Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (9): 1977-1990.doi: 10.16420/j.issn.0513-353x.2021-0378
• Research Notes • Previous Articles Next Articles
DING Zhijie, BAO Jinbo, ROUXIAN Guli, ZHU Tiantian, LI Xueli, MIAO Haoyu, TIAN Xinmin*()
Received:
2022-02-17
Revised:
2022-05-19
Online:
2022-09-25
Published:
2022-10-08
Contact:
TIAN Xinmin
E-mail:tianxm06@lzu.edu.cn
CLC Number:
DING Zhijie, BAO Jinbo, ROUXIAN Guli, ZHU Tiantian, LI Xueli, MIAO Haoyu, TIAN Xinmin. Comparative Chloroplast Genome Study of Mallus servisii‘Red Delicious’and‘Golden Delicious’[J]. Acta Horticulturae Sinica, 2022, 49(9): 1977-1990.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-0378
基本特征 Basic characteristic | 新疆野苹果 M. sieversii | ‘元帅’ M.× domastica‘Red Delicious’ | ‘金冠’ M. × domastica‘Golden Delicious’ |
---|---|---|---|
基因组Genomes/bp | 160 230 | 160 288 | 160 068 |
LSC/bp | 88 368 | 88 472 | 88 273 |
SSC/bp | 19 196 | 19 174 | 19 181 |
IR/bp | 26 333 | 26 321 | 26 370 |
蛋白编码基因Protein-coding genes | 86 | 86 | 86 |
转运RNA基因tRNA gene | 37 | 37 | 37 |
核糖体RNA基因rRNA gene | 8 | 8 | 8 |
GC/% | 36.5 | 36.5 | 36.6 |
Table 1 Basic characteristics of chloroplast genomes of Malus sieversii and cultivated apples
基本特征 Basic characteristic | 新疆野苹果 M. sieversii | ‘元帅’ M.× domastica‘Red Delicious’ | ‘金冠’ M. × domastica‘Golden Delicious’ |
---|---|---|---|
基因组Genomes/bp | 160 230 | 160 288 | 160 068 |
LSC/bp | 88 368 | 88 472 | 88 273 |
SSC/bp | 19 196 | 19 174 | 19 181 |
IR/bp | 26 333 | 26 321 | 26 370 |
蛋白编码基因Protein-coding genes | 86 | 86 | 86 |
转运RNA基因tRNA gene | 37 | 37 | 37 |
核糖体RNA基因rRNA gene | 8 | 8 | 8 |
GC/% | 36.5 | 36.5 | 36.6 |
区域 Regin | 碱基 Base | 新疆野苹果 M. sieversii | ‘元帅’ M.× domastica‘Red Delicious’ | ‘金冠’ M. × domastica‘Golden Delicious’ |
---|---|---|---|---|
大单拷贝区/% LSC | A | 32.2 | 32.3 | 32.2 |
C | 17.6 | 17.6 | 17.6 | |
G | 16.6 | 16.6 | 16.6 | |
T | 33.6 | 33.6 | 33.6 | |
GC | 34.1 | 34.1 | 34.2 | |
小单拷贝区/% SSC | A | 34.8 | 34.8 | 34.7 |
C | 16.0 | 16.0 | 15.9 | |
G | 14.5 | 14.5 | 14.5 | |
T | 34.8 | 34.8 | 34.8 | |
GC | 30.4 | 30.4 | 30.4 | |
反向重复区/% IRa | A | 28.6 | 28.6 | 28.5 |
C | 22.1 | 22.1 | 22.1 | |
G | 20.6 | 20.6 | 20.6 | |
T | 28.7 | 28.8 | 28.8 | |
GC | 42.7 | 42.7 | 42.7 | |
总计/% Total | A | 31.4 | 31.4 | 31.3 |
C | 18.6 | 18.6 | 18.6 | |
G | 17.9 | 17.9 | 17.9 | |
T | 32.1 | 32.1 | 32.1 | |
GC | 36.5 | 36.5 | 36.6 |
Table 2 Base compositions of chloroplast genome of Malus sieversii and cultivated apples
区域 Regin | 碱基 Base | 新疆野苹果 M. sieversii | ‘元帅’ M.× domastica‘Red Delicious’ | ‘金冠’ M. × domastica‘Golden Delicious’ |
---|---|---|---|---|
大单拷贝区/% LSC | A | 32.2 | 32.3 | 32.2 |
C | 17.6 | 17.6 | 17.6 | |
G | 16.6 | 16.6 | 16.6 | |
T | 33.6 | 33.6 | 33.6 | |
GC | 34.1 | 34.1 | 34.2 | |
小单拷贝区/% SSC | A | 34.8 | 34.8 | 34.7 |
C | 16.0 | 16.0 | 15.9 | |
G | 14.5 | 14.5 | 14.5 | |
T | 34.8 | 34.8 | 34.8 | |
GC | 30.4 | 30.4 | 30.4 | |
反向重复区/% IRa | A | 28.6 | 28.6 | 28.5 |
C | 22.1 | 22.1 | 22.1 | |
G | 20.6 | 20.6 | 20.6 | |
T | 28.7 | 28.8 | 28.8 | |
GC | 42.7 | 42.7 | 42.7 | |
总计/% Total | A | 31.4 | 31.4 | 31.3 |
C | 18.6 | 18.6 | 18.6 | |
G | 17.9 | 17.9 | 17.9 | |
T | 32.1 | 32.1 | 32.1 | |
GC | 36.5 | 36.5 | 36.6 |
基因组成 Group of genes | 基因名称Gene name | ||
---|---|---|---|
新疆野苹果M. sieversii | ‘元帅’ M. × domastica‘Red Delicious’ | ‘金冠’ M. × domastica‘Golden Delicious’ | |
核糖体RNA基因Ribosomal RNA genes | rrn16,rrn23,rrn4.5,rrn5 | rrn23,rrn16,rrn4.5,rrn5 | rrn23,rrn16,rrn4.5,rrn5 |
转运RNA基因 Transefer RNA genes | trnH-GUG,trnK-UUU,trnQ-UUG,trnS-GGU,trnG-UCC,trnR-UCU,trnC-GCA,trnD-GUC,trnY-GUA,trnT-GGU,trnS-UGA,trnG-GCC,trnfM-CAC,trnS-GGA,trnT-UGU,trnT-UAA,trnF-GAA,trnV-UAC,trnM-CAU,trnW-CCA,trnP-UGG,trnL-CAU,trnL-CAA,trnL-GAU,trnA-UGC,trnR-ACG,trnN-GUU,trnA-UGC,trnV-GAC,trnL-CAA | trnH-GUG,trnK-UUU,trnQ-UUG,trnS-GCU,trnG-UCC,trnR-UCU,trnC-GCA,trnD-GUC,trnE-UUC,trnT-GGU,trnS-UGA,trnfM-CAU,trnS-GGA,trnT-UGC,trnL-UAA,trnV-UAC,trnM-CAU,trnW-CCA,trnP-UGG,trnL-CAU,trnV-GAC,trnL-GAU,trnA-UGC,trnR-ACG,trnN-GUU,trnL-UAG,trnR-ACG,trnL-CAA,trnL-CAU | trnH-GUG,trnK-UUU,trnQ-UUG,trnS-GCU,trnG-UCC,trnR-UCU,trnC-GCA,trnD-GUC,trnY-GUA,trnE-UUC,trnT-GGU,trnS-UGA,trnfM-CAU,trnS-GGA,trnT-UGC,trnF-UGC,trnL-UAA,trnV-UAC,trnM-CAU,trnW-CCA,trnP-UGG,trnL-CAU,trnL-GAU,trnA-UGC,trnR-ACG,trnN-GUU,trnL-UAG,trnR-ACG,trnN-ACG,trnL-GAU,trnV-GAU,trnL-CAA,trnL-CAU |
核糖体小亚基Small subunit of ribosom | rps16,rps2,rps14,rps4,rps8,rps7,rps19 | rps16,rps19,rps2,rps14,rps4,rps12,rps11,rps8,rps7,rps15 | rps16,rps14,rps4,rps18,rps8,rps12,rps3,rps7,rps15,rps19 |
核糖体大亚基 Large subunit of ribosom | rpl33,rpl20,rpl14,rpl16,rpl22,rpl12,rpl32,rpl23 | rpL33,rpL20,rpL36,rpL14,rpL16,rpL22,rpL12,rpL23 | rpL33,rpL20,rpL36,rpL14,rpL16,rpL23,rpL22,rpL38,rpL23,rpL2 |
DNA依赖型RNA聚合酶 DNA dependent RNA polymerase | rpoC1,rpoC2,rpoA | rpoC1,rpoC2,rpoB | rpoC1,rpoC2,rpoB |
光合系统Ⅰ Subunit of photosestenⅠ | psa1,psa7,psaB | psaB,psaA,psaL,psaJ,psaC | psaA,psaB,psaL,psaJ,psaC |
光合系统Ⅱ Subunit of photosestenⅡ | psbA,psbK,psbL,psbM,psbD,psbZ,psbJ,psbB,psbT,psbE,psbN | psbA,psbK,psbL,psbD,psbC,psbZ,psbJ,psbF,psbE,psbT,psbN,psbH,psbM | PsbB,psbK,psbL,psbM,psbD,psbC,psbZ,psbJ,psbL,psbF,psbE,psbT,psbH,psbN |
细胞色素亚基Subunit of Cytochrome | petN,petA,petB,petD | petN,petA,petL,petG,petD,petB | petN,petA,petL,petG,petB,petD |
ATP合成酶亚基Subunit of ATP synthase | atpE,atpA,atpH,atp1 | atpA,atpF,atpL,atpE,atpB | atpA,atpF,atpH,atpL,atpB,atpE |
ATP依赖型蛋白酶ATP dependent protease | clpP | clpP | clpP |
Rubisco大亚基Large subunit of Rubisco | rbcL | rbcL | rbcL |
NADH亚基 Subunit of NADH | ndhB,ndhF,ndhI,ndhJ,ndhC,ndhG,ndhE,ndhD,ndhH,ndhA,ndhK | ndhJ,ndhK,ndhC,ndhA,ndhG,ndhE,ndhD,ndhB,ndhF,ndhH,ndhI | ndhJ,ndhK,ndhC,ndhB,ndhF,ndhD,ndhA,ndhE,ndhG,ndhH,ndhI |
成熟酶 Maturase | matK | matK | matK |
外膜蛋白基因Envelop membrane protein | cemA | cemA | cemA |
乙酰-CoA-羧基酶亚基 Subunit of Acetyl-CoA- Carboxyase | accD | accD | accD |
C型细胞色素合成基因 C-type cytochrome synthesis gene | ccsA | ccsA | ccsA |
保守的开放阅读框Conserved open reading frames | ycf3,ycf1,ycf4,ycf2 | ycf3,ycf1,ycf4,ycf2 | ycf3,ycf2,ycf1 |
Table 3 Gene list of Malus sieversii and cultivated apples chloroplast genome
基因组成 Group of genes | 基因名称Gene name | ||
---|---|---|---|
新疆野苹果M. sieversii | ‘元帅’ M. × domastica‘Red Delicious’ | ‘金冠’ M. × domastica‘Golden Delicious’ | |
核糖体RNA基因Ribosomal RNA genes | rrn16,rrn23,rrn4.5,rrn5 | rrn23,rrn16,rrn4.5,rrn5 | rrn23,rrn16,rrn4.5,rrn5 |
转运RNA基因 Transefer RNA genes | trnH-GUG,trnK-UUU,trnQ-UUG,trnS-GGU,trnG-UCC,trnR-UCU,trnC-GCA,trnD-GUC,trnY-GUA,trnT-GGU,trnS-UGA,trnG-GCC,trnfM-CAC,trnS-GGA,trnT-UGU,trnT-UAA,trnF-GAA,trnV-UAC,trnM-CAU,trnW-CCA,trnP-UGG,trnL-CAU,trnL-CAA,trnL-GAU,trnA-UGC,trnR-ACG,trnN-GUU,trnA-UGC,trnV-GAC,trnL-CAA | trnH-GUG,trnK-UUU,trnQ-UUG,trnS-GCU,trnG-UCC,trnR-UCU,trnC-GCA,trnD-GUC,trnE-UUC,trnT-GGU,trnS-UGA,trnfM-CAU,trnS-GGA,trnT-UGC,trnL-UAA,trnV-UAC,trnM-CAU,trnW-CCA,trnP-UGG,trnL-CAU,trnV-GAC,trnL-GAU,trnA-UGC,trnR-ACG,trnN-GUU,trnL-UAG,trnR-ACG,trnL-CAA,trnL-CAU | trnH-GUG,trnK-UUU,trnQ-UUG,trnS-GCU,trnG-UCC,trnR-UCU,trnC-GCA,trnD-GUC,trnY-GUA,trnE-UUC,trnT-GGU,trnS-UGA,trnfM-CAU,trnS-GGA,trnT-UGC,trnF-UGC,trnL-UAA,trnV-UAC,trnM-CAU,trnW-CCA,trnP-UGG,trnL-CAU,trnL-GAU,trnA-UGC,trnR-ACG,trnN-GUU,trnL-UAG,trnR-ACG,trnN-ACG,trnL-GAU,trnV-GAU,trnL-CAA,trnL-CAU |
核糖体小亚基Small subunit of ribosom | rps16,rps2,rps14,rps4,rps8,rps7,rps19 | rps16,rps19,rps2,rps14,rps4,rps12,rps11,rps8,rps7,rps15 | rps16,rps14,rps4,rps18,rps8,rps12,rps3,rps7,rps15,rps19 |
核糖体大亚基 Large subunit of ribosom | rpl33,rpl20,rpl14,rpl16,rpl22,rpl12,rpl32,rpl23 | rpL33,rpL20,rpL36,rpL14,rpL16,rpL22,rpL12,rpL23 | rpL33,rpL20,rpL36,rpL14,rpL16,rpL23,rpL22,rpL38,rpL23,rpL2 |
DNA依赖型RNA聚合酶 DNA dependent RNA polymerase | rpoC1,rpoC2,rpoA | rpoC1,rpoC2,rpoB | rpoC1,rpoC2,rpoB |
光合系统Ⅰ Subunit of photosestenⅠ | psa1,psa7,psaB | psaB,psaA,psaL,psaJ,psaC | psaA,psaB,psaL,psaJ,psaC |
光合系统Ⅱ Subunit of photosestenⅡ | psbA,psbK,psbL,psbM,psbD,psbZ,psbJ,psbB,psbT,psbE,psbN | psbA,psbK,psbL,psbD,psbC,psbZ,psbJ,psbF,psbE,psbT,psbN,psbH,psbM | PsbB,psbK,psbL,psbM,psbD,psbC,psbZ,psbJ,psbL,psbF,psbE,psbT,psbH,psbN |
细胞色素亚基Subunit of Cytochrome | petN,petA,petB,petD | petN,petA,petL,petG,petD,petB | petN,petA,petL,petG,petB,petD |
ATP合成酶亚基Subunit of ATP synthase | atpE,atpA,atpH,atp1 | atpA,atpF,atpL,atpE,atpB | atpA,atpF,atpH,atpL,atpB,atpE |
ATP依赖型蛋白酶ATP dependent protease | clpP | clpP | clpP |
Rubisco大亚基Large subunit of Rubisco | rbcL | rbcL | rbcL |
NADH亚基 Subunit of NADH | ndhB,ndhF,ndhI,ndhJ,ndhC,ndhG,ndhE,ndhD,ndhH,ndhA,ndhK | ndhJ,ndhK,ndhC,ndhA,ndhG,ndhE,ndhD,ndhB,ndhF,ndhH,ndhI | ndhJ,ndhK,ndhC,ndhB,ndhF,ndhD,ndhA,ndhE,ndhG,ndhH,ndhI |
成熟酶 Maturase | matK | matK | matK |
外膜蛋白基因Envelop membrane protein | cemA | cemA | cemA |
乙酰-CoA-羧基酶亚基 Subunit of Acetyl-CoA- Carboxyase | accD | accD | accD |
C型细胞色素合成基因 C-type cytochrome synthesis gene | ccsA | ccsA | ccsA |
保守的开放阅读框Conserved open reading frames | ycf3,ycf1,ycf4,ycf2 | ycf3,ycf1,ycf4,ycf2 | ycf3,ycf2,ycf1 |
类型和区域 Type and region | 名称 Name | 新疆野苹果 M. sieversii | ‘元帅’ M. × domestica‘Red Delicious’ | ‘金冠’ M. × domestica‘Golden Delicious’ |
---|---|---|---|---|
类型 Type | 单核苷酸重复 Single nucleotide repeats | 51 | 50 | 48 |
二核苷酸重复 Dinucleotide repeats | 3 | 3 | 2 | |
多核苷酸重复 Poly nucleotide repeats | 10 | 8 | 7 | |
区域Region | 大单拷贝区 LSC | 46 | 48 | 46 |
小单拷贝区 SSC | 9 | 9 | 7 | |
反向重复区 IR | 9 | 4 | 4 | |
合计Total | 64 | 61 | 57 |
Table4 Summary of the simple sequence repeat(SSR)in Malus sieversii and cultivated apples
类型和区域 Type and region | 名称 Name | 新疆野苹果 M. sieversii | ‘元帅’ M. × domestica‘Red Delicious’ | ‘金冠’ M. × domestica‘Golden Delicious’ |
---|---|---|---|---|
类型 Type | 单核苷酸重复 Single nucleotide repeats | 51 | 50 | 48 |
二核苷酸重复 Dinucleotide repeats | 3 | 3 | 2 | |
多核苷酸重复 Poly nucleotide repeats | 10 | 8 | 7 | |
区域Region | 大单拷贝区 LSC | 46 | 48 | 46 |
小单拷贝区 SSC | 9 | 9 | 7 | |
反向重复区 IR | 9 | 4 | 4 | |
合计Total | 64 | 61 | 57 |
Fig. 4 Visualized comparison of chloroplast genomes of Malus sieversii,cultivated apples and three wild relative species of Malus Different regions of the genome are represented in different colors,blue represent the coding region and red represent the non-coding region.
[1] | Behura W. 2013. Codon usage bias:causative factors,quantification methods and genome‐wide patterns:with emphasis on insect genomes Biological Reviews, 88 (1):49-61. |
[2] | Bianco L, Cestaro A, Sargent D J, Banchi E, Derdak S, Salvi S, Jansen J. 2014. Development and validation of a 20K single nucleotide polymorphism (SNP) whole genome genotyping array for apple(Malus domestica Borkh.). Public Library of Science ONE, 9 (10):e110377. |
[3] |
Cahoon A B, Sharpe R M, Mysayphonh C, Thompson E J, Ward A D, Lin A H. 2010. The complete chloroplast genome of tall fescue(Lolium arundinaceum;Poaceae)and comparison of whole plastomes from the family Poaceae. American Journal of Botany, 97 (1):49-58.
doi: 10.3732/ajb.0900008 pmid: 21622366 |
[4] | Chagne D, Krieger C, Rassam. 2012. QTL and candidate gene mapping for polyphenolic composition in apple fruit. BMC Plant Biology, 12:12. |
[5] |
Daccord N, Celton JM, Linsmith G, Becker C. 2017. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genetics, 49 (7):1099-1106.
doi: 10.1038/ng.3886 URL |
[6] |
Depamphilis C W, Palmer J D. 1990. Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature, 348 (6299):337-339.
doi: 10.1038/348337a0 URL |
[7] |
Duan N B, Bai Y, Sun H H, Wang N, Ma Y M, Li M J, Wang X. 2017. Genome resequencing reveals the history of apple and supports a two-stage model for fruit enlargement. Nature Communications, 8 (1):17-20.
doi: 10.1038/s41467-017-00019-3 URL |
[8] |
Fan W B, Ying W, Jiao Y, Shahzad K, Li Z H. 2018. Comparative chloroplast genomics of dipsacales species:insights into sequence variation,adaptive evolution,and phylogenetic relationships. Frontiers in Plant Science, 9:689-702.
doi: 10.3389/fpls.2018.00689 URL |
[9] | Flora of China Editorial Committee,CAS. 1974. Flora of China. Vol. 36. Beijing:Science Press:372-402. (in Chinese) |
中科院中国植物志编辑委员会. 1974. 中国植物志. 36卷. 北京:科学出版社:372-402. | |
[10] |
Gao Q, Yue G D, Li W Q, Wang J Y, Xu J H. 2012. Recent progress using high-throughput sequencing technologies in plant molecular breeding. Journal of Integrative Plant Biology, 54:215-227.
doi: 10.1111/j.1744-7909.2012.01115.x |
[11] | Gao Yuan, Wang Dajiang, Wang Kun, Cong Peihua, Li Lianwen, Piao Jicheng. 2020. Analysis of genetic diversity of apple germplasms of Malus using SLAF-seq technology. Acta Horticulturae Sinica, 47 (10):1869-1882. (in Chinese) |
高源, 王大江, 王昆, 丛佩华, 李连文, 朴继成. 2020. 苹果属植物种质多样性的SLAF-seq分析. 园艺学报, 47 (10):1869-1882. | |
[12] |
Goulding S E, Olmstead R G. 1996. Ebb and flow of the chloroplast inverted repeat. Molecular and General Genetics, 252 (2):195-206.
doi: 10.1007/BF02173220 URL |
[13] |
Huang D I, Cronk Q C B. 2015. Plann:A command-line application for annotating plastome sequences. Appl Plant Sci, 3 (8):1500026.
doi: 10.3732/apps.1500026 URL |
[14] |
Katoh K, Standley M. 2013. MAFFT Multiple sequence alignment software version7:improvements in performance and usability. Molecular Biology and Evolution, 30 (4):772-780.
doi: 10.1093/molbev/mst010 URL |
[15] | Khan MA, Olsen KM, Sovero V, Kushad M M, Schuyler K. 2014. Fruit quality traits have played criticalRoles in domestication of the apple. Plant Genome, 7 (3):doi-10. |
[16] | Kumar S, Chagne D, Bink MC, Volz R K, Carlisle C. 2012. Genomic selection for fruit quality traits in apple(Malus domestica Borkh.). Public Library of Science ONE, 7:e36674. |
[17] |
Kumar S, Garrick D J, Bink M C, Whitworth C, Volz R K. 2013. Novel genomic approaches unravel genetic architecture of complex traits in apple. BMC Genomics, 14:393.
doi: 10.1186/1471-2164-14-393 pmid: 23758946 |
[18] |
Kumar S, Raulier P, Chagne D, Whitworth C. 2014. Molecularlevel and trait-level differentiation between the cultivated apple(Malus domestica Borkh.)and its main progenitor Malus sieversii. Plant Genetic Resources, 12:330-340.
doi: 10.1017/S1479262114000136 URL |
[19] |
Kumar S, Rowan D, Hunt M, Chagne D, Whitworth C. 2015. Genome-wide scans reveal genetic architecture of apple flavor volatiles. Molecular Breeding, 35:118.
doi: 10.1007/s11032-015-0312-7 URL |
[20] |
Kurtz S, Choudhuri J V, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R. 2001. REPuter:the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Research, 29 (22):4633-4642.
pmid: 11713313 |
[21] |
Lee S B, Kaittanis C, Jansen R K, Hostetler J B, Tallon L J, Town C D, Daniellet H. 2006. The complete chloroplast genome sequence of Gossypium hirsutum:organization and phylogenetic relationships to other angiosperms. BMC Genomics, 7 (1):61-70.
doi: 10.1186/1471-2164-7-61 URL |
[22] |
Leforestier D, Ravon E, Muranty H, Cornille A, Lemaire C, Giraud T. 2015. Genomic basis of the differences between cider and dessert apple varieties. Evolutionary Applications, 8:650-661.
doi: 10.1111/eva.12270 pmid: 26240603 |
[23] | Li Qian, Guo Qiqiang, Gao Chao, Li Huie. 2020. Characterization of complete chloroplast genome of Camellia weiningensis in Weining,Guizhou Province. Acta Horticulturae Sinica, 47 (4):779-787. (in Chinese) |
李倩, 郭其强, 高超, 李慧娥. 2020. 贵州威宁红花油茶的叶绿体基因组特征分析. 园艺学报, 47 (4):779-787. | |
[24] | Li Yongtan, Zhang Jun, Huang Yali, Fan Jianmin, Zhang Yiwen, Zuo Lihui. 2020. Analysis of chloroplast genome of Pyrus betulaefolia. Acta Horticulturae Sinica, 47 (6):1021-1032. (in Chinese) |
李泳潭, 张军, 黄亚丽, 范建敏, 张益文, 左力辉. 2020. 杜梨叶绿体基因组分析. 园艺学报, 47 (6):1021-1032. | |
[25] | Li Yu-nong. 1999. Research on the evolution of apple origin. Acta Horticulturae Sinica, 26 (4):213-220. (in Chinese) |
李育农. 1999. 苹果起源演化的考察研究. 园艺学报, 26 (4):213-220. | |
[26] |
Lohse M, Drechsel O, Kahlau S, Bock R. 2013. Organellar Genome DRAW-a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Research, 41 (1):575-581.
doi: 10.1093/nar/gks1075 URL |
[27] |
Lu M, Zhang H S, An H M. 2021. Chloroplast DNA-based genetic variation of Rosa roxburghii in Southwest China:phylogeography and conservation implications. Horticultural Plant Journal, 7 (4):286-294.
doi: 10.1016/j.hpj.2021.01.002 URL |
[28] |
Ma B Q, Liao L, Peng Q, Fang T, Zhou H, Korban S S, Han Y P. 2017. Reduced representation genome sequencing reveals patterns of genetic diversity and selection in apple. Journal of Integrative Plant Biology, 59 (3):190-204.
doi: 10.1111/jipb.12522 |
[29] | Ma B Q, Liao L, Zheng H Y, Chen J. 2015. Genes encoding aluminum-activated malate transporter II and their association with fruit acidity in apple. Plant Genome, 8:1-14. |
[30] |
Martin G, Cardi C. 2013. The complete chloroplast genome of banana(Musa acuminata,Zingiberales):insight into plastid monocotyledon evolution. PLoS ONE, 8 (6):e67350.
doi: 10.1371/journal.pone.0067350 URL |
[31] |
Mccoy S R, Kuehl J V, Boore J L, Raubeson L A. 2008. The complete plastid genome sequence of Welwitschia mirabilis:an unusually compact plastome with accelerated divergence rates. BMC Evolutionary Biology, 8 (1):130-135.
doi: 10.1186/1471-2148-8-130 URL |
[32] |
Nock C J, Waters D L, Edwards M A, Bowen S G, Rice N, Cordeiro G M, Henry R J. 2010. Chloroplast genome sequences from total DNA for plant identification. Plant Biotechnol, 9 (3):328-333.
doi: 10.1111/j.1467-7652.2010.00558.x URL |
[33] | Qian Jun. 2014. Study on chloroplast and mitochondrial genomes of Salvia miltiorrhiza[Ph. D. Dissertation]. Beijing:Peking Union Medical College. (in Chinese) |
钱俊. 2014. 丹参的叶绿体和线粒体基因组研究[博士论文]. 北京: 北京协和医学院. | |
[34] |
Raubeson L A, Peery R, Chumley T W, Dziubek C, Fourcade H M, Boore J L, Jansen R K. 2007. Comparative chloroplast genomics:analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus. BMC Genomics, 8 (1):174-178.
doi: 10.1186/1471-2164-8-174 URL |
[35] |
Ronquist F, Huelsenbeck J P. 2003. MrBayes3:Bayesian phylogenetic inference under mixed models. Bioinformatics, 19 (12):1572-1574.
doi: 10.1093/bioinformatics/btg180 pmid: 12912839 |
[36] | Sun X P, Jiao C, Schwaninger H, Thomas C, Ma Y M, Duan N B, Khan A, Fei Z J. 2020. Phased diploid genmoe assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nature Genetics,1-10. |
[37] |
Velasco R, Zharikikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A. 2010. The genome of the domesticated apple(Malus × domestica Borkh). Nature Genetics, 42 (10):833-839.
doi: 10.1038/ng.654 URL |
[38] | Wang R J, Cheng C L, Chang C C, Wu C L, Su T M, Chaw S M. 2008. Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. BMC Evolutionary Biology, 36 (8):1471-2148. |
[39] | Yan Guo-rong, Xu Zheng, Chu Wen-zhao. 2004. Study and protect on Malus sieversii. Beijing:Chinese Society for Horticultural Science:12-16. (in Chinese) |
阎国荣, 许正, 楚文照. 2004. 新疆野苹果(Malus sieversii)及其保护研究. 北京:中国园艺学会:12-16. | |
[40] | Yang Guo-feng, Su Kong-long, ZhaoYi-ran, Song Zhi-bin, Sun Juan. 2015. Analysis of codon usage in the chloroplast genome of Medicago truncatula. Acta Prataculturae Sinica, 24 (12):171-179. (in Chinese) |
杨国锋, 苏昆龙, 赵怡然, 宋智斌, 孙娟. 2015. 蒺藜苜蓿叶绿体密码子偏好性分析. 草业学报, 24 (12):171-179. | |
[41] |
Zerbino D R, Birney E. 2008. Velvet:algorithms for de novo short read assembly using de Bruijn graphs. Genome Res, 18 (1):821-829.
doi: 10.1101/gr.074492.107 URL |
[42] | Zhang Li, Wang Yan, Chen Qing, Luo Ya,Zhang Yong,Tang Hao-ru,Wang Xiao-rong. 2015. Phylogenetic utility of Chinese Rubus(Rosaceae)based on ndhF sequence. Acta Horticulturae Sinica, 42 (1):19-30. (in Chinese) |
张丽, 王燕, 陈清, 罗娅, 张勇, 汤浩茹, 王小蓉. 2015. 基于ndhF序列的中国悬钩子属植物系统发育研究. 园艺学报, 42 (1):19-30. | |
[43] | Zheng Yi, Zhang Hui, Wang Qinmei, Gao Yue,Zhang Zhihong,Sun Yuxin. 2020. Complete chloroplast genome sequence of Clivia miniata and its characteristics. Acta Horticulturae Sinica, 47 (12):2439-2450. (in Chinese) |
郑祎, 张卉, 王钦美, 高悦, 张志宏, 孙玉新. 2020. 大花君子兰叶绿体基因组及其特征. 园艺学报, 47 (12):2439-2450. |
[1] | JIANG Sisi, YUAN Jun, ZHOU Wenjun, NIU Genhua, ZHOU Junqin. Complete Chloroplast Genome Sequence and Characteristics Analysis of Carya illinoinensis [J]. Acta Horticulturae Sinica, 2022, 49(8): 1772-1784. |
[2] | MEI Chuang, ZHANG Xiaoyan, YAN Peng, Aisajan Mamat, FENG Beibei, MA Kai, HAN Liqun, DONG Lianxin, WANG Jixun. Identification of TIFY Family in Apple and Their Expression Analysis Under Insect Stress [J]. Acta Horticulturae Sinica, 2021, 48(2): 233-242. |
[3] | GUO Xiangyang1,GAO Jie1,SONG Xiqiang1,LING Peng1,ZHOU Yang1,HAO Daicheng2,LI Weishi2,and DING Qiong1,*. A Preliminary Study on Identity and Pathogenicity of Common Fungi Associated with Diseased Leaves of Oncidium sp. in Hainan Island [J]. ACTA HORTICULTURAE SINICA, 2020, 47(7): 1369-1382. |
[4] | LI Qian1,GUO Qiqiang2,GAO Chao2,and LI Huie1,*. Characterization of Complete Chloroplast Genome of Camellia weiningensis in Weining,Guizhou Province [J]. ACTA HORTICULTURAE SINICA, 2020, 47(4): 779-787. |
[5] | WANG Hongfei and SHANG Qingmao*. Genome-wide Identification and Expression Analysis of the SAUR Gene Family in Cucumis sativus [J]. ACTA HORTICULTURAE SINICA, 2019, 46(6): 1093-1111. |
[6] | ZHANG Huanxin,LI Guoquan,YANG Huidong,CAO Na,and ZHU Fanghong*. Genome-wide Identification and Expression of Dof Family in Melon(Cucumis melo) [J]. ACTA HORTICULTURAE SINICA, 2019, 46(11): 2176-2187. |
[7] | WEI Ruimin,ZHENG Jingyuan,LIU Feng,MA Yanqing,LI Xuefeng,YANG Bozhi,ZOU Xuexiao,XIE Lingling*,and DAI Xiongze*. Genome Wide Identification and Expression Analysis of the bZIP Gene Family in Pepper [J]. ACTA HORTICULTURAE SINICA, 2018, 45(8): 1535-1550. |
[8] | LIN Li1,2,LIN Lejing2,ZHU Zhiyong2,DING Yulong1,and KUAI Benke1,*. Studies on the Taxonomy and Molecular Phylogeny of Acer in China [J]. ACTA HORTICULTURAE SINICA, 2017, 44(8): 1535-1547. |
[9] | ZHANG Huanxin,DONG Chunjuan,and SHANG Qingmao*. Genome-wide Identification and Expression Analysis of GRAS Gene Family in Pepper [J]. ACTA HORTICULTURAE SINICA, 2017, 44(12): 2305-2317. |
[10] | ZHENG Zhong-fan1,ZHANG Ya-li3,HU Can2,DAI Xiong-ze2,LIU Feng2,*,and YUAN Zu-hua1,2,*. Genome-wide Identification and Expressing Analysis of LBD Transcription Factors in Pepper [J]. ACTA HORTICULTURAE SINICA, 2016, 43(4): 683-694. |
[11] | YANG Yong1,2,WANG Shun-li1,*,XUE Jing-qi1,REN Xiu-xia1,LI Dan-dan1,YANG Ruo-wen1,ZENG Xiu-li3,**,and ZHANG Xiu-xin1,**. Cloning of Five House-keeping Genes and Their Application in Phylogenetic Analysis of Tree Peony [J]. ACTA HORTICULTURAE SINICA, 2016, 43(2): 307-319. |
[12] | LIU Lei1,2,YAO Xiao-hong1,and HUANG Hong-wen3,*. Development of EPIC Markers in Actinidia and Their Application for Phylogenetic Analysis of Genus Actinidia [J]. ACTA HORTICULTURAE SINICA, 2013, 40(6): 1162-. |
[13] | WANG Guo-xun;and ZHANG Ming-li;. A Molecular Phylogeny of Sorbus(Rosaceae)Based on ITS Sequence [J]. ACTA HORTICULTURAE SINICA, 2011, 38(12): 2387-2394. |
[14] | WANG Hua-kun;TAO Jian-min;QU Shen-chun;FANG Jing-gui;MA Rui-juan;ZHANG Zhen;and LOU Xiao-ming;. Molecular Evolution and Phylogeny of Stone Fruit Trees Based onSequences of the Internal Transcribed Spacers(ITS)of Nuclear RibosomalDNA [J]. ACTA HORTICULTURAE SINICA, 2010, 37(3): 363-374. |
[15] | ZHENG Xiao-yan;CAO J ia-Shu;TENG Yuan-wen. Research Progress of Plant Molecular Phylogenetic Analyses Based on DNA Sequence Data—A Case Review in Rosaceae [J]. ACTA HORTICULTURAE SINICA, 2009, 36(12): 1827-1836. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd