alternative promoter binding and protein complexes towards the dormancy of bud for Prunus mume. Scientific Reports, 8 (1):4527.
doi: 10.1038/s41598-018-22537-w pmid: 29540742 |
[126] |
Zheng C L, Acheampong A K, Shi Z W, Mugzech A, Halaly-Basha T, Shaya F, Sun Y F, Colova V, Mosquna A, Ophir R, Galbraith D W, Or E. 2018. Abscisic acid catabolism enhances dormancy release of grapevine buds. Plant,Cell and Environment, 41 (10):2490-2503.
doi: 10.1111/pce.13371 URL |
[127] |
Zhuang W B, Gao Z H, Wang L J, Zhong W J, Ni Z J, Zhang Z. 2013. Comparative proteomic and transcriptomic approaches to address the active role of GA4 in Japanese apricot flower bud dormancy release. Journal of Experimental Botany, 64 (16):4953-4966.
doi: 10.1093/jxb/ert284 URL |
[128] |
Zhu Hai-wang, Huo Xiu-wen. 2011. Chinese yam(Dioscorea opposite Thunb.)dormancy-related activity and the dynamic changes of endogenous hormone. Acta Agriculturae Boreali-Sinica, 26 (2):198-202. (in Chinese)
doi: 10.7668/hbnxb.2011.02.041 |
朱海旺, 霍秀文. 2011. 长山药块茎休眠期相关酶活性及内源激素含量变化. 华北农学报, 26 (2):198-202.
doi: 10.7668/hbnxb.2011.02.041 |
[1] | WANG Xiaochen, NIE Ziye, LIU Xianju, DUAN Wei, FAN Peige, and LIANG Zhenchang, . Effects of Abscisic Acid on Monoterpene Synthesis in‘Jingxiangyu’Grape Berries [J]. Acta Horticulturae Sinica, 2023, 50(2): 237-249. |
[2] | GAO Weilin, ZHANG Liman, XUE Chaoling, ZHANG Yao, LIU Mengjun, ZHAO Jin. Expression of E-type MADS-box Genes in Flower and Fruits and Protein Interaction Analysis in Chinese Jujube [J]. Acta Horticulturae Sinica, 2022, 49(4): 739-748. |
[3] | YU Jianqiang, GU Kaidi, WANG Chuanzeng, HU Dagang. Functional Characterization of An Apple Pyrophosphate-dependent Phosphofructokinase Gene MdPFPβ in Regulating Soluble Sugar Accumulation [J]. Acta Horticulturae Sinica, 2022, 49(10): 2223-2235. |
[4] | YANG Weihai, ZENG Lizhen, XIAO Qiusheng, SHI Shengyou. Changes of Fruit Abscission and Carbohydrate,ABA and Related Genes Expression in the Pericarp and Fruit Abscission Zone of Longan Under Starvation Stress [J]. Acta Horticulturae Sinica, 2021, 48(8): 1457-1469. |
[5] | ZENG Zexiang, XIAO Xianmei, TAN Xiaoli, FAN Zhongqi, CHEN Jianye. Characteristics of the Transcription Factor BrWRKY57 and Its Regulation on BrPPH1 and BrNCED3 [J]. Acta Horticulturae Sinica, 2021, 48(3): 518-530. |
[6] | LI Yuzhuo, LIU Ke, YUAN Lu, CAO Liwen, WANG Tingjin, GAN Susheng, CHEN Liping. Cloning and Functional Analyses of BrNAP in Postharvest Leaf Senescence in Chinese Flowering Cabbage [J]. Acta Horticulturae Sinica, 2021, 48(1): 60-72. |
[7] | DAI Wenshan1,2,WANG Min1,2,and LIU Jihong1,*. Enhanced Dehydration Tolerance in Lemon by Overexpression of CrNCED1(9-cis-epoxycarotenoid dioxygenase gene)from Citrus reshni [J]. ACTA HORTICULTURAE SINICA, 2020, 47(3): 551-561. |
[8] | LI Chengru, DONG Na, LI Xiaoping, WU Shasha, LIU Zhongjian, and ZHAI Junwen. A Review of MADS-box Genes,the Molecular Regulatory Genes for Floral Organ Development in Orchidaceae [J]. Acta Horticulturae Sinica, 2020, 47(10): 2047-2062. |
[9] | WANG Jiahui,YU Jianqiang,ZHANG Quanyan,HAN Pengliang,YOU Chunxiang,HU Dagang*,and HAO Yujin. Analysis of Abscisic Acid Sensitivity of Apple Ethylene Response Factor MdERF11 Gene [J]. ACTA HORTICULTURAE SINICA, 2020, 47(1): 1-10. |
[10] | FANG Hua,WANG Chunlei,LIAO Weibiao*,ZHANG Jing,HUO Jianqiang,HUANG Dengjing,NIU Lijuan,and WANG Bo. NO is Involved in ABA-regulated Senescence of Cut Roses by Maintaining Water Content and Increasing Antioxidant Enzyme Activities [J]. ACTA HORTICULTURAE SINICA, 2019, 46(5): 901-909. |
[11] | ZHOU Qin1,LU Rui1,ZHANG Shuting1,BAO Manzhu1,and LIU Guofeng1,2,*. Phenotype Characterization and Genetic Analysis of a Floral Mutant aps in Petunia [J]. ACTA HORTICULTURAE SINICA, 2019, 46(2): 317-329. |
[12] | HUANG Xiaojing1,ZHANG Jun1,XIA Hui1,2,DENG Qunxian1,WANG Jin1,2,Lü Xiulan1,2,and LIANG Dong1,2,*. Genome-wide Identification and Expression Analysis of the MADS-box Gene Family in Vitis vinifera [J]. ACTA HORTICULTURAE SINICA, 2019, 46(10): 1882-1896. |
[13] | LU Wang2 and XI Wanpeng1,2,*. MADS-box Transcription Factors are Involved in Regulation for Fruit Ripening and Quality Development [J]. ACTA HORTICULTURAE SINICA, 2018, 45(9): 1802-1812. |
[14] | XIANG Lin1,CHEN Yue2,CHEN Liping2,and SUN Chongbo2,3,*. Expression Analysis of B,C and E Class MADS-box Genes in Cymbidium ensifolium [J]. ACTA HORTICULTURAE SINICA, 2018, 45(8): 1595-1604. |
[15] | HAN Pengliang,LIU Xiaojuan,LIU Xin,DONG Yuanhua,HU Dagang*,and HAO Yujin*. Molecular Cloning and Functional Identification of Apple Auxin Repressor Protein Gene MdIAA26 [J]. ACTA HORTICULTURAE SINICA, 2018, 45(6): 1041-1053. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd